DK157691B - PROCEDURE FOR IONIC NITRIDATION OF A STEEL SUBSTANCE THAT BEFORE DEFORMED PLASTIC - Google Patents

PROCEDURE FOR IONIC NITRIDATION OF A STEEL SUBSTANCE THAT BEFORE DEFORMED PLASTIC Download PDF

Info

Publication number
DK157691B
DK157691B DK228982A DK228982A DK157691B DK 157691 B DK157691 B DK 157691B DK 228982 A DK228982 A DK 228982A DK 228982 A DK228982 A DK 228982A DK 157691 B DK157691 B DK 157691B
Authority
DK
Denmark
Prior art keywords
nitrogen
sequence
pascal
ionic nitriding
steel
Prior art date
Application number
DK228982A
Other languages
Danish (da)
Other versions
DK228982A (en
DK157691C (en
Inventor
Robert Leveque
Original Assignee
Creusot Loire
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creusot Loire filed Critical Creusot Loire
Publication of DK228982A publication Critical patent/DK228982A/en
Publication of DK157691B publication Critical patent/DK157691B/en
Application granted granted Critical
Publication of DK157691C publication Critical patent/DK157691C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catalysts (AREA)

Abstract

1. A method for the ionic nitriding of pieces of steel of any type, which comprises the following four stages in succession : a) a prior cold-working operation on the piece, the final degree of cold-working of which is between 10% and 40% ; b) a first ionic nitriding sequence with a duration of between one hour and 10 hours, carried out at a temperature t1 of between 450 degrees and 520 degrees, in a gaseous mixture consisting of nitrogen and hydrogen, which is such that the nitrogen partial pressure p1 is between 10 and 35 Pascal and such that the total gas pressure is between 200 and 650 Pascal ; c) a second ionic nitriding sequence the duration of which is between 40 and 70 hours, carried out at a temperature t2 of between 500 degrees and 580 degrees C and at least 10 degrees C and at most 50 degrees C above t1 in a gaseous mixture consisting of nitrogen and hydrogen, which is such that the nitrogen partial pressure p2 is between 60 and 80 Pascal, and that the total gas pressure remains between 200 and 650 Pascal ; and d) a final cooling in vacuo.

Description

iin

DK 15769 IBDK 15769 IB

Den foreliggende opfindelse angår ionisk nitridering af stål.The present invention relates to ionic nitriding of steel.

Det er kendt, at ionisk nitridering af stål er en fremgangsmåde, der er forskellig fra nitridering med gas.It is known that ionic nitriding of steel is a process different from gas nitriding.

Sidstnævnte, der er af termokemisk art, udføres klassisk mellem 500 5 og 550°C i en atmosfære af ammoniak, eventuelt fortyndet med nitrogen.The latter, which is of a thermochemical nature, is classically carried out between 500 and 550 ° C in an atmosphere of ammonia, optionally diluted with nitrogen.

Derved fremkommer en overfladehærdning af stålet, som er betydelig som følge af tilstedeværelsen af to successive nitriderede lag: (a) I overfladen et kombinationslag fremkommet under overmætning med nitrogen og bestående af nitrider af jern af to forskellige typer 10 (Fe2 3N og Fe^N), idet de første befinder sig nærmest overfladen og de andre mere i dybden.This results in a surface hardening of the steel, which is significant due to the presence of two successive nitrided layers: (a) In the surface a combination layer formed under saturation with nitrogen and consisting of iron nitrides of two different types 10 (Fe2 3N and Fe ^ N ), the first being closest to the surface and the second more in depth.

(b) Lige under kombinationslaget et nitrogendiffusionslag, som er meget tykkere end det foregående og kraftigt markeret ved præcipita-tionsgrænser i systemet af carbonnitrider af jern og andre metaller hid- 15 rørende fra den kombinerede virkning af nitrogenet, der indføres, og af kulstoffet i stålet.(b) Just below the combination layer, a nitrogen diffusion layer which is much thicker than the previous one and strongly marked by precipitation limits in the system of carbon nitrides of iron and other metals derived from the combined action of the nitrogen introduced and of the carbon in the steel.

Disse to lag er følsomme over for igangsættelse og propagering af revner: kombinationslaget på grund af forekomst af revner ved grænsen mellem de to nitridkategorier og hurtig afskalning af bestanddelene nær-20 mest overfladen; diffusionslaget på grund af udfældning af carbonni-trider der er lidet resistente over for de mekaniske og termiske belastninger, som de to nitriderede lag underkastes.These two layers are sensitive to crack initiation and propagation: the combination layer due to the occurrence of cracks at the boundary between the two nitride categories and rapid peeling of the constituents near the surface; the diffusion layer due to the precipitation of carbon nitrides which are not resistant to the mechanical and thermal stresses to which the two nitrided layers are subjected.

Arten og omfanget af diffusionszonen har indvirkning på den mere eller mindre omfattende forøgelse af emnets samlede resistensegenskaber, 25 især på dets dynamiske resistens over for vekslende påvirkninger og i mindre udstrækning på dets resistens over for slid og på dets gi ide-egenskaber.The nature and extent of the diffusion zone have an effect on the more or less extensive increase in the overall resistance properties of the workpiece, in particular on its dynamic resistance to alternating stresses and to a lesser extent on its resistance to wear and on its properties.

Endelig er der under diffusionszonen det basismateriale, som ikke berøres af nitrogendiffusionen, og som følgelig bør forblive uforandret 30 ved nitrideringsbehandlingen. Med henblik herpå bør selve basismaterialet have den størst mulige resistens uden risiko for, at den bliver sat over styr ved de termiske betingelser under nitrideringen. Herved er dette basismateriale så i stand til at bibringe en tilstrækkelig mekanisk støtte for helheden af de to forholdsvis tynde nitrideringslag til, 35 at emnets totale resistens bliver tilstrækkelig stor.Finally, under the diffusion zone there is the base material which is not affected by the nitrogen diffusion and which should consequently remain unchanged during the nitriding treatment. To this end, the base material itself should have the greatest possible resistance without the risk of being overridden under the thermal conditions during nitriding. Hereby, this base material is then capable of providing sufficient mechanical support for the entirety of the two relatively thin nitriding layers so that the total resistance of the workpiece becomes sufficiently large.

De netop omtalte revnedannelses- og afskalningsproblemer forårsaget af gasnitridering kan i stor udstrækning undgås ved ionisk nitridering, som er af elektrotermisk natur.The just mentioned cracking and peeling problems caused by gas nitriding can be largely avoided by ionic nitriding, which is of an electrothermal nature.

DK 157691 BDK 157691 B

22

Den ioniske nitridering af emner af stål gør brug af en elektrisk ladning fremkaldt ved en potential forskel på mellem 400 og 700 volt mellem emnet, der skal behandles, og som udgør katoden, og reaktorvæggen, som udgør anoden, i et rum anbragt under reduceret tryk, generelt mellem 5 100 og 1000 Pascal, af en gas bestående af en blanding af nitrogen og hydrogen, der alt efter omstændighederne kan indeholde mellem 1 og 35 volumen% nitrogen, eventuelt med en smule carbonhydridgas, ved temperaturer mellem 430 og 600°C.The ionic nitriding of steel workpieces uses an electric charge induced by a potential difference of between 400 and 700 volts between the workpiece to be treated and the cathode, and the reactor wall which constitutes the anode in a room placed under reduced pressure , generally between 5,100 and 1,000 Pascals, of a gas consisting of a mixture of nitrogen and hydrogen which may, as the case may be, contain between 1 and 35% by volume of nitrogen, optionally with a little hydrocarbon gas, at temperatures between 430 and 600 ° C.

Eksempler på behandlingscykler er tidligere beskrevet i fransk 10 patentskrift nr. 2.446.326.Examples of treatment cycles are previously described in French Patent Specification No. 2,446,326.

Fremgangsmåden til ionisk nitridering af langstrakte hule legemer af stål af alle typer ifølge patentskriftet er karakteriseret ved følgende syv successive trin: (a) En anbringelse af beholderen indeholdende de hule legemer og 15 deres anode under vakuum, (b) en rensning under meget reduceret tryk på under 0,8 millibar ledsaget af en let temperaturstigning på under 100eC under anvendelse af en gasblanding af nitrogen og hydrogen indeholdende mellem 1 og 4 volumen% nitrogen, 20 (c) en forøgelse af temperaturen til 430-540°C ledsaget af en pro gressiv trykstigning til behandlingstrykket på 2,5-10 millibar og med samme gasblanding som under rensningen (b), (d) en holdeperiode ved en konstant temperatur mellem 430-540°C af en varighed mellem 1-6 timer og fortrinsvis i nærheden af 4 timer hele 25 tiden med den ovenfor under (b) beskrevne gasblanding under et tryk mellem 2,5-10 millibar, (e) en ny temperaturstigning fra 430-540°C til 460-570°C med en gasblanding af nitrogen og hydrogen indeholdende mellem 10 og 15 volumen% nitrogen, 30 (f) en holdeperiode ved en konstant maksimal temperatur på 460- 570°C af en varighed på 25-70 timer og under behandl ingstrykket på 2,5-10 millibar nied den ovenfor under (e) beskrevne gasblanding, og (g) en endelig afkøling under vakuum.The process for ionic nitriding of elongated hollow steel bodies of all types according to the patent is characterized by the following seven successive steps: (a) placing the container containing the hollow bodies and their anode under vacuum, (b) a purification under much reduced pressure less than 0.8 millibars accompanied by a slight rise in temperature below 100 ° C using a gas mixture of nitrogen and hydrogen containing between 1 and 4% by volume of nitrogen, 20 (c) increasing the temperature to 430-540 ° C accompanied by a (c) a holding period at a constant temperature between 430-540 ° C for a duration between 1-6 hours and preferably in the vicinity of 4 hours for the entire time with the gas mixture described above (b) under a pressure between 2.5-10 millibars, (e) a new temperature rise from 430-540 ° C to 460-570 ° C with a gas mixture of nitrogen and h. (f) a holding period at a constant maximum temperature of 460-570 ° C for a duration of 25-70 hours and under the treatment pressure of 2.5-10 millibars below the above (e) gas mixture described, and (g) final cooling under vacuum.

De emner, der er behandlet således ved ionisk nitridering, er 35 karakteriseret ved, at de udviser et ydre kombinationslag, der er fri for porer og af enkeltfaset komposition, en tykkelse på maksimalt 10 mikrometer og en diffusionszone, der i vid udstrækning er fri for nitridnetværk og -grænser.The items so treated by ionic nitriding are characterized in that they exhibit a pore-free and single-phase composition outer layer, a maximum of 10 microns in thickness, and a diffusion zone largely free of nitride networks and boundaries.

33

DK 157691BDK 157691B

De er altså meget mindre følsomme over for revnedannelse og afskalning end emner, der er behandlet ved gasnitridering.Thus, they are much less sensitive to cracking and peeling than subjects treated by gas nitriding.

En af de væsentlige fordele ved ionisk nitridering består i, at u-afhaengigheden mellem behandlingstemperaturen, som er en funktion af 5 parametrene for den elektriske afladning (spænding, intensitet, gastryk), og aktiviteten af det reaktive milieu, som afhænger af den benyttede gasblanding, virkeliggøres.One of the major advantages of ionic nitriding is that the dependence between the treatment temperature, which is a function of the 5 parameters of the electric discharge (voltage, intensity, gas pressure) and the activity of the reactive environment which depends on the gas mixture used , is realized.

Det her nævnte er kendt af fagfolk.This is known to those skilled in the art.

Det er på den anden side også kendt, at i tilfælde af termokemiske 10 behandlinger har en forudgående plastisk deformation af stålet meget stor indflydelse på diffusionsprocessen for de interstitielle elementer, såsom carbonet og nitrogenet. Det forholder sig således, at i tilfælde af nitridering medfører kolddeformation af stål eller deformation ved moderate temperaturer, højst 600°C, en mærkbar forøgelse af de nitri -15 derede lags tykkelse for en given temperatur og holdetid.On the other hand, it is also known that in the case of thermochemical treatments, a prior plastic deformation of the steel has a very large influence on the diffusion process of the interstitial elements such as the carbon and nitrogen. Thus, in the case of nitriding, cold deformation of steel or deformation at moderate temperatures, not exceeding 600 ° C, results in a noticeable increase in the thickness of the nitrided layers for a given temperature and holding time.

Men denne gunstige indvirkning af en forudgående plastisk deformation af stålet på kinetikken for væksten af de nitriderede lag ledsages imidlertid af en væsentlig ulempe med hensyn til de sædvanlige nitrideringsbetingelser. Udfældningerne af cementit eller af carbonfor-20 bindeiser, som er til stede i det kolddeformerede stål, bringes således delvis i opløsning under opretholdelse af nitrideringsbehandlingstem-peraturen (430-600°C), og carbonet, som er til stede i den faste opløsning, letter væksten af carbonnitriderne såvel i kombinationslaget som i nitrogendiffusionslaget. Herved fås så penetreringer af kombinations-25 laget i diffusionslaget, dels langs korngrænserne og dels langs kolddeformationslinierne. Disse sammensætninger, som naturligvis er skøre, forringer de nitriderede lags sejghed og træthedsbestandighed, såvel mekanisk som termisk.However, this favorable effect of a prior plastic deformation of the steel on the kinetics of the growth of the nitrided layers is accompanied by a significant disadvantage with respect to the usual nitriding conditions. Thus, the precipitates of cementite or of carbon compounds present in the cold-deformed steel are partially dissolved while maintaining the nitriding treatment temperature (430-600 ° C) and the carbon present in the solid solution. facilitates the growth of the carbon nitrides both in the combination layer and in the nitrogen diffusion layer. Hereby penetrations of the combination layer are obtained in the diffusion layer, partly along the grain boundaries and partly along the cold deformation lines. These compositions, which are naturally brittle, degrade the toughness and fatigue resistance of the nitrided layers, both mechanically and thermally.

Formålet med den foreliggende opfindelse er at drage fordel af en 30 forudgående kolddeformations gunstige virkning på kinetikken for væksten af de nitriderede lag under undgåelse af enhver risiko for for stor skørhed og dog uden at udføre nogen speciel behandling til aflastning af spændingerne.The object of the present invention is to take advantage of the beneficial effect of a prior cold deformation on the kinetics of the growth of the nitrided layers, avoiding any risk of excessive brittleness but without performing any special treatment to relieve the stresses.

Den foreliggende opfindelse angår således en fremgangsmåde til 35 ionisk nitridering af emner af stål af alle typer, hvilken fremgangsmåde er ejendommelig ved følgende fire på hinanden følgende trin: (a) en forudgående kolddeformation af emnet til en slutdeforma-tionsgrad på mellem 10 og 40%,Thus, the present invention relates to a process for the ionic nitriding of steel parts of all types, characterized by the following four successive steps: (a) a prior cold deformation of the workpiece to a final deformation degree of between 10 and 40% .

DK 157691 BDK 157691 B

4 (b) en første ionisk nitrideringssekvens af en varighed mellem 6 og 10 timer udført ved en temperatur ti mellem 500 og 520°C i en gasblanding bestående af nitrogen og hydrogen, hvor nitrogenpartialtrykket pi er mellem 10 og 35 Pascal, og det totale gastryk er mellem 200 og 650 5 Pascal, (c) en anden ionisk nitrideringssekvens af en varighed mellem 40 og 70 timer udført ved en temperatur t2 mellem 500 og 580°C og mindst 10eC og højst 50eC højere end ti, hvilken anden sekvens udføres i en gasblanding bestående af nitrogen og hydrogen, hvor nitrogenparti al - 10 trykket p2 er mellem 60 og 80 Pascal, og det totale gastryk er mellem 200 og 650 Pascal, og (d) en slutafkøling under vakuum.4 (b) a first ionic nitriding sequence of a duration between 6 and 10 hours carried out at a temperature of between 500 and 520 ° C in a gas mixture of nitrogen and hydrogen, where the nitrogen partial pressure pi is between 10 and 35 Pascal, and the total gas pressure is between 200 and 650 Pascal, (c) another ionic nitriding sequence of a duration between 40 and 70 hours performed at a temperature t 2 between 500 and 580 ° C and at least 10 ° C and not more than 50 ° C higher than ten, which second sequence is carried out in a a gas mixture of nitrogen and hydrogen, wherein the nitrogen portion of the pressure p 2 is between 60 and 80 Pascal, and the total gas pressure is between 200 and 650 Pascal, and (d) a final cooling under vacuum.

Ifølge et særligt kendetegn ved den foreliggende opfindelse er varigheden af den første ioniske nitrideringssekvens og varigheden af 15 den anden sekvens inden for rammerne af de tidligere angivne varigheder desto længere, jo større andelen af legeringselementer i stålet, som skal behandles, er. Dette skyldes, at restitutionen af strukturen efter kolddeformationen sker langsommere i stål med større andel af legeringselementer, såsom rustfrit stål eller varmebestandigt stål.According to a particular feature of the present invention, the longer the proportion of alloying elements in the steel to be treated, the longer the ionic nitriding sequence and the duration of the second sequence within the previously stated durations. This is because the restoration of the structure after the cold deformation occurs more slowly in steel with a larger proportion of alloying elements, such as stainless steel or heat-resistant steel.

20 Ifølge en udførelsesform af opfindelsen, der specielt kan anvendes på legeret stål, såsom rustfrit stål eller varmebestandigt stål, under- .. kastes emnet efter at være underkastet samme kolddeformation som før en første nitrideringssekvens i et tidsrum på mellem 6 og 10 timer ved en temperatur mellem 500 og 520°C i en gasblanding af nitrogen og hydrogen, 25 hvor nitrogenpartialtrykket er mellem 30 og 35 Pascal, og det totale gastryk er mellem 200 og 650 Pascal. Dernæst underkastes emnet en anden ionisk nitrideringssekvens i et tidrum på mellem 40 og 70 timer ved en temperatur mellem 500 og 580°C i en blanding af nitrogen og hydrogen, hvor nitrogenpartialtrykket er mellem 60 og 80 Pascal, og fortrinsvis 30 omkring 70 Pascal, og det totale gastryk er mellem 200 og 650 Pascal.According to an embodiment of the invention, which may be particularly applicable to alloy steel, such as stainless steel or heat-resistant steel, the article is subjected to the same cold deformation as before a first nitriding sequence for a period of between 6 and 10 hours at a time. temperature between 500 and 520 ° C in a gas mixture of nitrogen and hydrogen, where the nitrogen partial pressure is between 30 and 35 Pascal and the total gas pressure is between 200 and 650 Pascal. Next, the blank is subjected to a second ionic nitriding sequence for a period of between 40 and 70 hours at a temperature between 500 and 580 ° C in a mixture of nitrogen and hydrogen, with the nitrogen partial pressure being between 60 and 80 Pascal, and preferably about 70 Pascal, and the total gas pressure is between 200 and 650 Pascal.

Det må bemærkes, at hvis den anvendte gasblanding i alle tilfælde af anvendelse af fremgangsmåden ifølge opfindelsen altid består af nitrogen og hydrogen, bør de relative mængder af disse to gasser i det mindste i den første ioniske nitrideringssekvens reguleres som funktion 35 af stålets sammensætning og specielt af dets indhold af legeringselementer, der attrår nitrogen såsom chrom, vanadin, titan og aluminium. Jo højere indholdet af disse elementer er, desto større bør nitrogenpartialtrykket være for et og samme totale arbejdstryk.It should be noted that if, in all cases of using the process of the invention, the gas mixture always consists of nitrogen and hydrogen, the relative amounts of these two gases should be controlled at least in the first ionic nitriding sequence as a function of the composition of the steel, and especially of its content of alloying elements which attract nitrogen such as chromium, vanadium, titanium and aluminum. The higher the content of these elements, the greater the nitrogen partial pressure should be for one and the same total working pressure.

55

DK 157691BDK 157691B

Varigheden af den første sekvens har stor betydning. Den overfladiske decarbonisering, som fremkaldes af dette behandlingstrin, kan, hvis det fortsættes for længe, medføre modifikationer af de nitriderede lags mekaniske egenskaber. Specielt lettes penetreringen af nitrogen i stålet 5 af formindskelsen i mængden af carbonforbindel ser, og dette kan medføre en mærkbar formindskelse af overfladehårdheden med en deraf følgende forringelse af følgende egenskaber: resistens over for indtrykning, slid og mekanisk eller termisk udmattelse.The duration of the first sequence is of great importance. The superficial decarbonization induced by this treatment step, if continued for too long, may cause modifications to the mechanical properties of the nitrided layers. In particular, the penetration of nitrogen into steel 5 is facilitated by the reduction in the amount of carbon compounds, and this can result in a noticeable reduction in surface hardness with a consequent deterioration of the following properties: resistance to impression, wear and mechanical or thermal fatigue.

For at undgå denne risiko er det nødvendigt ikke at fortsætte den 10 første ioniske nitrideringssekvens for længe, og dette er årsagen til, at den periode, temperaturen opretholdes under denne sekvens, ikke bør overstige 10 timer.To avoid this risk, it is not necessary to continue the first 10 ionic nitriding sequence for too long, which is why the period of maintaining the temperature during this sequence should not exceed 10 hours.

Denne første sekvens efterfølges af en anden sekvens, under hvilken aktiviteten af det reaktive milieu modificeres som funktion af tykkelsen 15 af kombinationslaget, som man ønsker at opnå i overfladen. Under denne sekvens bør temperaturen og opholdstiderne indstilles under hensyntagen til den forudgående kolddeformations gunstige indvirkning på kinetikken for væksten af de nitriderede lag. Dette fænomen, der kontrolleres af nitrogendiffusionen i det behandlede emne, kan anskueliggøres ved en 20 grafisk afbildning af forløbet af forholdet _e (hvor e er tykkelsen af yt lagene i mikrometer, og t er opholdstiden i timer) som funktion af den reciprokke værdi af den absolutte temperatur. Denne afbildning gør det muligt at bestemme den opholdstid, der under den anden behandlingsse-25 kvens er nødvendig for at opnå et nitrideret lag af given tykkelse ved en given temperatur, som karakteriseret ved vækstkinetikken.This first sequence is followed by a second sequence during which the activity of the reactive environment is modified as a function of the thickness of the combination layer which one wishes to obtain in the surface. During this sequence, the temperature and residence times should be adjusted, taking into account the beneficial effect of the prior cold deformation on the kinetics of the growth of the nitrided layers. This phenomenon, controlled by the nitrogen diffusion in the treated subject, can be illustrated by a graphical representation of the course of the ratio _e (where e is the thickness of the surface layers in micrometers and t is the residence time in hours) as a function of the reciprocal value of the absolute temperature. This imaging allows the residence time required during the second treatment sequence to be determined to obtain a nitrided layer of given thickness at a given temperature as characterized by the growth kinetics.

Da den første sekvens af den ioniske nitrideringsbehandling fandt sted, blev restitutionen af den ved kolddeformationen deformerede struktur forsinket stærkt ved indføringen af nitrogen i systemet, da disloka-30 tionerne, der tjener som gunstige positioner for nitrogenindtrængningen, blev hæmmet i deres forskydning af de dannede udfældninger af nitrider.As the first sequence of the ionic nitriding treatment took place, the recovery of the cold deformation structure was greatly delayed by the introduction of nitrogen into the system, as the dislocations serving as favorable positions for the nitrogen penetration were inhibited in their displacement of the formed precipitates of nitrides.

Men den anden sekvens fuldfører, når den er indstillet godt som netop omtalt, på reduceret tid, restitutionen af den ved kolddeformationen deformerede struktur.However, the second sequence, when set well as just mentioned, completes in a reduced time the restoration of the structure deformed by cold deformation.

35 Det er endvidere yderst interessant for ret at vurdere interessen i fremgangsmåden ifølge opfindelsen at foretage den følgende sammenligning af to ens emner af stål, som begge har undergået samme forudgående plastiske deformation ved koldhamring til en slutdeformationsgrad på 30%: 635 It is furthermore extremely interesting to judge the interest in the method according to the invention to make the following comparison of two identical steel items, both of which have undergone the same prior plastic deformation by cold hammering to a final deformation degree of 30%: 6

DK 157691BDK 157691B

- dels et første emne, der først er underkastet en afspændingsbehandling ved 500°C i 2 til 4 timer i en traditionel ovn med kontrolleret atmosfære til delvis restitution af den kolddeformerede struktur, efterfulgt af en ionisk nitridering af konventionel type ved temperaturer 5 mellem 500 og 560°C i en gasblanding af nitrogen og hydrogen, hvor nitrogenpartialtrykket er lig med 60 Pascal, - dels et andet emne, der er underkastet de to successive sekvenser af ionisk nitridering ifølge opfindelsen, den første sekvens i form af en ionisk nitridering i 6 til 10 timer ved ca. 500eC i en gasblanding af 10 nitrogen og hydrogen, hvor nitrogenpartialtrykket er mellem 10 og 15 Pascal, og den anden sekvens udført ved 500 til 560eC i en gasblanding af nitrogen og hydrogen under et nitrogenpartialtryk på 60 Pascal.first, a first blank subjected to a relaxation treatment at 500 ° C for 2 to 4 hours in a traditional controlled atmosphere furnace for partial recovery of the cold-deformed structure, followed by a conventional type ionic nitriding at temperatures between 500 and 500 ° C. 560 ° C in a gas mixture of nitrogen and hydrogen, where the nitrogen partial pressure is equal to 60 Pascal, - secondly, subject to the two successive sequences of ionic nitriding according to the invention, the first sequence in the form of an ionic nitriding for 6 to 10 hours at approx. 500eC in a gas mixture of 10 nitrogen and hydrogen, where the nitrogen partial pressure is between 10 and 15 Pascal, and the second sequence performed at 500 to 560eC in a gas mixture of nitrogen and hydrogen under a nitrogen partial pressure of 60 Pascal.

Ved en sådan sammenligning iagttager man, at for samme tykkelse af det nitriderede lag er gevinsten i den samlede behandlingstid for det 15 andet emne (ifølge opfindelsen) i forhold til det første bemærkelsesværdig, idet den alt efter forholdene er mellem 10 og 50%.In such a comparison, it is observed that for the same thickness of the nitrided layer, the gain in the total processing time of the second blank (according to the invention) relative to the first is remarkable, depending on the ratio between 10 and 50%.

Til belysning af denne sammenligning kan der henvises til to rør af stål "35 CD 12" (0,35% C, 3% Cr, 0,80 % Mo), hvis formgivning er foretaget ved koldsmedning til en siutdeformationsgrad på 30%.To illustrate this comparison, reference is made to two steel tubes "35 CD 12" (0.35% C, 3% Cr, 0.80% Mo), the design of which is made by cold forging to a degree of strain deformation of 30%.

20 De spændinger, der ved radiokrystallografi er målt på overfladen af hvert af disse to rør i en sådan tilstand, er som følger (idet den langsgående spænding, dvs. langs emnets akse betegnes med σι, og periferispændingen, dvs. spændingen vinkelret på emnets akse med σθ): σ L = - 740 MPa 25 σ β = - 400 MPaThe voltages measured by radiocrystallography on the surface of each of these two tubes in such a state are as follows (the longitudinal voltage, i.e. along the axis of the workpiece, being denoted by σι, and the peripheral stress, i.e. the voltage perpendicular to the workpiece axis with σθ): σ L = - 740 MPa 25 σ β = - 400 MPa

Det første rør undergår derefter en afspænding ved 500eC i tre timer i en konventionel ovn med kontrolleret atmosfære. Spændingerne viser sig så at være faldet til følgende værdier: σ L = - 210 MPa 30 σ Θ = - 170 MPaThe first tube then undergoes a relaxation at 500 ° C for three hours in a conventional controlled atmosphere oven. The stresses then appear to have fallen to the following values: σ L = - 210 MPa 30 σ Θ = - 170 MPa

Der sker altså en god partiel restitution af den kolddeformerede struktur.There is thus a good partial restoration of the cold-deformed structure.

Det første rør undergår endelig en klassisk ionisk nitridering ved de tidligere angivne betingelser.The first tube finally undergoes a classical ionic nitriding under the conditions previously stated.

35 Kinetikken for de nitriderede lags vækst ved denne klassiske ioni ske nitridering, således som den er defineret tidligere, er repræsenteret ved kurve 1 i fig. 1 (se senere).The kinetics of the growth of the nitrided layers by this classical ionic nitriding, as previously defined, are represented by curve 1 in FIG. 1 (see later).

Det andet rør undergår den ioniske nitridering i to successive 7The second tube undergoes the ionic nitriding in two successive 7

DK 157691BDK 157691B

sekvenser ifølge opfindelsen under de tidligere angivne betingelser.sequences according to the invention under the previously stated conditions.

Kinetikken for lagenes vækst ved denne ioniske nitridering ifølge opfindelsen er repræsenteret ved kurve 2 i fig. 1.The kinetics of the growth of the layers by this ionic nitriding according to the invention are represented by curve 2 in FIG. First

I fig. 1 har man som abscisse afbildet reciprokværdien af den abso-5 lutte behandlingstemperatur (temperaturen under den anden sekvens i eksemplet ifølge opfindelsen) og som ordinat forholdet mellem den ni-triderede tykkelse og kvadratroden af tiden for den ioniske nitridering.In FIG. 1, the reciprocal value of the absolute treatment temperature (the temperature of the second sequence in the example of the invention) as the abscissa is plotted, and as the ordinate the ratio of the nitrided thickness to the square root of the time of the ionic nitriding.

Som det tydeligt fremgår, befinder kurve 2 sig for en given temperatur over 490°C, konstant over kurve 1. For en bestemt nitrideringstid ser 10 man f.eks. for en behandling ved 520*C, at den nitriderede tykkelse er ca. 1,25 gange større ifølge kurve 2 end ifølge kurve 1, og at denne koefficient øges med behandlingstemperaturen. Kinetikken for væksten af de nitriderede lag bliver således klart forbedret ved fremgangsmåden i-følge opfindelsen.As can be clearly seen, curve 2 is for a given temperature above 490 ° C, constant above curve 1. For a certain nitriding time, 10 is seen e.g. for a treatment at 520 ° C, the nitrided thickness is approx. 1.25 times greater according to curve 2 than according to curve 1, and that this coefficient increases with the treatment temperature. Thus, the kinetics of the growth of the nitrided layers is clearly improved by the method of the invention.

15 En anden måde at anskueliggøre den foregående sammenligning på er vist i fig. 2, i hvilken man som abscisse i lineær målestok har angivet temperaturerne for den ioniske nitridering (for den anden sekvens i eksemplet ifølge opfindelsen) og som ordinat i logaritmisk målestok nitrideringstiderne i timer, idet man ved to knipper af rette linier har 20 vist de opnåede nitrideringsdybder henholdsvis for det første rør (fuldt optrukne linier) og for det andet rør, ifølge opfindelsen (kortstregslinier) for værdier på henholdsvis 200, 300, 400, 500 og 600 mikrometer.15 Another way of illustrating the foregoing comparison is shown in FIG. 2, in which, as a linear scale, the temperatures of the ionic nitriding (for the second sequence of the example according to the invention) and as ordinate in logarithmic scale the nitriding times in hours, showing two obtained lines of nitriding depths, respectively, for the first tube (solid lines) and the second tube, according to the invention (dashed lines) for values of 200, 300, 400, 500 and 600 micrometers, respectively.

Af denne fig. 2 ser man f.eks., at der til opnåelse af en tykkelse af det nitriderede lag på omkring 500 mikrometer med en nitrideringsbe-25 handling omkring 540°C kræves - 60 timers opretholdelse af denne temperatur for den klassiske behandling efter aflastning af spændingerne og - kun 42 timers ophold ved denne temperatur for behandlingen ifølge opfindelsen.From this FIG. 2, for example, to obtain a thickness of the nitrided layer of about 500 micrometers with a nitriding treatment of about 540 ° C is required - 60 hours maintaining this temperature for the classical treatment after relieving the stresses and - only 42 hours stay at this temperature for the treatment according to the invention.

30 Fremgangsmåden til ionisk nitridering ifølge opfindelsen repræsenterer således et meget bemærkelsesværdigt fremskridt.The ionic nitriding process of the invention thus represents a very remarkable advance.

Dette fremskridt er ligeså markant, hvis man regulerer den reaktive atmosfære på en sådan måde, at der i overfladen af det nitriderede emne kun opnås et nitrogendiffusionslag uden kombinationslag. Dette resultat 35 kan opnås ved at regulere de to sekvenser af den ioniske nitridering på følgende måde: - En første sekvens af en varighed mellem 6 og 10 timer alt efter arten af stålet, som skal behandles, udført ved en temperatur ti mellemThis progress is equally significant if the reactive atmosphere is regulated in such a way that only a nitrogen diffusion layer without a combination layer is obtained in the surface of the nitrided substance. This result 35 can be obtained by controlling the two sequences of the ionic nitriding as follows: - A first sequence of a duration between 6 and 10 hours, depending on the nature of the steel to be treated, carried out at a temperature ten between

Claims (3)

1. Fremgangsmåde til ionisk nitridering af emner af stål af alle typer KENDETEGNET ved følgende fire på' hinanden følgende trin: (a) en forudgående kolddeformation af emnet til en slutdeforma-tionsgrad på mellem 10 og 40%, (b) en første ionisk nitrideringssekvens af en varighed mellem 6 15 og 10 timer udført ved en temperatur ti mellem 500 og 520®C i en gasblanding bestående af nitrogen og hydrogen, hvor nitrogenpartialtrykket pi er mellem 10 og 35 Pascal, og det totale gastryk er mellem 200 og 650 Pascal, (c) en anden ionisk nitrideringssekvens af en varighed mellem 40 20 og 70 timer udført ved en temperatur t2 mellem 500 og 580°C og mindst 10"C og højst 50®C højere end ti, hvilken anden sekvens udføres i en gasblanding bestående af nitrogen og hydrogen, hvor nitrogenpartialtrykket p2 er mellem 60 og 80 Pascal, og det totale gastryk er mellem 200 og 650 Pascal, og 25 (d) en slutafkøling under vakuum.A method of ionic nitriding of steel parts of all types characterized by the following four successive steps: (a) a prior cold deformation of the workpiece to a final deformation degree of between 10 and 40%, (b) a first ionic nitriding sequence of a duration between 6 15 and 10 hours carried out at a temperature ten between 500 and 520 ° C in a gas mixture of nitrogen and hydrogen, where the nitrogen partial pressure pi is between 10 and 35 Pascal and the total gas pressure is between 200 and 650 Pascal, (c) another ionic nitriding sequence of a duration between 40 and 70 hours carried out at a temperature t 2 between 500 and 580 ° C and at least 10 ° C and not more than 50 ° C higher than ten, which second sequence is carried out in a gas mixture consisting of nitrogen and hydrogen, where the nitrogen partial pressure p 2 is between 60 and 80 Pascal, and the total gas pressure is between 200 and 650 Pascal, and 25 (d) a final cooling under vacuum. 2. Fremgangsmåde til ionisk nitridering ifølge krav 1, KENDETEGNET ved, at den endelige grad af forudgående kolddeformation af emnet, som skal behandles, er af størrelsesordenen 30%.The method of ionic nitriding according to claim 1, characterized in that the final degree of prior cold deformation of the article to be treated is of the order of 30%. 3. Fremgangsmåde til ionisk nitridering ifølge et hvilket som helst af 30 kravene 1 og 2, KENDETEGNET ved, at varigheden af den første sekvens af ionisk nitridering og varigheden af den anden sekvens er desto længere, jo større andelen af legeringselementer i stålet, der skal behandles, er. 35Method for ionic nitriding according to any one of claims 1 and 2, characterized in that the longer the first sequence of ionic nitriding and the duration of the second sequence, the greater the proportion of alloying elements in the steel to be. processed, is. 35
DK228982A 1981-05-21 1982-05-19 PROCEDURE FOR IONIC NITRIDATION OF A STEEL SUBSTANCE THAT BEFORE DEFORMED PLASTIC DK157691C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8110129A FR2506339A1 (en) 1981-05-21 1981-05-21 METHOD FOR THE ION NITRURATION OF A PLASTICALLY PREFORMED DEFORMED STEEL PART
FR8110129 1981-05-21

Publications (3)

Publication Number Publication Date
DK228982A DK228982A (en) 1982-11-22
DK157691B true DK157691B (en) 1990-02-05
DK157691C DK157691C (en) 1990-07-02

Family

ID=9258728

Family Applications (1)

Application Number Title Priority Date Filing Date
DK228982A DK157691C (en) 1981-05-21 1982-05-19 PROCEDURE FOR IONIC NITRIDATION OF A STEEL SUBSTANCE THAT BEFORE DEFORMED PLASTIC

Country Status (9)

Country Link
EP (1) EP0067098B1 (en)
AT (1) ATE16293T1 (en)
DE (1) DE3267120D1 (en)
DK (1) DK157691C (en)
ES (1) ES512331A0 (en)
FR (1) FR2506339A1 (en)
GR (1) GR75839B (en)
PT (1) PT74775B (en)
ZA (1) ZA823472B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8619436D0 (en) * 1986-08-08 1986-09-17 Verdict Ion Technology Ltd Tooling
DE4429943C1 (en) * 1994-08-24 1996-02-22 Dornier Gmbh Lindauer Drop wire surface hardening
DE102006025008B4 (en) 2006-05-30 2022-09-15 Schaeffler Technologies AG & Co. KG Process for hardening running surfaces of roller bearing components
DE102008060161B4 (en) * 2008-12-02 2012-07-19 Benteler Automobiltechnik Gmbh Method for producing a suspension component with increased fatigue strength and chassis component
LU92514B1 (en) * 2014-08-08 2016-02-09 Plasma Metal S A SURFACE TREATMENT PROCESS OF A STAINLESS STEEL PART
CN105695922A (en) * 2014-11-25 2016-06-22 上海新力动力设备研究所 Surface glow ion nitriding method of 30Cr3SiNiMoVA steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR86012E (en) * 1963-12-11 1965-11-26 Berliet Automobiles friction elements particularly resistant to abrasion wear
JPS5458636A (en) * 1977-10-20 1979-05-11 Kawasaki Heavy Ind Ltd Ion nitriding method
JPS5458637A (en) * 1977-10-20 1979-05-11 Kawasaki Heavy Ind Ltd Ion nitriding method
JPS5514839A (en) * 1978-07-14 1980-02-01 Kawasaki Heavy Ind Ltd Treating method for ion nitriding
FR2446326A1 (en) * 1979-01-10 1980-08-08 Creusot Loire IMPROVEMENT IN ION NITRURATION OF ELONGATED HOLLOW BODIES, IN STEEL

Also Published As

Publication number Publication date
DK228982A (en) 1982-11-22
EP0067098B1 (en) 1985-10-30
GR75839B (en) 1984-08-02
ATE16293T1 (en) 1985-11-15
EP0067098A1 (en) 1982-12-15
FR2506339A1 (en) 1982-11-26
ZA823472B (en) 1983-03-30
PT74775A (en) 1982-05-01
ES8304613A1 (en) 1983-03-01
PT74775B (en) 1983-11-08
FR2506339B1 (en) 1983-12-23
DK157691C (en) 1990-07-02
ES512331A0 (en) 1983-03-01
DE3267120D1 (en) 1985-12-05

Similar Documents

Publication Publication Date Title
GB1564771A (en) Method for fatique properties of titanium alloy articles
NO163117B (en) INTEGRATED WEAPON MANAGEMENT SYSTEM.
CN111139345A (en) Heat treatment method of steel
EP3299487A1 (en) Method for surface hardening a cold deformed article comprising low temperature annealing
US5372655A (en) Method for the treatment of alloy steels and refractory metals
DK157691B (en) PROCEDURE FOR IONIC NITRIDATION OF A STEEL SUBSTANCE THAT BEFORE DEFORMED PLASTIC
Matthew Jr Heat treating titanium and its alloys
KR20150138870A (en) Method for high temperature gas nitriding of titanium alloy
JP2943626B2 (en) Surface hardening method for titanium material
CA1310890C (en) Method for the production of seamless titanium alloy tubing and the like
JPH0371508B2 (en)
JPH059703A (en) Surface hardening treatment of titanium material
CN85107162A (en) Controlled deep ion-nitridation method
JPS6143429B2 (en)
US1978265A (en) Process for the heat treatment of steel
US2875112A (en) Process for improving the physical properties of chromized articles
JPS6137335B2 (en)
EP0090115B1 (en) Cold worked ferritic alloys and components
JPH0154427B2 (en)
NO116608B (en)
US3265541A (en) Elimination of enamel fishscaling in iron and steel sheets
JPS629664B2 (en)
JP3064562B2 (en) Crevice corrosion resistant surface-modified Ti or Ti-based alloy member
Ramazanov et al. Structural Phase Transformations in Titanium Alloy Ti-6Al-4V at Low-Temperature Ion Nitriding
SU819192A1 (en) Method of strengthening austenite dispersion-hardened steels