DK161706B - Process for preparing pyridoimidazorifamycins - Google Patents
Process for preparing pyridoimidazorifamycins Download PDFInfo
- Publication number
- DK161706B DK161706B DK434985A DK434985A DK161706B DK 161706 B DK161706 B DK 161706B DK 434985 A DK434985 A DK 434985A DK 434985 A DK434985 A DK 434985A DK 161706 B DK161706 B DK 161706B
- Authority
- DK
- Denmark
- Prior art keywords
- formula
- rifamycin
- solvent
- process according
- oxidizing agent
- Prior art date
Links
Landscapes
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
DK 161706 BDK 161706 B
Den foreliggende opfindelse angår en særlig fremgangsmåde til fremstilling af pyrido-imidazo-rifamyciner med formlen , : Pil’ ^yVyi °CH3 I Ih oh L i I t J ch7The present invention relates to a particular process for the preparation of pyrido-imidazo-rifamycins of the formula:
10 OH OH CO10 OH OH CO
c H 3 ^ Η Hc H 3 ^ Η H
0 ιΟύ 2 15 °—I-Ν» \^/ CH p 3 R1 hvor Rj og R2 uafhængigt betegner hydrogen, (Cj^J-alkyl, eller halogen, 20 eller Rj og R2 sammen med to nabocarbonatomer i pyridinkernen danner en benzenring.0 ιΟύ 2 15 ° -I-Ν »\ ^ / CH p 3 R1 where R 1 and R 2 independently represent hydrogen, (C 1-6 alkyl, or halogen, 20 or R 1 and R 2 together with two neighboring carbon atoms in the pyridine nucleus form a benzene ring.
Fremgangsmåden ifølge opfindelsen er ejendommelig ved, at man omsætter én molækvivalent rifamycin B med formlen 25 CH CH ch f 3 I 3 I 3The process according to the invention is characterized by reacting one molar equivalent rifamycin B of the formula 25 CH CH ch 3
C H 3 C OC H 3 C O
OCH I OH OH IAND I OH OH I
v 3 l IIv 3 l II
30 s? \30 s? \
^ OH OH CO CH^ OH OH CO CH
„ .. [Yr".. [Yr
35 \ O— CH —COOH35 O-CH-COOH
xO 2 CH3xO 2 CH3
DK 161706 BDK 161706 B
2 med fra 1 til 9 molækvival enter 2-aminopyridin med formlen s I 111 E2 hvor Rj og Rg har de ovenfor anførte betydninger, og med fra 1 til 4 10 molækvivalenter af et passende oxidationsmiddel i nærvær af et opløsningsmiddel eller et opløsningsmiddel system ved en temperatur imellem stuetemperatur og kogepunktet for reaktionsblandingen i et tidsrum imellem 10 og 100 timer og om nødvendigt derefter behandler reaktionsblandingen med et passende reduktionsmiddel.2 having from 1 to 9 molar equivalents of 2-aminopyridine of formula s I 111 E2 wherein R 1 and R 5 have the meanings set forth above, and having from 1 to 4 10 mol equivalents of a suitable oxidant in the presence of a solvent or solvent system at a temperature between room temperature and the boiling point of the reaction mixture for a period of time between 10 and 100 hours and, if necessary, then treat the reaction mixture with an appropriate reducing agent.
15 Nogle af forbindelserne med formel (I), nærmere betegnet de forbindelser, hvori Rj og Rg uafhængigt betegner hydrogen eller (Cj^)-alkyl, eller R^ og Rg sammen med to nabocarbonatomer i pyridinkernen danner en benzenring, er kendte inden for patentlittera-turen, se f.eks.Some of the compounds of formula (I), more particularly those compounds wherein R 1 and R 9 independently represent hydrogen or (C 1 -C 6) alkyl, or R 2 and R 9 together with two neighboring carbon atoms in the pyridine nucleus form a benzene ring, are known in the art. tour, see e.g.
US patentskrift nr. 4.341.785.U.S. Patent No. 4,341,785.
20 Andre forbindelser med formel (I), nærmere betegnet de forbindelser, hvori mindst én af Rj eller Rg betegner halogen, er beskrevet i den offentligt tilgængelige italienske patentansøgning nr. 3626 A/82.Other compounds of formula (I), more particularly those compounds wherein at least one of R 1 or R 6 represents halogen, is disclosed in the publicly available Italian Patent Application No. 3626 A / 82.
I disse to referencer beskrives også en fremgangsmåde til fremstilling af forbindelserne med formel (I).These two references also describe a process for preparing the compounds of formula (I).
25 I korthed udførtes den kendte fremgangsmåde ved omsætning af en molær mængde 3-halogen rifamycin S med formlenBriefly, the known process was carried out by reacting a molar amount of 3-halogen rifamycin S of the formula
p ii C H CHp ii C H CH
i 3 i 3 I 3i 3 i 3 I 3
30 OCH OH OH L30 AND OH OH L
X/ C'! IX / C '! IN
^ CO CH3^ CO CH3
°k o I° k o I
CH3 1 X .NRCH3 1 X .NR
halo °4-A °.halo ° 4-A °.
ch3CH3
35 VVV35 VVV
DK 161706 BDK 161706 B
3 hvor R betegner hydrogen eller acetyl og halo fortrinsvis betegner brom eller iod, med fra 2 til 8 molækvival enter af en passende 2-amino-pyridin med formel (III).3 wherein R represents hydrogen or acetyl and halo preferably represents bromine or iodine, with from 2 to 8 molar equivalents of a suitable 2-amino-pyridine of formula (III).
Herved opnås en forbindelse med formlen 5 ?H3 ^3 fH3 RO .A.There is thus obtained a compound of formula 5? H3 ^ 3 fH3 RO .A.
OCH3 OH oh cHo il 10 1 3 Jl J n (5o"CH3 æv *1 20 hvori R, Rj og Rg har de ovenfor anførte betydninger, hvilken forbindelse fortrinsvis isoleres og karakteriseres og dernæst behandles med ascorbinsyre til opnåelse af slutprodukterne med formel (I) eller de tilsvarende deacetylforbi ndel ser.OCH3 OH oh cHo il 10 1 3 Jl J n (50 ° CH3 eq * 1 20 wherein R, Rj and Rg have the above meanings, which compound is preferably isolated and characterized and then treated with ascorbic acid to obtain the final products of formula (I) ) or the corresponding deacetyl compound.
Selv om udbyttet fra de to nævnte trin beregnet i forhold til 25 udgangsforbindelsen (IV) undertiden er temmeligt godt (mellem cirka 45% og cirka 75%), har fremgangsmåden beskrevet i US patentskrift nr.Although the yield of the two mentioned steps calculated relative to the starting compound (IV) is sometimes quite good (between about 45% and about 75%), the method described in U.S. Pat.
4.341.785 alvorlige begrænsninger, idet udgangsforbindelsen (IV) ikke er et kommercielt produkt, men hver gang skal fremstilles ud fra rifamycin S ved passende halogeneringsprocesser, f.eks. den fra DK 30 patentansøgning nr. 5309/78 kendte. Fra DK patentansøgning nr. 5309/78 kendes således en fremgangsmåde til fremstilling af 3-iod-rifamycin S og 3-brom-rifamycin S i et udbytte på hhv. 81,5% og 85,5%. Kombineres den fra DK patentansøgning nr. 5309/78 kendte fremgangsmåde med den fra ovennævnte US patentskrift nr. 4.341.785 kendte opnås en tretrinsproces, 35 hvor f.eks. udbyttet af 4-deoxy-4,-methyl-pyrido[r,2/;l,2]imidazo[5,4- c]rifamycin SV bliver 62,5%, hvilket er væsentligt ringere end udbyt-tet opnået ved fremgangsmåden ifølge opfindelsen, specielt i betragtning af, at fremgangsmåden ifølge opfindelsen er industrielt mere attraktiv, da4,341,785 serious restrictions, the starting compound (IV) not being a commercial product, but each time having to be prepared from rifamycin S by appropriate halogenation processes, e.g. known from DK 30 Patent Application No. 5309/78. Thus, from DK Patent Application No. 5309/78, a process for the preparation of 3-iodo-rifamycin S and 3-bromo-rifamycin S is known in a yield of, respectively. 81.5% and 85.5%. Combining the process known from DK Patent Application No. 5309/78 with that known from the aforementioned US Patent No. 4,341,785 provides a three-step process, in which e.g. the yield of 4-deoxy-4, -methyl-pyrido [r, 2 /; 1,2] imidazo [5,4-c] rifamycin SV becomes 62.5%, which is substantially inferior to the yield obtained by the method of the invention, especially considering that the process of the invention is industrially more attractive, since
DK 161706 BDK 161706 B
4 den forløber i et enkelt trin og ikke kræver anvendelse af kostbare og toxiske reagenser som brom og iod.4 it proceeds in a single step and does not require the use of expensive and toxic reagents such as bromine and iodine.
I det foreliggende betegner (Cj^J-alkyl ligekædede eller forgrenede alkylgrupper, nemlig methyl, ethyl, propyl, isopropyl, butyl, 5 sec.-butyl, isobutyl og tert.-butyl.In the present invention (C Cj ^ alkyl) represents straight or branched chain alkyl groups, namely methyl, ethyl, propyl, isopropyl, butyl, 5 sec.-butyl, isobutyl and tert-butyl.
Forbindelserne med formel (I) har fremragende anti bakterielle egenskaber både in vitro og in vivo. På grund af deres ringe absorption i dyrs organer og væv ved oral administrering har de vist sig at være særligt egnede til behandling af microbielle infektioner i mave- og 10 tarmkanalen.The compounds of formula (I) have excellent anti-bacterial properties both in vitro and in vivo. Due to their poor absorption in animal organs and tissues by oral administration, they have been found to be particularly suitable for the treatment of microbial infections of the gastrointestinal tract.
Fremgangsmåden ifølge den foreliggende opfindelse er en betydelig forbedring sammenlignet med den hidtil kendte fremgangsmåde. Rifamycin B, der er et kommercielt produkt, anvendes ifølge opfindelsen som udgangsforbindelse. Denne forbindelse opnås let ved fermentation af 15 Streptomyces mediterrane! som beskrevet i Antibiotics Annual 1959-1960, pp. 262-270, 1960 og i tysk patentskrift nr. 1.113.288 og af Streptomyces mediterrane! ATCC 21789 som beskrevet i belgisk patentskrift nr. 799.122.The method of the present invention is a significant improvement over the prior art method. Rifamycin B, a commercial product, is used according to the invention as a starting compound. This compound is readily obtained by fermentation of 15 Streptomyces Mediterranean! as described in Antibiotics Annual 1959-1960, pp. 262-270, 1960 and in German Patent No. 1,113,288 and by Streptomyces Mediterranean! ATCC 21789 as described in Belgian Patent No. 799,122.
Rifamycin B omsættes ifølge opfindelsen under milde betingelser med 20 en udvalgt 2-aminopyridin med formel (III) og med et passende oxidationsmiddel i et egnet opløsningsmiddel eller opløsningsmiddel system, hvorfra der ved hjælp af metoder, som er kendte for fagmanden, isoleres de ønskede slutprodukter med formel (I), hvor Rj og R^ ^ar de ovenfor anførte betydninger, i udbytter, der varierer fra cirka 65% til cirka 25 80% beregnet ud fra det som udgangsmateriale anvendte rifamycin B.Rifamycin B is reacted according to the invention under mild conditions with a selected 2-aminopyridine of formula (III) and with a suitable oxidizing agent in a suitable solvent or solvent system from which the desired end products are isolated by methods known to those skilled in the art. of formula (I), wherein R 1 and R 2 are the above meanings, in yields ranging from about 65% to about 25 80% calculated from the starting material rifamycin B.
Omsætningen af forbindelserne med formel (II) og (III) i nærvær af et egnet oxidationsmiddel forløber i kun ét trin og belyses med følgende reaktionsskema, hvor Rj og R£ har de ovenfor anførte betydninger.The reaction of the compounds of formula (II) and (III) in the presence of a suitable oxidizing agent proceeds in only one step and is illustrated by the following reaction scheme, wherein R 1 and R 2 have the meanings given above.
iin
DK 161706 BDK 161706 B
5 skema i5 Schedule i
CH CH CHCH CH CH
I 3 I 3 I 3I 3 I 3 I 3
CH^COOCH ^ COO
°CH3 i° CH3 i
jv· “ Ssee “S
OH OH 9° CH3 CH3 JhOH OH 9 ° CH3 CH3 Jh
MMMM
/y* + j oxidations- 0 I Γ ^ ~T~R2 middel */ y * + j oxidation 0 I Γ ^ ~ T ~ R2 agent *
0 χ 0-CH2—COOH0 χ O-CH 2 -COOH
ch3 IIIch3 III
IIII
CH„ CH„ CH I 3 I 3 i 3 ^“^ΛΛΛ «, I T T iCH "CH" CH I 3 I 3 i 3 ^ "^ ΛΛΛ", I T T i
T\ OH OHT \ OH OH
CH3 ICH3 I
°H 0H Cq'^' CH3° H OH Cq CH2 CH3
CH3 Jv NHCH3 Jv NH
0~ίΑ V0 ~ ίΑ V
DK 161706 BDK 161706 B
6 I praksis omsættes en molær mængde rifamycin B med formel (II) med fra 1 til 9 molækvival enter af en 2-aminopyridin med formel (III) og fortrinsvis fra 2 til 4 molækvival enter af den nævnte aminopyridin og fra 1 til 4 molækvival enter af et passende oxidationsmiddel.In practice, a molar amount of rifamycin B of formula (II) is reacted with from 1 to 9 molar equivalents of a 2-aminopyridine of formula (III) and preferably from 2 to 4 molar equivalents of said aminopyridine and from 1 to 4 molar equivalents. of a suitable oxidizing agent.
5 Oxidationsmidlet kan anvendes enten i opløsning i reaktionsmediet, i suspension eller opløst i et opløsningsmiddel, der ikke er blandbart med reaktionsopløsningsmidlet. Når et molært overskud af oxidationsmiddel i forhold til rifamycin B anvendes, skal siutreaktionsblandingen behandles med et egnet reduktionsmiddel, almindeligvis en vandig opløs-10 ning af ascorbinsyre, for at opnå slutproduktet med formel (I).The oxidant can be used either in solution in the reaction medium, in suspension or dissolved in a solvent which is not miscible with the reaction solvent. When a molar excess of oxidant relative to rifamycin B is used, the siut reaction reaction must be treated with a suitable reducing agent, usually an aqueous solution of ascorbic acid, to obtain the final product of formula (I).
Mange oxidationssystemer kan anvendes med fordel, enten organiske eller uorganiske, såsom al kyl nitritter, quinoner, organiske peroxider, hydrogenperoxid, luft og oxygen eventuelt i nærvær af katalysatorer, iod, mangandioxid, blytetracetat, al kali persulfater, ferrisalte, kupri-15 salte, mercurisalte, al kali ferri cyanider, mercurioxid og alkalihypo-chloritter. lod, mangandioxid, kaliumferricyanid og natriumhypochlorit i vandig opløsning foretrækkes.Many oxidation systems can be used advantageously, either organic or inorganic, such as alkyl nitrites, quinones, organic peroxides, hydrogen peroxide, air and oxygen optionally in the presence of catalysts, iodine, manganese dioxide, lead tetracetate, all potassium persulfates, ferric salts, mercuric salts, al potassium ferric cyanides, mercuric oxides and alkali hypochlorites. solute, manganese dioxide, potassium ferricyanide and sodium hypochlorite in aqueous solution are preferred.
Reaktionen udføres i nærvær af et opløsningsmiddel eller et opløsningsmiddelsystem, der generelt er udvalgt blandt dem, der almindeligvis 20 anvendes i rifamycin-kemien. For eksempel anvendes med fordel aromatiske hydrocarboner såsom benzen og toluen, lavere halogenerede hydrocarboner såsom methylenchlorid, chloroform, 1,2-dichlorethan og analoge, lavere al kano!er såsom methanol, ethanol, propanol, isopropanol eller n-butanol. Lavere alkylestere af lavere alifatiske syrer, acetonitril, 25 dioxan og tetrahydrofuran kan med fordel også anvendes. Disse opløsningsmidler kan anvendes alene, blandet med hinanden eller blandet med vand i forskellige volumetriske forhold. De opløsningsmidler, der har givet de bedste resultater, er benzen, toluen, lavere halogenerede hydrocarboner, lavere al kanoler alene eller blandet med vand, aceto-30 nitril, dioxan og tetrahydrofuran.The reaction is carried out in the presence of a solvent or solvent system generally selected from those commonly used in rifamycin chemistry. For example, aromatic hydrocarbons such as benzene and toluene, lower halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, and analogous lower alkanes such as methanol, ethanol, propanol, isopropanol or n-butanol are advantageously used. Lower alkyl esters of lower aliphatic acids, acetonitrile, dioxane and tetrahydrofuran can also be used advantageously. These solvents can be used alone, mixed with each other or mixed with water in various volumetric conditions. The best performing solvents are benzene, toluene, lower halogenated hydrocarbons, lower all channels alone or mixed with water, acetonitrile, dioxane and tetrahydrofuran.
Reaktionen finder sted ved normalt tryk og inden for vide temperaturgrænser, nemlig mellem stuetemperatur og reaktionsblandingens kogepunkt. En temperatur mellem stuetemperatur og cirka 60°C giver normalt absolut tilfredsstillende resultater.The reaction takes place at normal pressure and within wide temperature limits, namely between room temperature and the boiling point of the reaction mixture. A temperature between room temperature and about 60 ° C usually produces absolutely satisfactory results.
35 Reaktionen løber til ende inden for en tidsperiode, der hovedsage ligt er afhængig af beskaffenheden af aminopyridinen med formel (III) og de forhold, hvorunder reaktionen udføres. Der kræves fra 10 til 100 timer for at opnå slutprodukterne med formel (I) i de ønskede udbytter.The reaction ends within a time period which is substantially dependent on the nature of the aminopyridine of formula (III) and the conditions under which the reaction is carried out. It takes from 10 to 100 hours to obtain the final products of formula (I) in the desired yields.
DK 161706 BDK 161706 B
77
De således opnåede forbindelser med formel (I) isoleres fra reaktionsmediet i overensstemmelse med konven-tionelle teknikker.The compounds of formula (I) thus obtained are isolated from the reaction medium in accordance with conventional techniques.
Således fjernes for eksempel overskuddet af uomsat aminopyridin med formel (III) fra den organiske fase ved hjælp af en vandig opløsning af 5 en mi neral syre. Den organiske fase separeres dernæst og tørres eventuelt over et egnet middel som for eksempel natriumsulfat, og slutproduktet med formel (I) opnås ved at afdampe opløsningsmidlet. Alternativt opnås de ønskede forbindelser ved krystallisation fra reak-tionsmediet ved en temperatur på cirka 0°C til 10°C, når der anvendes 10 opløsningsmiddel systemer indeholdende vand.Thus, for example, the excess of unreacted aminopyridine of formula (III) is removed from the organic phase by means of an aqueous solution of 5 a mineral acid. The organic phase is then separated and optionally dried over a suitable agent such as sodium sulfate, and the final product of formula (I) is obtained by evaporating the solvent. Alternatively, the desired compounds are obtained by crystallization from the reaction medium at a temperature of about 0 ° C to 10 ° C when using 10 solvent systems containing water.
Forbindelserne med formel (I) kan, om nødvendigt, renses ved krystallisation fra egnede opløsningsmidler eller opløsningsmiddelsy stemer.The compounds of formula (I) may, if necessary, be purified by crystallization from suitable solvents or solvent systems.
Opfindelsen belyses i det følgende nærmere ved hjælp af eksempler.The invention will now be further illustrated by way of example.
15 IR spektra blev foretaget i KBr med et "Perkin-Elmer 281-B"- spektrofotometer.15 IR spectra were made in KBr with a "Perkin-Elmer 281-B" spectrophotometer.
1 13 H-NMR og C-NMR spektra foretoges i deuterochloroform med et "Varian XL 100"-spektrofotometer under anvendelse af tetramethylsilan som intern standard. UV spektra foretoges i absolut methanol med et 20 "Perkin-Elmer 552"-spektrofotometer.13 H-NMR and C-NMR spectra were performed in deuterochloroform with a "Varian XL 100" spectrophotometer using tetramethylsilane as an internal standard. UV spectra were performed in absolute methanol with a 20 "Perkin-Elmer 552" spectrophotometer.
Eksempel 1Example 1
4-deoxy-4,-meth.yl-pyrido[r,2/:l,21imidazo[5,4-c1rifamycin SV4-Deoxy-4, -methyl-pyrido [2,2-a] 21imidazo [5,4-c] trifamycin SV
7,5 g (0,01 mol) rifamycin B, 4,3 g (0,04 mol) 2-amino-4-methyl-25 pyridin og 2,5 g (0,01 mol) iod opløstes i 60 ml methylenchlorid, og den således opnåede opløsning henstod ved stuetemperatur i 15 timer. Efter at reaktionsblandingen var blevet vasket, først med 40 ml af en vandig 2N opløsning af saltsyre og dernæst med vand, og den organiske fase var blevet tørret over natriumsulfat, fjernedes methylenchloridet ved 30 afdampning under vakuum.7.5 g (0.01 mole) of rifamycin B, 4.3 g (0.04 mole) of 2-amino-4-methyl-pyridine and 2.5 g (0.01 mole) of iodine were dissolved in 60 ml of methylene chloride and the solution thus obtained was left at room temperature for 15 hours. After the reaction mixture was washed, first with 40 ml of an aqueous 2N solution of hydrochloric acid and then with water and the organic phase dried over sodium sulfate, the methylene chloride was removed by evaporation under vacuum.
Der opnåedes en remanens, som krystalliseredes med ethanol og vand 7:3 (vol/vol). Udbytte 5,3 g (67% af det teoretiske). Smp. 200°-205°C (dekomponer!ng).A residue was obtained which crystallized with ethanol and water 7: 3 (v / v). Yield 5.3 g (67% of theory). Mp. 200 ° -205 ° C (decomposition).
DK 161706 BDK 161706 B
8 UV Spektrum: λ max (m/i) E*lcm 232 489 5 260 339 292 295 320 216 370 119 450 159 10 IR Spektrum: karakteristiske absorptionsbånd observeredes ved følgende frekvenser (i cm"1): 3440 (b), 2960 (st), 2920 (st), 2860 (sv), 2820 (msv), 1705 (st), 1640 (st), 1580 (st), 1500 (st). b = bred, s = stærk, sv = svag, msv = meget svag.8 UV Spectrum: λ max (m / i) E * lcm 232 489 5 260 339 292 295 320 216 370 119 450 159 10 IR Spectrum: characteristic absorption bands were observed at the following frequencies (in cm "1): 3440 (b), 2960 (st), 2920 (st), 2860 (sv), 2820 (msv), 1705 (st), 1640 (st), 1580 (st), 1500 (st) .b = wide, s = strong, sv = weak , msv = very weak.
15 ^-NMR Spektrum: karakteristiske resonanstoppe observeredes ved følgende δ (udtrykt som ppm): -0,56 (d,3H); 0,14 (d,3H), 0,74 (d,3H), 0,94 (d,3H), 1,94 (s,3H), 1,98 (s,3H), 2,02 (s,3H), 2,26 (s,3H), 2,63 (s,3H), 3,00 (s,3H), 3,2-3,9 (m,3H), 4,15-5,20 (m,2H), 5,9-6,9 (m,4H), 7,06 20 (dd,lH), 7,38 (s,IH), 8,39 (s,IH), 8,43 (d,lH), 11,0 (s,IH), 13,12 (s,IH).15 N NMR Spectrum: characteristic resonance peaks were observed at the following δ (expressed as ppm): -0.56 (d, 3H); 0.14 (d, 3H), 0.74 (d, 3H), 0.94 (d, 3H), 1.94 (s, 3H), 1.98 (s, 3H), 2.02 (s) , 3H), 2.26 (s, 3H), 2.63 (s, 3H), 3.00 (s, 3H), 3.2-3.9 (m, 3H), 4.15-5, 20 (m, 2H), 5.9-6.9 (m, 4H), 7.06 (dd, 1H), 7.38 (s, 1H), 8.39 (s, 1H), 8, 43 (d, 1H), 11.0 (s, 1H), 13.12 (s, 1H).
s = singlet, d = dublet, m = multiplet, dd = dublet af dublet.s = singlet, d = doublet, m = multiplet, dd = doublet of doublet.
13 C-NMR Spektrum: karakteristiske resonanstoppe observeredes ved 25 følgende δ (udtrykt som ppm): 6,98, 8,06, 8,21, 10,76, 17,56, 20,43, 20,78, 21,44, 22,35, 32,91, 36,93, 37,78, 38,59, 56,99, 72,65, 73,91, 76.75, 77,86, 97,83, 103,86, 104,09, 108,97, 109,99, 112,03, 114,96, 115,52, 117,61, 119,26, 122,99, 125,35, 128,44, 128,96, 136,21, 138,87, 141.75, 142,10, 147,74, 155,10, 170,63, 171,89, 182,19, 188,84.13 C-NMR Spectrum: characteristic resonance peaks were observed at the following δ (expressed as ppm): 6.98, 8.06, 8.21, 10.76, 17.56, 20.43, 20.78, 21.44 , 22.35, 32.91, 36.93, 37.78, 38.59, 56.99, 72.65, 73.91, 76.75, 77.86, 97.83, 103.86, 104.09 , 108.97, 109.99, 112.03, 114.96, 115.52, 117.61, 119.26, 122.99, 125.35, 128.44, 128.96, 136.21, 138 , 87, 141.75, 142.10, 147.74, 155.10, 170.63, 171.89, 182.19, 188.84.
3030
Eksempel 2Example 2
4-deox.y-isoquinolinor2/,r:l,21imidazor5,4-clrifamycin SV4-deoxyl-isoquinolinyl [beta], 1,2-imidazo [5,4-clrifamycin]
Ved i alt væsentligt at følge det foregående eksempel opnåedes ud fra 7,5 (0,01 mol) rifamycin B og 4,3 g (0,03 mol) 1-amino-35 i soquinolin og 2,5 g (0,01 mol) iod, 5,8 g af titel forbindel sen (71% af det teoretiske). Smp. 181-186°C (dekomponering).Following essentially the preceding example, from 7.5 (0.01 mole) of rifamycin B and 4.3 g (0.03 mole) of 1-amino-35 in soquinoline and 2.5 g (0.01 mole) was obtained. mole) iodine, 5.8 g of the title compound (71% of theory). Mp. 181-186 ° C (decomposition).
DK 161706 BDK 161706 B
9 UV Spektrum: λ max (m/j) E^crn 253 532 5 288 363 300 346 320 290 382 120 430 129 10 IR Spektrum: karakteristiske absorptionsbånd observeredes ved følgende frekvenser (i cm-1): 3440 (b), 3140 (b), 2910 (st), 2850 (sv), 1700 (st), 1630 (b), 1610 (b), 1580 (sv), 1555 (msv), 1535 (msv). b = bred, s = stærk, sv = svag, msv = meget svag.9 UV Spectrum: λ max (m / j) E ^ crn 253 532 5 288 363 300 346 320 290 382 120 430 129 10 IR Spectrum: characteristic absorption bands were observed at the following frequencies (in cm-1): 3440 (b), 3140 (b), 2910 (st), 2850 (sv), 1700 (st), 1630 (b), 1610 (b), 1580 (sv), 1555 (msv), 1535 (msv). b = broad, s = strong, sv = weak, msv = very weak.
15 *H-NMR Spektrum: karakteristiske resonanstoppe observeredes ved følgende 8 (udtrykt som ppm): -0,65 (d,3H), 0,04 (d,3H), 0,7 (d,3H), 0,88 (d,3H), 1,55 (s,3H), 1,92 (s,3H), 2,02 (s,3H), 2,27 (s,3H), 2,77 (d,lH), 2,94 (s,3H), 3,00-3,90 (m,4H), 4,78 (d,lH), 4,93 (q,lH), 5,75-7,00 (m,4H), 20 7,34 (d,IH), 7,6-8,0 (m,6H), 16,6 (m,lH).15 H-NMR Spectrum: characteristic resonance peaks were observed at the following 8 (expressed as ppm): -0.65 (d, 3H), 0.04 (d, 3H), 0.7 (d, 3H), 0.88 (d, 3H), 1.55 (s, 3H), 1.92 (s, 3H), 2.02 (s, 3H), 2.27 (s, 3H), 2.77 (d, 1H) , 2.94 (s, 3H), 3.00-3.90 (m, 4H), 4.78 (d, 1H), 4.93 (q, 1H), 5.75-7.00 (m , 4H), 7.34 (d, 1H), 7.6-8.0 (m, 6H), 16.6 (m, 1H).
s = singlet, d = dublet, m = multiplet, q - kvartet.s = singlet, d = doublet, m = multiplet, q - quartet.
Eksempel 3 3/-brom-4-deoxy-p.yridori/,2':l,2]imidazo[5,4-clrifamycin SV 25 Ved at følge eksempel 1 opnåedes ud fra 7,5 g (0,01 mol) rifamycin B, 3,5 g (0,02 mol) 2-amino-5-brom-pyridin og 2,5 g (0,01 mol) iod 6,4 g (udbytte 75% af det teoretiske) af titel forbi ndel sen.Example 3 3β-Bromo-4-deoxy-pyridori [2 ': 1,2] imidazo [5,4-clrifamycin SV 25 Following Example 1 was obtained from 7.5 g (0.01 mole) rifamycin B, 3.5 g (0.02 mole) of 2-amino-5-bromo-pyridine and 2.5 g (0.01 mole) of iodine 6.4 g (yield 75% of theory) of title compound late.
UV Spektrum: 30 λ max (πιμ) Ejlcm 225 481 238 502 298 345 35 330 185 378 107 450 133UV Spectrum: 30 λ max (πιμ) Ejlcm 225 481 238 502 298 345 35 330 185 378 107 450 133
DK 161706 BDK 161706 B
10 IR Spektrum: karakteristiske absorptionsbånd observeredes ved følgende frekvenser (i cm-1): 3440 (b), 3220 (sv), 2960 (st), 2925 (m), 2870 (m), 1725 (sv), 1715 (st), 1655 (sv), 1635 (st), 1600 (mst). b - bred, m = medium, sv = svag, st = stærk, mst = meget stærk.IR Spectrum: characteristic absorption bands were observed at the following frequencies (in cm-1): 3440 (b), 3220 (sv), 2960 (st), 2925 (m), 2870 (m), 1725 (sv), 1715 (st) ), 1655 (sv), 1635 (st), 1600 (mst). b - wide, m = medium, sv = weak, st = strong, mst = very strong.
5 *H-NMR Spektrum: karakteristiske resonanstoppe observeredes ved følgende δ (udtrykt som ppm): -0,56 (d,3H), 0,13 (d,3H), 0,80 (d,3H), 0,85 (d,3H), 1,91 (s,3H), 1,94 (s,3H), 2,02 (s,3H), 2,26 (s,3H), 2,98 (s,3H), 2,60-3,00 (m,lH), 3,25 (d,lH), 3,56 (s,IH), 3,38-3,80 (m,2H), 4,84 10 (d,lH), 5,00 (q,IH), 6,02 (d,lH), 6,00-7,00 (m,3H), 7,60 (d,lH), 7,87 (q,lH), 8,39 (s,IH), 8,56 (d,lH), 16,80 (s,IH) s * singlet, d = dublet, q = kvartet, m = multiplet.5 H-NMR Spectrum: characteristic resonance peaks were observed at the following δ (expressed as ppm): -0.56 (d, 3H), 0.13 (d, 3H), 0.80 (d, 3H), 0.85 (d, 3H), 1.91 (s, 3H), 1.94 (s, 3H), 2.02 (s, 3H), 2.26 (s, 3H), 2.98 (s, 3H) , 2.60-3.00 (m, 1H), 3.25 (d, 1H), 3.56 (s, 1H), 3.38-3.80 (m, 2H), 4.84 ( d, 1H), 5.00 (q, 1H), 6.02 (d, 1H), 6.00-7.00 (m, 3H), 7.60 (d, 1H), 7.87 (q , 1H), 8.39 (s, 1H), 8.56 (d, 1H), 16.80 (s, 1H) s * singlet, d = doublet, q = quartet, m = multiplet.
13 C-NMR Spektrum: karakteristiske resonanstoppe observeredes ved 15 følgende δ (udtrykt som ppm): 7,13, 8,17, 10,86, 17,47, 20,41, 20,73, 21,28, 33,07, 37,12, 38,08, 38,77, 57,01, 72,94, 73,92, 76,80, 77,88, 98,48, 103,82, 105,11, 108,96, 109,28, 112,59, 112,81, 115,57, 116,33, 120,94, 123,38, 125,22, 129,06, 136,03, 136,80, 137,46, 141,96, 170,92, 171,59, 171,81, 182,62, 187,68.13 C-NMR Spectrum: characteristic resonance peaks were observed at the following δ (expressed as ppm): 7.13, 8.17, 10.86, 17.47, 20.41, 20.73, 21.28, 33.07 , 37.12, 38.08, 38.77, 57.01, 72.94, 73.92, 76.80, 77.88, 98.48, 103.82, 105.11, 108.96, 109 , 28, 112.59, 112.81, 115.57, 116.33, 120.94, 123.38, 125.22, 129.06, 136.03, 136.80, 137.46, 141.96 , 170.92, 171.59, 171.81, 182.62, 187.68.
2020
Eksempel 4Example 4
4-deoxy-4'-methyl-pyridoTl',2':1,21imidazo[5,4-c]rifamycin SV4-deoxy-4'-methyl-pyridoT1 ', 2': 1,21imidazo [5,4-c] rifamycin SV
En opløsning af 7,5 g (0,01 mol) rifamycin B og af 3,2 g (0,03 mol) 2-amino-4-methyl-pyridin i 60 ml methylenchlorid tilsattes 3,3 g (0,01 25 mol) kaliumferricyanid, og reaktionsblandingen omrørtes ved stuetemperatur i 24 timer. Reaktionsblandingen vaskedes først med 40 ml IN vandig opløsning af saltsyre og dernæst med vand til neutralisering. Det organiske lag isoleredes, tørredes over natriumsulfat, opløsningsmidlet afdampedes under vakuum, og der opnåedes en remanens, som krystalli-30 seredes fra ethanol/vand - 7/3 (vol/vol). Udbytte 5,9 g (75% af det teoretiske).To a solution of 7.5 g (0.01 mole) of rifamycin B and of 3.2 g (0.03 mole) of 2-amino-4-methyl-pyridine in 60 ml of methylene chloride was added 3.3 g (0.01 mole) potassium ferricyanide and the reaction mixture is stirred at room temperature for 24 hours. The reaction mixture was washed first with 40 ml of 1N aqueous solution of hydrochloric acid and then with water for neutralization. The organic layer was isolated, dried over sodium sulfate, the solvent evaporated under vacuum and a residue obtained which was crystallized from ethanol / water - 7/3 (v / v). Yield 5.9 g (75% of theory).
Det opnåede produkt har samme kemisk-fysiske karakteristika som det i eksempel 1 opnåede.The product obtained has the same chemical-physical characteristics as that obtained in Example 1.
3535
DK 161706 BDK 161706 B
1111
Eksempel 5Example 5
4-deoxy-4'-methyl-pyridolT ,2' :l,2]imidazor5,4-c]rifamycin SV4-deoxy-4'-methyl-pyridolT, 2 ': 1,2] imidazor5,4-c] rifamycin SV
7,5 g (0,01 mol) rifamycin B og 4,3 g (0,04 mol) 2-amino-4-methyl-pyridin opløst i 75 ml methylenchlorid tilsattes 10 ml 1M vandig 5 opløsning af natriumhypochlorit, og den resulterende reaktionsblanding omrørtes ved stuetemperatur i 15 timer. Dernæst fraskiltes det vandige lag, og det organiske lag vaskedes først med 50 ml 2N vandig opløsning af saltsyre og dernæst med vand til neutralisering. Efter tørring over natriumsulfat afdampedes det organiske lag under vakuum, og remanensen 10 krystalliseredes fra 7/3 (vol/vol) ethanol/vand-blånding, og der opnåedes 5,2 g (66% af det teoretiske) produkt med samme kemisk-fysiske karakteristika som det i eksempel 1 opnåede.7.5 g (0.01 mole) of rifamycin B and 4.3 g (0.04 mole) of 2-amino-4-methyl-pyridine dissolved in 75 ml of methylene chloride were added to 10 ml of 1M aqueous solution of sodium hypochlorite, and the resulting reaction mixture was stirred at room temperature for 15 hours. Next, the aqueous layer was separated and the organic layer was washed first with 50 ml of 2N aqueous solution of hydrochloric acid and then with water for neutralization. After drying over sodium sulfate, the organic layer was evaporated in vacuo and the residue 10 crystallized from 7/3 (v / v) ethanol / water mixture to give 5.2 g (66% of theory) of the same chemical-physical characteristics as obtained in Example 1.
Eksempel 6Example 6
15 4-deoxy-4'-methyl-pyridoFl',2':1,21imidazor5,4-clrifamycin SV4-Deoxy-4'-methyl-pyridoFl ', 2': 1,21imidazoro-5,4-clrifamycin
En suspension af 75 g (0,1 mol) rifamycin B, 43 g (0,4 mol) 2-amino-4-methyl-pyridin og 26 g (0,3 mol) mangandioxid i 250 ml aceo-nitri 1 omrørtes ved stuetemperatur i 24 timer. Reaktionsblandingen filtreredes, fortyndedes med 800 ml methylenchlorid og behandledes i 15 20 minutter med 100 ml 25% (vægt/vol) vandig opløsning af ascorbinsyre.A suspension of 75 g (0.1 mole) of rifamycin B, 43 g (0.4 mole) of 2-amino-4-methyl-pyridine and 26 g (0.3 mole) of manganese dioxide in 250 ml of acenitri 1 was stirred at room temperature for 24 hours. The reaction mixture was filtered, diluted with 800 ml of methylene chloride and treated for 15 minutes with 100 ml of 25% (w / v) aqueous solution of ascorbic acid.
Dernæst vaskedes det organiske lag med 400 ml 2N vandig opløsning af saltsyre og dernæst med vand til neutralisering. Efter tørring over natriumsulfat afdampedes opløsningsmidlet, remanensen krystalliseredes fra 7/3 (vol/vol) ethanol/vand, og der opnåedes efter tørring 61 g (78% 25 af det teoretiske) produkt med de samme kemisk-fysiske karakteristika som det, der opnåedes i eksempel 1.Next, the organic layer was washed with 400 ml of 2N aqueous solution of hydrochloric acid and then with water for neutralization. After drying over sodium sulfate, the solvent was evaporated, the residue crystallized from 7/3 (v / v) ethanol / water and, after drying, 61 g (78% 25 of theory) of the same chemical-physical characteristics as obtained were obtained. in Example 1.
iin
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT358184 | 1984-09-26 | ||
IT03581/84A IT1199413B (en) | 1984-09-26 | 1984-09-26 | PROCESS FOR THE PREPARATION OF PIRIDO-IMIDAZO-RIFAMICINE |
Publications (4)
Publication Number | Publication Date |
---|---|
DK434985D0 DK434985D0 (en) | 1985-09-25 |
DK434985A DK434985A (en) | 1986-03-27 |
DK161706B true DK161706B (en) | 1991-08-05 |
DK161706C DK161706C (en) | 1992-01-20 |
Family
ID=11110114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK434985A DK161706C (en) | 1984-09-26 | 1985-09-25 | METHOD FOR PREPARING PYRIDO-IMIDAZO RIFAMYCINES |
Country Status (10)
Country | Link |
---|---|
AR (1) | AR243892A1 (en) |
AT (1) | AT387020B (en) |
CA (1) | CA1218650A (en) |
DK (1) | DK161706C (en) |
ES (1) | ES8604735A1 (en) |
FI (1) | FI83875C (en) |
GR (1) | GR852312B (en) |
IT (1) | IT1199413B (en) |
NO (1) | NO165107C (en) |
PT (1) | PT81198B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7902206B2 (en) | 2003-11-07 | 2011-03-08 | Alfa Wassermann, S.P.A. | Polymorphic forms α, β and γ of rifaximin |
ITMI20032144A1 (en) | 2003-11-07 | 2005-05-08 | Alfa Wassermann Spa | REFLEXIMINE POLIMORPHIC FORMS, PROCESSES TO OBTAIN THEM AND |
US7906542B2 (en) | 2004-11-04 | 2011-03-15 | Alfa Wassermann, S.P.A. | Pharmaceutical compositions comprising polymorphic forms α, β, and γ of rifaximin |
SI1698630T1 (en) | 2005-03-03 | 2015-01-30 | Alfa Wassermann S.P.A. | New polymorphous forms of rifaximin, processes for their production and use thereof in the medicinal preparations |
US7709634B2 (en) | 2007-09-20 | 2010-05-04 | Apotex Pharmachem Inc. | Amorphous form of rifaximin and processes for its preparation |
ITBO20120368A1 (en) | 2012-07-06 | 2014-01-07 | Alfa Wassermann Spa | COMPOSITIONS INCLUDING RIFAXIMINA AND AMINO ACIDS, RIFAXIMINE CRYSTALS DERIVING FROM SUCH COMPOSITIONS AND THEIR USE. |
ES2621557T3 (en) | 2014-03-31 | 2017-07-04 | Euticals S.P.A. | Polymorphic mixture of rifaximin and its use for the preparation of solid formulations |
PT3143027T (en) | 2014-05-12 | 2019-09-20 | Alfasigma Spa | New solvated crystal form of rifaximin, production, compositions and uses thereof |
-
1984
- 1984-09-26 IT IT03581/84A patent/IT1199413B/en active
-
1985
- 1985-09-23 GR GR852312A patent/GR852312B/el unknown
- 1985-09-25 NO NO853771A patent/NO165107C/en unknown
- 1985-09-25 CA CA000491511A patent/CA1218650A/en not_active Expired
- 1985-09-25 AT AT279785A patent/AT387020B/en not_active IP Right Cessation
- 1985-09-25 ES ES547265A patent/ES8604735A1/en not_active Expired
- 1985-09-25 DK DK434985A patent/DK161706C/en not_active IP Right Cessation
- 1985-09-25 FI FI853683A patent/FI83875C/en not_active IP Right Cessation
- 1985-09-26 AR AR30174785A patent/AR243892A1/en active
- 1985-09-26 PT PT8119885A patent/PT81198B/en unknown
Also Published As
Publication number | Publication date |
---|---|
GR852312B (en) | 1986-01-24 |
DK161706C (en) | 1992-01-20 |
FI853683A0 (en) | 1985-09-25 |
PT81198A (en) | 1985-10-01 |
FI853683L (en) | 1986-03-27 |
NO853771L (en) | 1986-04-01 |
IT1199413B (en) | 1988-12-30 |
ATA279785A (en) | 1988-04-15 |
FI83875C (en) | 1991-09-10 |
NO165107C (en) | 1990-12-27 |
IT8403581A0 (en) | 1984-09-26 |
DK434985A (en) | 1986-03-27 |
NO165107B (en) | 1990-09-17 |
CA1218650A (en) | 1987-03-03 |
ES8604735A1 (en) | 1986-02-16 |
DK434985D0 (en) | 1985-09-25 |
ES547265A0 (en) | 1986-02-16 |
PT81198B (en) | 1987-09-30 |
FI83875B (en) | 1991-05-31 |
AR243892A1 (en) | 1993-09-30 |
AT387020B (en) | 1988-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI81101C (en) | New method for synthesizing pyridoimidazorifamycins | |
FI69467C (en) | PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACID THERAPEUTIC PYRIDO-OCH IOQUINOLINE (1 ', 2': 1,2) IMIDAZO (5,4-C) RIFAMYCIN SOCH SV DERIVATIVES | |
TW442490B (en) | Tricyclic erythromycin derivatives | |
SU1122227A3 (en) | Method of obtaining 6beta-oxyalkylpenicillanic acid derivatives or their pharmaceutically suitable basic salts | |
Yamamoto et al. | Structure and stereochemistry of antibiotic PS-5 | |
DK161706B (en) | Process for preparing pyridoimidazorifamycins | |
FI83874C (en) | ETT FOERBAETTRAD FOERFARANDE FOER FRAMSTAELLNING AV IMIDAZORIFAMYCINER. | |
JPH02240095A (en) | Ring condensation type macrolide compound | |
DK150516B (en) | PROCEDURE FOR THE PREPARATION OF DERIVATIVES OF CEPHALOSPORINES OR PENICILLINES | |
IE46419B1 (en) | Oxazolinoazetidinylbutyric acid derivatives | |
SU869558A3 (en) | Method of producing azetidinone derivatives | |
US4880825A (en) | Mitomycin derivatives | |
SU1318165A3 (en) | Method for producing n-methylsulfonyl-1,2,8,8a-cycloprop (c)-benzo-(1,2,-b:4,3-b)-dipyrrol-4(5)-on | |
CN113666945B (en) | Preparation method of 2 beta-azido methyl penicillanic acid diphenylmethyl ester, tazobactam intermediate and tazobactam | |
Guanti et al. | A new class of cis-monobactam derivatives bearing a sulfamoyloxymethyl or an N-alkylsulfamoyloxymethyl group at position 4: synthesis and antibacterial activity | |
JPS58167592A (en) | Novel maytansinoid | |
FI75166C (en) | FOERBAETTRAT FOERFARANDE FOER FRAMSTAELLNING AV 6- -SUBSTITUERAD PENICILLANOYLOXIMETYL-PENICILLANAT- 1,1-DIOXID. | |
EP0120094B1 (en) | Azetidinone compounds | |
Key et al. | Unusual Transacetylation in 3, 4-Difunctionalized Pyrrolidine | |
JPH01132585A (en) | Dc-52 derivative | |
DK158473B (en) | CYCLIC ETHERS OF 9-DEOXO-9A-AZA-9A-HOMOERYTHROMYCIN AND ITS 4AE EPIMES, COMPOUNDS FOR USE AS EXTERIOR MATERIALS, INCLUDING EXEMPLATES, INCLUDING PHARMACEUTICAL PREPARATIONS | |
MOTOKAWA | Orally Active Cephalosporins. IV.” Synthesis, Antibacterial Activity and Oral Absorption of 3-(1H-1, 2, 3-Triazol-4-yl) thiomethylthio-cephalosporins | |
JPH0114237B2 (en) | ||
JPH0153674B2 (en) | ||
KR19990040552A (en) | Betamethyl carbapenem derivatives and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |