DK161696B - PROCEDURE FOR MAKING SILICON HYDROGEN COMPOUNDS ISAER SILAN - Google Patents

PROCEDURE FOR MAKING SILICON HYDROGEN COMPOUNDS ISAER SILAN Download PDF

Info

Publication number
DK161696B
DK161696B DK590083A DK590083A DK161696B DK 161696 B DK161696 B DK 161696B DK 590083 A DK590083 A DK 590083A DK 590083 A DK590083 A DK 590083A DK 161696 B DK161696 B DK 161696B
Authority
DK
Denmark
Prior art keywords
magnesium
hydride
magnesium hydride
reaction
halide
Prior art date
Application number
DK590083A
Other languages
Danish (da)
Other versions
DK590083A (en
DK161696C (en
DK590083D0 (en
Inventor
Borislav Bogdanovic
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Publication of DK590083D0 publication Critical patent/DK590083D0/en
Publication of DK590083A publication Critical patent/DK590083A/en
Publication of DK161696B publication Critical patent/DK161696B/en
Application granted granted Critical
Publication of DK161696C publication Critical patent/DK161696C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • C01B33/043Monosilane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Catalysts (AREA)

Abstract

1. Process for the preparation of silicon hydride compounds, in particular of silane (SiH4 ) from halogen silanes, characterized in that halogen silanes, in particular tetrachlorosilane, are reacted with magnesium hydride in a solvent in the absence of additional catalysts and/or activators, which magnesium hydride is obtained by reacting magnesium with hydrogen in the presence of a catalyst consisting of a halide of a metal of sub-Groups IV to VIII of the periodic System and of an organic magnesium compound or of a magnesium hydride and optionally in the presence of a polycyclic aromatic compound or af a tertiary amine and optionally in the presence of a magnesium halide MgX2 where X = Cl, Br, l.

Description

iin

DK 161696 BDK 161696 B

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af siliciumhydrogen-forbindelser, især silan (SiH^), der finder teknisk anvendelse til fremstilling af højrent silicium.The present invention relates to a process for the preparation of silicon hydrogen compounds, especially silane (SiH 2), which finds technical use in the production of high purity silicon.

5 Af de to gængse metoder til syntese af silan, den protolyti- ske dekomponering af magnesiumsilicid (f^Si) og omsætningen af tetrachlorsilan med metalhydrider (Gmelin's Handbuch d. Anorg.Chem., Si, Suppl. B 1, S. 59 (1982), har sidstnævnte bl.a den fordel, at silanen kan udvindes uden uønskede foru-10 reningen, især forureninger af højere silaner.5 Of the two common methods of synthesis of silane, the protolytic decomposition of magnesium silicide (f ^ Si) and the reaction of tetrachlorosilane with metal hydrides (Gmelin's Handbuch d. Anorg.Chem., Si, Suppl. B 1, p. 59) 1982), the latter has the advantage, inter alia, that the silane can be recovered without undesirable pollution, especially higher silane contaminants.

Siden opdagelsen af lithiumaluminiumhydrid og dettes anvendelse til syntese af metalr eller grundstofhydrider (Finholt, Bond, Wilzbach og Schlesinger, J.Amer.Chem.Soc. (>9, 2962 (1947)) anses omsætningen af SiCl^ med LiAlH^ som den bedste 15 og simpleste laboratoriemetode til dannelse af silan (Norman,Since the discovery of lithium aluminum hydride and its use in the synthesis of metal or elemental hydrides (Finholt, Bond, Wilzbach and Schlesinger, J.Amer.Chem.Soc. (> 9, 2962 (1947)), the reaction of SiCl3 with LiAlH4 is considered the best 15 and simplest laboratory method for silane formation (Norman,

Webster, Jolly, Inorg.Syn. 1_1, 170 (1968)). Den ifølge denne metode fremstillede silan egner sig til dannelse af silicium til halvleder- og solcelleindustrien, da den dannes uden indhold af borhydrogenforbindelser og højere silaner (Gmelin's 20 Handbuch, loc.cit S 63). Til den tekniske anvendelse af denne reaktion i større målestok virker den relativt høje pris på lithiumaluminiumhydrid imidlertid uheldig. Det har derfor i de sidste 20-25 år ikke manglet på forsøg på at erstatte det til formålet egnede, men dyrere LialH^ med mere prisgun-25 stige, eventuelt komplekse metalhydrider. IfølgeWebster, Jolly, Inorg.Syn. 1_1, 170 (1968)). The silane prepared according to this method is suitable for the formation of silicon for the semiconductor and solar cell industries as it is formed without the content of boron hydrogen compounds and higher silanes (Gmelin's 20 Handbuch, loc.cit S 63). However, for the technical application of this reaction on a larger scale, the relatively high price of lithium aluminum hydride seems unfortunate. For the last 20-25 years, therefore, it has not been lacking in attempts to replace the suitable but more expensive LialH ^ with more affordable, possibly complex metal hydrides. According to

Zakharkin et al. (Bull.Acad.Sci. (UdSSR), Div.Chem.Sci. 1962, 1784) og Antipin et al. (J.Appl.Chem.(UdSSR) 42. 416 (1969)) reagerer SiCl^, HSiCl^ og alkoxysilaner med NaAlH^ eller KAlH^ i THF eller diglyme allerede ved lave temperaturer under dan-30 nelse af silan i gode udbytter. Om den tekniske anvendelse af denne metode til syntese af silan er intet kendt.Zakharkin et al. (Bull.Acad.Sci. (USSR), Div.Chem.Sci. 1962, 1784) and Antipin et al. (J. Appl.Chem. (USSR) 42, 416 (1969)) SiCl3, HSiCl4 and alkoxysilanes react with NaAlH2 or KAlH2 in THF or diglyme already at low temperatures to form silane in good yields. Nothing is known about the technical application of this method for the synthesis of silane.

I sammenhæng med den foreliggende opfindelse er den kendsgerning af betydning, at de simple, binære hydrider af alka li- og jordalkalimetallerne, såsom NaH, Mgi^ og Ca^» hidtil 35 ikke som sådanne, men kun efter omdannelse til komplekshydri- 2In the context of the present invention, the fact that the simple, binary hydrides of the alkali and alkaline earth metals, such as NaH, Mg 2, and Ca 2, are hitherto not as such, but only after conversion to complex hydrates.

DK 161696 BDK 161696 B

der af aluminium (ved omsætning med AlCl^: GB-A 832 333, C.A. 16765 (1960), Vit et al., Czech. 126672 (1962/68), C.A. 70, 39392 (1969)) eller i nærværelse af aktivatorer eller katalysatorer har kunnet anvendes til fremstilling af silan.aluminum (by reaction with AlClCl: GB-A 832 333, CA 16765 (1960), Vit et al., Czech. 126672 (1962/68), CA 70, 39392 (1969)) or in the presence of activators or catalysts have been used to produce silane.

5 Årsagen hertil ligger formodentlig i den ringe opløselighed og/eller reaktivitet af de ved høje temperaturer og tryk af grundstofferne fremstillede binære metalhydrider. Som katalysatorer for omsætningen af NaH, Ca^ eller Mgi^ med SiCl^ anbefaledes zinkhalogenider, -hydrider og -alkylforbindelser 10 eller zinkoxid (GB-A 909 950, C.A. 58 (1963) 2185 eller zink metal eller zinklegeringer (US-A 3 050 366), C.A 58, (1960) 280). Det til omsætningen af SiCl^ med f.eks. NaH i THF som "katalysator" krævede ZnC^ anvendes herved imidlertid i molforholdet ZnCl2 : SiCl^ =1:2, dvs. i praktisk taget stø-15 kiometrisk mængde. Til anvendelsen af NaH til dannelse afThe reason for this is probably due to the poor solubility and / or reactivity of the binary metal hydrides produced at high temperatures and pressures. As catalysts for the reaction of NaH, Ca 2, or Mg 2 366), CA 58 (1960) 280). That for the reaction of SiCl 2 with e.g. However, NaH in THF as "catalyst" required ZnCl 2 is hereby used in the molar ratio ZnCl 2: SiCl 2 = 1: 2, i.e. in virtually castiometric amount. For the use of NaH to form

SiH^ udfra SiCl4 anbefales som katalysatorer eller aktivatorer desuden bor- eller aluminiumalkylforbindelser (DE-c 1 034 159), C.A. 5(>, 16764: Jenkner, Chemiker Ztg. R5, 264/74 (1961) samt bor- eller aluminiumhydrider (DE-C 1 085 505, 20 C.A. 21505 (1961) og DE-C 1 096 341, C.A. 26388 (1961)), hvorved den risiko foreligger, at den derved opnåede silan indeholder de uønskede alkylsilaner (i tilfælde af AlR^ som aktivatorer) eller borforbindelser (i tilfælde af boraktivatorer) som forureninger. Ifølge SU-A 126 672, C.A. 84, 25 166812 (1976) bortfalder ganske vist disse ulemper ved anven delse af NaAlH^ som aktivator.SiH4 from SiCl4 is also recommended as catalysts or activators for boron or aluminum alkyl compounds (DE-c 1,034,199), C.A. 5 (>, 16764: Jenkner, Chemiker Ztg. R5, 264/74 (1961) as well as boron or aluminum hydrides (DE-C 1,085,505, CA CA 21505 (1961) and DE-C 1,096341, CA 26388 (1961) ), whereby there is the risk that the resulting silane contains the undesirable alkylsilanes (in the case of AlR 2 as activators) or boron compounds (in the case of boron activators) as contaminants. According to SU-A 126 672, CA 84, 25 166812 ( 1976), admittedly, these disadvantages are eliminated by the use of NaAlH 2 as activator.

Der skal især henvises til forsøgene på fremstilling af silan SiH^ under anvendelse af magnesiumhydrid, der er beskrevet i GB-A 909 950. Det fastslås imidlertid deri udtrykkeligt, 30 at magnesiumhydrider ikke egner sig til fremstilling af høj rent silan ved omsætning med halogensilaner.In particular, reference should be made to the experiments on the preparation of silane SiH 2 using magnesium hydride described in GB-A 909 950. However, it is expressly stated therein that magnesium hydrides are not suitable for the production of high pure silane in reaction with halogen silanes.

Af det anførte fremgår, at til anvendelse af binære metalhydrider med henblik på dannelse af silan ved omsætning med halogensilaner har der hidtil ikke foreligget nogen enkel 35 og omkostningsgunstig teknisk løsning.From the above it can be seen that for the use of binary metal hydrides for the formation of silane by reaction with halogen silanes, there has so far been no simple and cost-effective technical solution.

33

DK 161696 BDK 161696 B

Ifølge det europæiske patentskrift nr. 0 003 564 kan imidlertid metallisk magnesium ved hjælp af homogene overgangsmetal-katalysatorer under milde reaktionsbetingelser hydrogeneres til magnesiumhydrid, som i modsætning til magnesiumhydrid, 5 der er fremstillet ved den sædvanlige metode (højtemparatur hydrogenering), udviser en høj reaktivitet.However, according to European Patent No. 0 003 564, metallic magnesium can be hydrogenated to magnesium hydride by means of homogeneous transition metal catalysts under mild reaction conditions, which, in contrast to magnesium hydride produced by the usual method (high temperature hydrogenation), exhibits a high reactivity. .

Der er her tale om en fremgangsmåde, ved hvilken man i nærværelse af en katalysator bestående af et halogenid af et metal fra IV. til VIII. sidegruppe i det periodiske system 10 og en organisk magnesiumforbindelse eller et magnesiumhydrid samt evt. i nærværelse af en polycyklisk aromatisk forbindelse eller en tertiær amin samt eventuelt i nærværelse af et magne-siumhalogenid MgX2, hvor X = Cl, Br, J, omsætter magnesium med hydrogen.This is a process in which, in the presence of a catalyst consisting of a halide of a metal from IV. to VIII. side group of the periodic system 10 and an organic magnesium compound or a magnesium hydride as well as any. in the presence of a polycyclic aromatic compound or a tertiary amine and optionally in the presence of a magnesium halide MgX2 where X = Cl, Br, J, react magnesium with hydrogen.

15 Det har nu overraskende vist sig, at det ifølge denne metode let tilgængelige magnesiumhydrid på fremragende måde egner sig til dannelse af silaner udfra tetrachlorsilan eller andre chlorsilaner, hvorved ingen yderligere katalysatorer eller aktivatorer er nødvendige.Surprisingly, it has now been found that, by this method, readily available magnesium hydride is excellent in forming silanes from tetrachlorosilane or other chlorosilanes, whereby no additional catalysts or activators are needed.

20 Fremgangsmåden ifølge opfindelsen er kendetegnet ved, at man lader halogensilaner, især tetrachlorsilan, reagere med magnesiumhydrid i et opløsningsmiddel i fravær af yderligere katalysatorer og/eller aktivatorer, hvilket magnesiumhydrid opnås ved, at man i nærværelse af en katalysator be-25 stående af halogenid af et metal fra IV. til VIII. sidegruppe i det periodiske system og en organisk magnesiumforbindelse eller et magnesiumhydrid samt eventuelt i nærværelse af en polycyklisk aromatisk forbindelse eller en tertiær amin samt eventuelt i nærværelse af et magnesiumhalogenid MgX2? hvor 30 X = Cl, Br, J, omsætter magnesium med hydrogen.The process of the invention is characterized in that halogen silanes, especially tetrachlorosilane, are reacted with magnesium hydride in a solvent in the absence of additional catalysts and / or activators, which magnesium hydride is obtained by the presence of a catalyst of halide. of a metal from IV. to VIII. side group in the periodic table and an organic magnesium compound or a magnesium hydride and optionally in the presence of a polycyclic aromatic compound or a tertiary amine and optionally in the presence of a magnesium halide MgX2? where 30 X = Cl, Br, J, react magnesium with hydrogen.

44

DK 161696 BDK 161696 B

Reaktionen forløber i en cyklisk eller lineær ether eller i en polyether, såsom THF eller glyme som opløsningsmiddel allerede ved stuetemperatur eller ved let forhøjet temperatur (50-70°C) og fører til de tilsvarende silaner i høje udbytter.The reaction proceeds in a cyclic or linear ether or in a polyether such as THF or glyme as a solvent already at room temperature or at slightly elevated temperature (50-70 ° C) and leads to the corresponding silanes in high yields.

5 I kombination med den nævnte syntese af magnesiumhydrid opnås dermed en totrinssyntese af silan udfra de billige råstoffer Mg, H2 og f.eks. SiCl4:Thus, in combination with the said synthesis of magnesium hydride, a two-step synthesis of silane is obtained from the cheap raw materials Mg, H2 and e.g. SiCl4:

Katalysatorcatalyst

Mg + H2 -> MgH2 10 Aktivator 2 MgH2 + SiCl4-5> SiH4 + 2 MgCl2·Mg + H2 -> MgH2 Activator 2 MgH2 + SiCl4-5> SiH4 + 2 MgCl2 ·

En yderligere fordel ved denne metode er, at hydrogeneringen af magnesium og den påfølgende omsætning af MgH2 med SiCl4 kan gennemføres i en batchproces i f.eks. THF som reaktions-15 medium.A further advantage of this method is that the hydrogenation of magnesium and the subsequent reaction of MgH2 with SiCl4 can be carried out in a batch process in e.g. THF as a reaction medium.

Der foreligger imidlertid også den mulighed, at det i henhold til europapatentskriftet nr. 0 003 564 fremstillede MgH2 isoleres i fast form og derpå i et andet passende opløsningsmiddel anvendes til omsætning med chlorsilaner, f.eks. SiCl4- 20 Opfindelsen forklares nærmere i de følgende eksempler.However, there is also the possibility that the MgH 2 prepared according to European Patent No. 0 003 564 is isolated in solid form and then used in another suitable solvent for reaction with chlorosilanes, e.g. The invention is further explained in the following examples.

Eksempel 1 I et apparatur bestående af en 100 ml trehalset kolbe, der var udrustet med en tildrypningstrakt, indre termometer, mag-netomrører og kølefinger (-78°C), hvilket apparatur var til-25 sluttet en med kviksølv fyldt gasburette, blev påfyldt 0,68 g af det ifølge europæisk patentskrift nr. 0 003 564Example 1 In an apparatus consisting of a 100 ml three-neck flask equipped with a drip funnel, internal thermometer, magnetic stirrer and cooling finger (-78 ° C), which apparatus was connected to a gas burette filled with mercury. 0.68 g of it according to European Patent No. 0 003 564

DK 161696 BDK 161696 B

5 med Ti-katalysatoren fremstillede magnesiumhydrid under argon, som blev dækket med 20 ml absolut THF. En opløsning af 1,04 g (0,7 ml, 6,1 mmol) SiCl^ i 20 ml THF blev ved stuetemperatur og under omrøring tildryppet til MgH2-suspensionen.5 with the Ti catalyst produced magnesium hydride under argon, which was covered with 20 ml of absolute THF. A solution of 1.04 g (0.7 ml, 6.1 mmol) of SiCl 2 in 20 ml of THF was added dropwise to the MgH2 suspension at room temperature and with stirring.

5 Reaktionsblandingen blev langsomt opvarmet, hvorved gasudviklingen satte ind fra ca. 40°C, hvilken gasudvikling blev målt ved hjælp af gasburetten. Som følge af reaktionsvarmen steg reaktionsblandingens temperatur forbigående til 65°C. Efter reaktionens afslutning androg gasudviklingen 134 ml (20°C, 10 1 bar). MS-analyse af gassen viste en SiH^-mængde på 20,9 mol-% (resten argon). Under hensyntagen til apparaturets samlede volumen udregnedes deraf et SiH^-udbytte på 80%.The reaction mixture was slowly heated, thereby initiating gas evolution from ca. 40 ° C, which gas evolution was measured by the gas burette. Due to the heat of the reaction, the temperature of the reaction mixture transiently rose to 65 ° C. After completion of the reaction, the gas evolution was 134 ml (20 ° C, 10 l bar). MS analysis of the gas showed an SiH₂ amount of 20.9 mol% (residue argon). Therefore, taking into account the total volume of the apparatus, an SiH₂ yield of 80% was calculated.

Eksempel 2Example 2

Forsøget blev gennemført analogt med eksempel 1, hvorved der 15 blev anvendt en insitudannet suspension af MgH2 i THF (Ti-katalysator). Omsætningen af MgH2 med SiCl^ under dannelse af SiH^ forløb i dette tilfælde allerede ved 25-28°C. Udbyttet af SiH4 androg 76%.The test was conducted analogously to Example 1, using an insituated suspension of MgH2 in THF (Ti catalyst). The reaction of MgH2 with SiCl3 to form SiH3 in this case was already carried out at 25-28 ° C. The yield of SiH4 was 76%.

Eksempel 3 20 I et apparatur bestående af en 1 1 trehalset kolbe, der var udrustet med en tildrypningstragt, indre termometer, magnet-omrører og tilbagesvaler (methanol 10°C) samt tilsluttet en kølefælde (-78°C), placeredes 18,56 g af det ifølge europæisk patentskrift nr. 0 003 564 (Ti-katalysator) fremstillede mag-25 nesiumhydrid under argon og blev dækket med 250 ml absolut glyme. En opløsning af 107,20 (126 ml, 0,99 mol) (CH^SiCl i 100 ml glyme blev tildryppet i løbet af 3 timer og under omrøring af MgH2~suspensionen, hvorved blandingens temperatur steg til 25-27°C. Efter afsluttet (CH^)SiCl-tilsætning 30 blev reaktionsblandingen kortvarigt opvarmet til kogetemperatur i argonstrømmen. Udbyttet af den i kølefælden kondenserede trimethylsilan (kogepunkt 6,7°C) androg 80%.Example 3 In an apparatus consisting of a 1 liter three-neck flask equipped with a drip funnel, internal thermometer, magnetic stirrer and reflux (methanol 10 ° C) and connected to a cooling trap (-78 ° C) was placed 18.56 g of the magnesium hydride produced under argon according to European Patent No. 0,003,564 (Ti catalyst) and covered with 250 ml of absolute glyme. A solution of 107.20 (126 mL, 0.99 mol) (CH 2 SiCl in 100 mL glyme) was added dropwise over 3 hours and with stirring the MgH 2 suspension, raising the temperature of the mixture to 25-27 ° C. After the (CH 2) SiCl addition 30, the reaction mixture was briefly heated to boiling temperature in the argon stream.The yield of the trimethylsilane condensed in the cooling trap (boiling point 6.7 ° C) was 80%.

Claims (4)

1. Fremgangsmåde til fremstilling af siliciumhydrogenfor-bindelser, især silan (SiH^), ud fra halogensilaner under 5 anvendelse af magnesiumhydrid, kendetegnet ved, at man lader halogensilaner, især tetrachlorsilan, reagere med magnesiumhydrid i et opløsningsmiddel i fravær af yderligere katalysatorer og/eller aktivatorer, hvilket magnesiumhydrid opnås ved, at man i nærværelse af en katalysator be-10 stående af halogenid af et metal fra IV. til VIII. sidegruppe i det periodiske system og en organisk magnesiumforbindelse eller et magnesiumhydrid samt eventuelt i nærværelse af en polycyklisk aromatisk forbindelse eller en tertiær amin samt eventuelt i nærværelse af et magnesiumhalogenid MgX2, hvor 15 X = Cl, Br, J, omsætter magnesium med hydrogen.A process for preparing silicon hydrogen compounds, especially silane (SiH 2), from halosilanes using magnesium hydride, characterized in that halosilanes, especially tetrachlorosilane, are reacted with magnesium hydride in a solvent in the absence of additional catalysts and / or activators, which magnesium hydride is obtained by the presence in the presence of a catalyst of halide of a metal from IV. to VIII. side group in the periodic table and an organic magnesium compound or a magnesium hydride and optionally in the presence of a polycyclic aromatic compound or a tertiary amine and optionally in the presence of a magnesium halide MgX2 where X = Cl, Br, J, react magnesium with hydrogen. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at man som opløsningsmiddel anvender åbenkædede og cycliske mono- og polyethere, fortrinsvis THF eller glycoldimethyl-ether.Process according to claim 1, characterized in that open-chain and cyclic mono- and polyethers, preferably THF or glycol dimethyl ether, are used as the solvent. 3. Fremgangsmåde ifølge 1 eller 2, kendetegnet ved, at reaktionen gennemføres i temperaturområdet fra 0 til 150°C, fortrinsvis fra 20 til 70°C.Process according to 1 or 2, characterized in that the reaction is carried out in the temperature range from 0 to 150 ° C, preferably from 20 to 70 ° C. 4. Fremgangsmåde ifølge ethvert af kravene 1-3, kendetegnet ved, at hydrogeneringen af magnesiumet og den 25 påfølgende omsætning af magnesiumhydridet med chlorsilaner, fortrinsvis tetrachlorsilaner, gennemføres ved en batch-proces.Process according to any one of claims 1-3, characterized in that the hydrogenation of the magnesium and the subsequent reaction of the magnesium hydride with chlorosilanes, preferably tetrachlorosilanes, is carried out by a batch process.
DK590083A 1982-12-22 1983-12-21 PROCEDURE FOR MAKING SILICON HYDROGEN COMPOUNDS ISAER SILAN DK161696C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3247362 1982-12-22
DE19823247362 DE3247362A1 (en) 1982-12-22 1982-12-22 METHOD FOR PRODUCING SILICON HYDROGEN COMPOUNDS, ESPECIALLY THE SILANE

Publications (4)

Publication Number Publication Date
DK590083D0 DK590083D0 (en) 1983-12-21
DK590083A DK590083A (en) 1984-06-23
DK161696B true DK161696B (en) 1991-08-05
DK161696C DK161696C (en) 1992-01-27

Family

ID=6181324

Family Applications (1)

Application Number Title Priority Date Filing Date
DK590083A DK161696C (en) 1982-12-22 1983-12-21 PROCEDURE FOR MAKING SILICON HYDROGEN COMPOUNDS ISAER SILAN

Country Status (9)

Country Link
EP (1) EP0111924B1 (en)
JP (1) JPS59131519A (en)
AT (1) ATE40815T1 (en)
AU (1) AU577035B2 (en)
CA (1) CA1218828A (en)
DE (2) DE3247362A1 (en)
DK (1) DK161696C (en)
ES (1) ES528246A0 (en)
IE (1) IE56457B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340492A1 (en) * 1983-11-09 1985-05-15 Studiengesellschaft Kohle mbH, 4330 Mülheim METHOD FOR PRODUCING FINE DISTRIBUTED, HIGHLY REACTIVE MAGNESIUM AND THE USE THEREOF
DE3409172A1 (en) * 1984-03-13 1985-09-26 D. Swarovski & Co., Wattens, Tirol METHOD FOR PRODUCING SILANE
US4725419A (en) * 1985-05-17 1988-02-16 Ethyl Corporation Silane production from magnesium hydride
EP0316472A1 (en) * 1987-11-17 1989-05-24 Ethyl Corporation Silane production from magnesium hydride
US4824657A (en) * 1985-11-27 1989-04-25 E. I. Du Pont De Nemours And Company Process for reducing silicon, germanium and tin halides
US5061470A (en) * 1990-08-03 1991-10-29 Ethyl Corporation Silane production from hydridomagnesium chloride
JPH0548070U (en) * 1991-11-28 1993-06-25 喜和 石渡 Banknote storage and payout device
DE4239246C1 (en) * 1992-11-21 1993-12-16 Goldschmidt Ag Th Process for the preparation of SiH-containing organopolysiloxanes
DE4313130C1 (en) * 1993-04-22 1994-05-26 Goldschmidt Ag Th Silanes and organosilicon hydrides prodn. - by redn. of corresp. silicon halides with non-pyrophoric storage magnesium hydride in THF etc., with continuous removal of halide deposits
DE102004062449A1 (en) * 2004-12-17 2006-07-06 Klaus Dr. Rennebeck Fuel cell system for water mineralization comprises fuel cell based on micro hollow fiber, which contains electrolytes, which carries separately from each other anode and cathode wherein electrolyte is micro hollow fiber-matrix electrolyte
NO326254B1 (en) * 2005-12-22 2008-10-27 Sinvent As Process for producing silane
DE102009056731A1 (en) 2009-12-04 2011-06-09 Rev Renewable Energy Ventures, Inc. Halogenated polysilanes and polygermanes
CN103384640B (en) * 2010-12-23 2016-03-02 Memc电子材料有限公司 For the preparation of the method and system of silane
US8821825B2 (en) 2010-12-23 2014-09-02 Sunedison, Inc. Methods for producing silane
US8388914B2 (en) 2010-12-23 2013-03-05 Memc Electronic Materials, Inc. Systems for producing silane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050366A (en) * 1959-07-15 1962-08-21 Du Pont Production of silane by the use of a zinc catalyst
DE2804445A1 (en) * 1978-02-02 1979-08-09 Studiengesellschaft Kohle Mbh METHOD FOR MANUFACTURING MAGNESIUM HYDRIDS
DE2908928A1 (en) * 1979-03-07 1980-09-18 Studiengesellschaft Kohle Mbh METHOD FOR PRODUCING ORGANOLITHIUM COMPOUNDS IN ADDITION TO LITHIUM HYDROID
DE3536797A1 (en) * 1985-10-16 1987-04-16 Studiengesellschaft Kohle Mbh METHOD FOR PRODUCING HALOGEN MAGNESIUM ALANATE AND THE USE THEREOF

Also Published As

Publication number Publication date
ATE40815T1 (en) 1989-03-15
DK590083A (en) 1984-06-23
DK161696C (en) 1992-01-27
ES8406982A1 (en) 1984-08-16
DE3247362A1 (en) 1984-06-28
AU577035B2 (en) 1988-09-15
DK590083D0 (en) 1983-12-21
IE833016L (en) 1984-06-22
EP0111924A3 (en) 1986-10-29
EP0111924A2 (en) 1984-06-27
ES528246A0 (en) 1984-08-16
JPH0553727B2 (en) 1993-08-10
DE3379199D1 (en) 1989-03-23
CA1218828A (en) 1987-03-10
JPS59131519A (en) 1984-07-28
EP0111924B1 (en) 1989-02-15
AU2275583A (en) 1984-06-28
IE56457B1 (en) 1991-08-14

Similar Documents

Publication Publication Date Title
DK161696B (en) PROCEDURE FOR MAKING SILICON HYDROGEN COMPOUNDS ISAER SILAN
US5455367A (en) Method for the synthesis of silanes or organosilicon hydrides by the reduction of the corresponding silicon halides or organosilicon halides
KR100802374B1 (en) Process for producing boranes
EP2528864B1 (en) Method of producing cyclohexasilane compounds
US3057686A (en) Process for preparing silanes
Hurd The Vapor Phase Alkylation and Hydrogenation of Chlorosilanes
US3926833A (en) Preparation of mixed chlorohydrides of aluminum
KR920006800B1 (en) Method of manufacturing silane
US2900225A (en) Process for the production of sih2cl2
GB851962A (en) Production of pure silane
JPS60176915A (en) Production of disilane
WO2019060475A2 (en) Synthesis of organo chlorosilanes from organosilanes
US11691883B2 (en) Synthesis of trichlorosilane from tetrachlorosilane and hydridosilanes
JPS63159215A (en) Preparation of silane and amine alane
Jackson et al. Chemistry of silane. I. Preparation of silane
US4927616A (en) Preparation of silane and amine alanes
US3279886A (en) Preparation of silane
WO1984002332A1 (en) Process for production of silane
US4855120A (en) Production of silane and useful coproducts
CA2477622A1 (en) Preparation of mixed-halogen halo-silanes
US3324159A (en) Process for the production of aluminum trialkyls and alkoxy aluminum dialkyls
JP3249966B2 (en) Cyclic bishydrosilyl compound
KR950010797B1 (en) Preparation of silane and amine alanes
WO2014181194A2 (en) Apparatus and method for the condensed phase production of trisilylamine
US3437456A (en) Stable diborane diammoniate and method of preparing same

Legal Events

Date Code Title Description
PBP Patent lapsed