DK156910B - WIND ENGINE - Google Patents

WIND ENGINE Download PDF

Info

Publication number
DK156910B
DK156910B DK413784A DK413784A DK156910B DK 156910 B DK156910 B DK 156910B DK 413784 A DK413784 A DK 413784A DK 413784 A DK413784 A DK 413784A DK 156910 B DK156910 B DK 156910B
Authority
DK
Denmark
Prior art keywords
rotor
force
blades
blade
speed
Prior art date
Application number
DK413784A
Other languages
Danish (da)
Other versions
DK413784D0 (en
DK156910C (en
DK413784A (en
Inventor
Jean Carre
Original Assignee
Grp Interet Econom Aerogenerat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/FR1983/000268 external-priority patent/WO1984002752A1/en
Application filed by Grp Interet Econom Aerogenerat filed Critical Grp Interet Econom Aerogenerat
Publication of DK413784D0 publication Critical patent/DK413784D0/en
Publication of DK413784A publication Critical patent/DK413784A/en
Publication of DK156910B publication Critical patent/DK156910B/en
Application granted granted Critical
Publication of DK156910C publication Critical patent/DK156910C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/77Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism driven or triggered by centrifugal forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

DK 156910 BDK 156910 B

XX

Opfindelsen angâr en vindmotor med en rotor med vinger med variabel stigning og med regulering af omltfbshastigheden ved drejning eller kantstilling af vingerne til ligevægts-tilstand mellem en af rotorens hastighed afhængig kraft og 5 en med denne modvirkende fjederkraft.BACKGROUND OF THE INVENTION The present invention relates to a wind motor having a variable pitch rotor and to adjusting the rotational speed by rotating or edge-setting the blades to equilibrium between a force dependent on the rotor speed and one with this counteracting spring force.

I en vindmotor af denne type ligger drejeaksen for hver vinge med variabel stigning i denne forreste del af vingeprofilet ved ligevægtspunktet for den tværgâende aero-dynamiske opdrift, dvs. omtrent i den forreste fjederdel af 10 den anvendte type profiler, der betegnes soin profiler, der har en god stabilitet af dette ligevægtspunkt. Tværsnittet eller den ydre konturlinie af vingeprofilet er meget storre bagved dette aeronynamiske ligevægtspunkt i retning mod den bageste kant end fremad fra ligevægtspunktet i retning mod 15 den forreste kant. Vingens bageste masse er derfor meget stdrre end den forreste masse.In a wind engine of this type, the axis of rotation of each blade with variable pitch in this forward part of the blade profile lies at the equilibrium point of the transverse aero-dynamic buoyancy, ie. approximately in the front spring portion of 10 the type of profiles used, referred to as soin profiles, which have a good stability of this equilibrium point. The cross section or outer contour line of the wing profile is much larger behind this aeronynamic equilibrium point towards the trailing edge than forward from the equilibrium point towards the leading edge. The rear mass of the wing is therefore much larger than the front mass.

For at en sâdan rotor skal kunne fungere mâ korden i profilet af hver vinge danne en skruestigningsvinkel i for-hold til dens rotationsplan. De bageste og forreste masser 2 0 af vingeprofilet flugter derfor ikke i rotorens rotationsplan gennem omdrejningsaksen for vingen selv, men de ligger hen-holdsvis bagved og foran dette plan. Idet disse bageste og forreste masser er ulige store, og den bageste masse er den dominerende, bevirker dette at den bageste masse er ude af 25 balance eller urolig i forhold til vingens forreste masse uanset rotorens omdrejningshastighed.In order for such a rotor to work, the cord in the profile of each blade must form a screw pitch angle relative to its rotation plane. Therefore, the rear and anterior masses 20 of the blade profile do not align in the rotary plane of the rotor through the axis of rotation of the blade itself, but they lie respectively behind and in front of this plane. Since these posterior and anterior masses are unequally large and the posterior mass is the dominant one, this causes the posterior mass to be out of balance or uneasy relative to the anterior mass of the blade regardless of the rotor speed.

I tilfælde af at rotoren af en eller anden grund taber fart f.eks. ved fald i vindstyrken, hvirveldannelser, forsinkelser ved regulering af omstyringen af profilets 30 angrebsvinkel, udnyttelse af maskinens kraft osv. vil en sâdan nedsættelse af hastigheden skabe en forstyrrende eller parasitisk kraft resulterende fra vingens ubalancerede masses kinetiske energi. Denne forstyrrende kraft soger sà at dre je vingen til en kantstilling med aile deraf falgende konse-35 kvenser.In the event that for some reason the rotor loses speed e.g. in the event of a decrease in wind force, vortex formation, delays in regulating the reversal of the angle of attack of the profile 30, utilization of the power of the machine, etc., such a decrease in speed will create a disturbing or parasitic force resulting from the kinetic energy of the wing unbalanced mass. This interfering force seeks to turn the blade to an edge position with all the consequent consequences.

DK 156910 BDK 156910 B

22

Isaer i kraftig vind, hvor réguleringen leder pâforing af denne kraft bort, og specielt hvis maskinen er ubelastet, vil den forstyrrende kraft fra den kinetiske energi fra den ubalancerede bageste masse af vingen ved aftagende vindstyrke 5 eller forsinket réguléring, sâ rotoren taber fart, bevirke at vingen drejer om sin akse og fremkalder en omsætning af opdriften, der omdanner den hidtil modtagende vinge til en energiabsorberende, trykfrembringende vinge. Absorptionen medforer pâ sin side en stadig tiltagende retardering af 10 rotoren med forstærkning af fænomenet indtil aggregatets kinetiske energi forsvinder. Nâr denne fase er overstâet returnerer vingerne til deres stilling mod vinden, rotoren starter igen og fænomenet kan sâ gentage sig.Particularly in strong winds where the regulation directs the application of this force away, and especially if the machine is unloaded, the disruptive force of the kinetic energy from the unbalanced rear mass of the blade at decreasing wind speed 5 or delayed regulation, causing the rotor to lose speed, that the blade rotates about its axis and induces a turnover of the buoyancy which transforms the hitherto receiving wing into an energy-absorbing, pressure-generating wing. The absorption, in turn, causes an ever-increasing deceleration of the rotor with amplification of the phenomenon until the kinetic energy of the aggregate disappears. When this phase is over, the blades return to their position against the wind, the rotor starts again and the phenomenon can then repeat.

En sâdan hurtig og pludselig ændring af situationen, 15 hvor vingerne skiftevis er modtagende og trykfrembringende har den ulempe, at motoren ikke er særlig produktiv, og at den desuden hurtigt kan blive odelagt. Det bemærkes at be-lastning af motoren medforer samme retardationsvirkning og folgelig samme drejningspâvirkning af vingen og dermed en 20 midlertidig forsvinden af angrebsvinklen og tab af effekt, samt risiko for at der optræder instabilitet. Pâ grund af absorptionen af rotorens kinetiske energi udefra ved et kraftforbrug er denne virkning imidlertid i dette tilfælde mere begrænset, og risikoen for at vingerne kommer til at 25 virke trykfrembringende er mindre.Such a rapid and sudden change of situation, 15 in which the blades are alternately receiving and pressure generating, has the disadvantage that the motor is not very productive and that it can also be quickly destroyed. It is noted that loading of the motor causes the same deceleration effect and, consequently, the same rotational effect of the blade and thus a temporary disappearance of the angle of attack and loss of power, as well as the risk of instability. However, due to the absorption of the external kinetic energy of the rotor by a power consumption, this effect is more limited in this case and the risk of the blades becoming pressure-producing is less.

Der kendes allerede vindmotorer med en regulerings-anordning for vingerne. Den i WO-patentskrift nr. 83/00195 beskrevne vindmotor er af typen med blokerende regulering, eller den har med andre ord en fast kobling mellem vingerne 30 og drivanordningen til styring af vingernes stigning, der virker pâ irreversibel mâde. Denne vindmotor har en omdrej-ningsfoler, der igangsætter en motor, der træder i funktion til justering af vingernes indgangsvinkel. Omdrejningsfoleren udover en reguleringskraft, der er resultanten af de modsatte 35 virkninger af en kraft, som afhænger af omdrejningshastig-heden og den fjedrende tilbageforingskraft. En sâdan vind- 3Wind motors with a control device for the blades are already known. The wind engine described in WO patent 83/00195 is of the type of blocking regulation, or in other words it has a fixed coupling between the blades 30 and the drive for controlling the pitch of the blades which act in an irreversible manner. This wind motor has a rotary foil which initiates a motor that operates to adjust the blade angle of entry. The rotation sensor, in addition to a control force, is the result of the opposite effects of a force which depends on the speed of rotation and the resilient return force. And such a wind 3

DK 156910 BDK 156910 B

motor har den ulempe, at den fungerer langsomt, og at denne type apparater derfor udsættes for betydelige overtryk og undertryk ved hurtige ændringer af vindhastigheden.motor has the disadvantage that it operates slowly and that this type of apparatus is therefore subjected to considerable overpressure and under pressure due to rapid changes in wind speed.

NL-patentskrift nr. 57 405 beskriver en vindmotor 5 med en forbindelse til indstilling af vingernes stigning, som er eftergivelige og eventuelt i stand til at dæmpe nogle svingninger i vindstyrken, men ikke kan modvirke virkningen af den perturberende masse.NL Patent No. 57,405 discloses a wind engine 5 having a connection for adjusting the pitch of the blades which is resilient and possibly capable of attenuating some fluctuations in the wind force, but cannot counteract the effect of the perturbing mass.

US-patentskrift nr. 3 352 628 beskriver en vindmotor 10 med vinger med variabel stigning, som i modsætning til kant-stilling regulerer ved aerodynamisk frakobling ved at an-bringe vingeprofilets effektive korde i skruerotationsplanet. Herved kan den ikke afbalancerede masse ikke blive perturberende. Denne teknik har den ulempe, at den ved reguleringen 15 ikke medforer en regelmæssig og stabil formindskelse af vindens tryk pâ maskinen, idet overfladerne forbliver helt udsat for vindens tryk.U.S. Patent No. 3,352,628 discloses a variable pitch wind engine 10 which, in contrast to the edge position, regulates by aerodynamic disconnection by placing the effective chord of the blade profile in the screw rotation plane. In this way, the unbalanced mass cannot become perturbing. This technique has the disadvantage that it does not result in a regular and stable reduction in the pressure of the wind on the machine by the regulation 15, since the surfaces remain completely exposed to the pressure of the wind.

I visse flyvemaskinekonstruktioner er vægte eller andre kunstgreb anvendt pà vingernes balanceklapper, sâledes 20 som det f.eks. er beskrevet i en artikel; "Eerst weten.... dan zweven (Théorie voor het zweefoliegbewys)", 5' tryk 1977, Kon. Drukkery Brose Pereboom bu Breda, side 189. De deri beskrevne kontravægte opfylder ikke funktionen med dynamisk afbalancering af et profils orientering, idet vin-25 gerne i de beskrevne eksempler er faste. Vægtenes rolle er simpelthen at forbedre afbalanceringen for at lette pilotens indgriben.In certain airplane designs, weights or other handles are applied to the balance flaps of the wings, such as 20, e.g. is described in an article; "First Know .... Then Float (Theory for the Sulfur Oil Proof)", 5 'Try 1977, Kon. Drukkery Brose Pereboom bu Breda, page 189. The counterweights described therein do not fulfill the function of dynamically balancing a profile orientation, since the winches in the examples described are fixed. The role of weights is simply to improve balancing to facilitate pilot intervention.

Det er formâlet med opfindelsen at overvinde de foran anforte ulemper ved at forsyne de omhandlede vindmotorer 30 med særlig simple organer til at hindre vingens tendens til at kantstille sig, nâr rotorens omdrejningshastighed for-mindskes.It is an object of the invention to overcome the foregoing disadvantages of providing said wind motors 30 with particularly simple means for preventing the tendency of the blade to edge when the rotor speed of rotation is reduced.

Det er endvidere formâlet opfindelsen at opnâ en bedre udnyttelse af vinden, nâr hastigheden er mindre end 35 den nominelle hastighed, hvortil vindmotoren er konstrueret, samt at opnâ en nojagtig styring af rotorens omdrejnings-It is further the object of the invention to obtain a better utilization of the wind when the speed is less than the nominal speed at which the wind motor is designed, and to obtain accurate control of the rotor's rotational speed.

DK 156910 BDK 156910 B

4 hastighed og dermed af perioden for den vekselstrom, som kan produceres af vindmotoren, og en nbjagtig styring og begrænsning af motorens udgangseffekt.4 speed and thus of the period of the alternating current that can be produced by the wind motor, and a close control and limitation of the output power of the motor.

Dette er if0lge opfindelsen opnâet med en vindmotor 5 med en rotor med vinger med variabel stigning op til kant-stilling ved drejning om deres respektive akser, idet de er dynamisk uafbalancerede og derfor har en ubalanceret eller pertuberende bageste masse, og med en fjedrende regulerings-anordning, der til mekanisk afbalancering af vingernes stil-10 ling er indrettet til at pàvirke hver vinge med en regule-ringskraft, som er resultanten af de modsat rettede pâvirk-ninger fra hhv. en af rotationshastigheden afhængig kraft og en fjedrende tilbageforingskraft, hvilken reguleringskraft sikrer, at vingen holdes i den 0nskede vinkelstilling om 15 sin akse, nâr rotoren roterer med sin nominelle hastighed, hvilken vindmotor ifdlge opfindelsen er ejendommelig ved, at den har kompensationsorganer, der er folsomme overfor décélération af rotoren og er indrettede til ved synkende omdrejningshastighed af rotoren automatisk og 0j eblikkeligt 20 pâ hver vinge at udove en kraft, som afviger fra de afbalan-cerede kræfter, der sikrer reguleringen, og som i hovedsagen er lig med og modsat rettet den pertuberende kraft, der er frembragt af den kinetiske energi af vingens bageste eller uafbalancerede masse, sâledes at vingen 0jeblikkeligt fra 25 decelerationens begyndelse bibeholder den vinkelstilling, den da indtager.According to the invention, this is achieved with a wind motor 5 having a rotor with variable pitch vanes up to the edge position by rotating about their respective axes, being dynamically unbalanced and therefore having an unbalanced or perturbing rear mass, and with a resilient control. means adapted for mechanically balancing the position of the blades to actuate each blade with a regulating force which is the result of the opposite effects from respectively. a rotational speed dependent and a resilient feedback force, which control force ensures that the blade is held in the desired angular position about its axis when the rotor rotates at its nominal speed, which wind engine according to the invention is characterized by having compensating means which are sensitive against deceleration of the rotor and is adapted to exert automatically at 0 and at least 20 on each vane at a decreasing speed on each blade a force which deviates from the balanced forces which ensure the regulation, which is substantially equal to and opposite to it. perturbing force produced by the kinetic energy of the rear or unbalanced mass of the blade such that the blade retains its angular position immediately from the beginning of the deceleration.

I en ferste udfbrelsesform for opfindelsen kan kom-pensationsorganerne for hver vinge indbefatte en masse, der er anbragt pâ forsiden af vingeprofilet modsat den pertube-30 rende masse og kun er bâret af vingen- Disse masser, som bæres af vingerne, foroger i praksis disses masse og udmat-ningen pâ grund af centrifugalpâvirkninger, sâledes at disse organer kun sjældent kan anvendes.In a first embodiment of the invention, the compensation means for each blade may include a mass disposed on the face of the blade profile opposite the perturbing mass and supported only by the wing. mass and fatigue due to centrifugal effects, so that these organs are rarely used.

I en anden udf0relsesform for opfindelsen udgores 35 kompensationsorganerne af en eller flere masser, der er uafhængige af vingerne og modvirker disses forstyrrende 5In another embodiment of the invention, the compensating means are constituted by one or more masses which are independent of the wings and counteract their disturbance.

DK 156910 BDK 156910 B

bageste masse, idet disse uafhængige masser tâler deres egne centrifugalpâvirkninger eller overforer dem til elemen-ter pâ rotorer, som er mindre udsatte for udmattelse. Kom-pensationsorganerne kan ifolge opfindelsen hensigtsmæssigt 5 udgores af en ring, der danner et inerti-svinghjul med en diameter, der optager mest mulig af den disponible plads.posterior mass, as these independent masses can withstand their own centrifugal effects or transfer them to elements on rotors which are less susceptible to fatigue. According to the invention, the compensating means may conveniently be formed by a ring forming an inertia flywheel of a diameter which occupies as much of the space as possible.

I tilfælde hvor vingerne afbalanceres eller deres rotationshastighed styres hydraulisk eller pneumatisk, kan kompensationsorganerne udgores af en intertimasse, som pâ 10 passende mâde regulerer fluidumstremningerne i de hydrauliske eller pneumatiske apparater.In cases where the blades are balanced or their rotational speed is controlled hydraulically or pneumatically, the compensating means may be constituted by an intertim mass which appropriately controls the fluid stresses in the hydraulic or pneumatic apparatus.

Forbindelsen mellem vingerne og de hydrauliske eller pneumatiske apparater er sâledes, at hastighedsnedsættelse af den kompenserende inertimasse fremkalder en kraft i modsat 15 retning af den forstyrrende kraft, som skyldes den kinetiske energi fra hver vinges bagmasse, sâledes at der kompenseres pâ denne bageste masse.The connection between the blades and the hydraulic or pneumatic apparatus is such that the speed reduction of the compensating inertia produces a force in the opposite direction of the disruptive force due to the kinetic energy of the rear mass of each blade to compensate for this rear mass.

Vindmotoren ifelge opfindelsen frembyder flere andre fordele.The wind engine according to the invention offers several other advantages.

20 Da masserne og kræfterne er indrettede efter den sterste forekommende vindhastighed, dvs. nâr vingerne er meget drejede eller kantstillede (retracted) og den per-tuberende masse (vingens ubalancerede masse) ligger meget langt fra rotationsplanet gennem vingens drejeakse, vil der 25 være overskud af kompenserende kraft, nâr vinden og dermed vingernes stigning aftager, og den forstyrrende kraft nærmer sig dette plan. Dette er en vigtig fordel, idet overskuddet af kompensationskraft pâ vingerne ved hastighedsnedsættelse pâ grund af brug af maskinen, dvs. belastning, giver vingerne 30 den for aerodynamisk belastning nodvendige angrebsvinkel, og den nodvendige opdrift pâ hvert blad skal være stadigt storre som folge af formindskelsen af den resulterende driv-effekt, da vingeprofilets korde har tendens til at falde sammen med rotationsplanet. Det er derfor ved hjælp af disse 35 organer muligt at foroge maskinens kapacitet, samtidig med at instabilitet undgâs. Idet de samme organer virker omvendt, 620 Since the masses and forces are arranged according to the highest occurring wind speed, ie. When the blades are very twisted or retracted and the permutating mass (the unbalanced mass of the blade) is very far from the plane of rotation through the axis of rotation of the blade, there will be excess of compensating force as the wind and thus the pitch of the blades decrease, and the disturbance decreases. force is approaching this plan. This is an important advantage, as the excess of compensating force on the wings by speed reduction due to the use of the machine, ie. load, the blades 30 provide the angle of attack required for aerodynamic loading, and the required buoyancy on each blade must be ever greater as a result of the diminution of the resultant drive power, as the chord of the blade profile tends to coincide with the plane of rotation. It is therefore possible to increase the capacity of the machine with the aid of these 35 organs while avoiding instability. Since the same organs act in reverse, 6

DK 156910 BDK 156910 B

tjener de desuden til at stabilisere og begrænse accéléra-tionskræfter under rotation ved voksende vindhastighed og til at moderere gangen og reguleringen af maskinen.they additionally serve to stabilize and limit acceleration forces during rotation at increasing wind speeds and to moderate the gait and regulation of the machine.

I en kendt vindmotor af den omhandlede art indbefatter 5 rotoren ogsà en reguleringsmekanisme med en koaksial regu-leringsplade, der med et vist spillerum kan bevæge sig i en vinkel i forhold til rotoren, samt transmissionsorganer til at overf0re drejebevægelsen af vingerne om deres akser til reguleringspladen, samt fjedrende tilbagefdringsorganer 10 anbragt mellem rotorstellet og reguleringspladen for at holde vingerne i den 0nskede vinkelstilling om deres respek-tive akser, nâr rotoren roterer med s in nominelle hastighed, og forbindelsen mellem vingerne og pladen er sâdan, at af-tagende hastighed af pladen i forhold til rotoren frembringer 15 en voksende stigning af vingerne, der gâr sâ vidt som til kantstilling, og omvendt sâledes at accélération af plader medf0rer aftagende stigningsvinkel af vingerne.In a known wind engine of the present invention, the rotor also includes a control mechanism with a coaxial control plate capable of moving at a certain angle with respect to the rotor, as well as transmission means for transferring the rotational movement of the blades about their axes to the control plate. , and resilient spring means 10 disposed between the rotor frame and the control plate to hold the blades at the desired angular position about their respective axes as the rotor rotates at a nominal speed and the connection between the blades and the plate is such that the declining velocity of the plate relative to the rotor, 15 produces a growing pitch of the wings, which goes as far as the edge position, and vice versa so that the acceleration of plates results in a decreasing pitch of the wings.

I det folgende beskrives opfindelsen nærmere i for-bindelse med tegningen, hvor 20 fig. 1 skematisk og i perspektiv viser en vindmotor ifolge opfindelsen med organer til at kompensere for for-styrrende kræfter, som skyldes kinetisk energi fra en vinges uafbalancerede bageste masse, fig. 2 et diagram, som viser kompensationsorganernes 25 virkning, fig. 3 et aksialt delsnit i vindmotoren med kompen-sationsorganerne i fig. l, fig. 4 et skematisk billede af en anden udf0relses- form, 30 fig. 5 et perspektivisk, skematisk billede af et apparat til afbalancering af centrifugalkraften pâ vingerne ved omtrent nominel hastighed, fig. 6A, 6B og 6C diagrammer, der viser virkningen af returfjedre i afbalanceringsapparatet og af det elastiske 35 stop ved nominel hastighed og en hastighed tæt herved, fig. 7, 8 og 9 i storre mâlestok snitbilleder i et 7The invention will now be described in more detail with reference to the drawing, in which: FIG. 1 is a diagrammatic and perspective view of a wind engine according to the invention with means to compensate for interfering forces caused by kinetic energy from the unbalanced rear mass of a blade; FIG. 2 is a diagram showing the effect of the compensating means 25; 3 is an axial sectional view of the wind engine with the compensation means of FIG. 1, FIG. 4 is a schematic view of another embodiment; FIG. 5 is a perspective schematic view of an apparatus for balancing the centrifugal force on the wings at approximately nominal speed; FIG. 6A, 6B and 6C are diagrams showing the effect of return springs in the balancing apparatus and of the resilient stop at nominal speed and a speed close thereto; 7, 8 and 9 in larger scale sectional images in a 7

DK 156910 BDK 156910 B

fjedrende tilbageforingsorgan, soin samvirker med et fjedrende stop i stillinger svarende til henholdsvis nominel hastighed, liât mindre hastighed og lidt stdrre hastighed, og fig. 10 et apparat til regulering af omdrejnings-5 hastigheden og aerogeneratorens udgangseffekt.resilient feedback means, cooperate with a resilient stop in positions corresponding to nominal speed, lower speed and slightly higher speed, respectively; 10 is an apparatus for controlling the speed of rotation and the output power of the aerogenerator.

I fig. 1 er skematisk vist et stel 1 for en rotor, der er fast forbundet med et centrait nav 2, og pâ hvilken der er monteret et antal vinger 3. En detaljeret beskrivelse af en sâdan aerogenerator er givet i FR-PS nr. 2 291 378.In FIG. 1 is a schematic representation of a frame 1 for a rotor which is fixedly connected to a center hub 2 and on which a number of blades 3 are mounted. A detailed description of such an aerator is given in FR-PS No. 2 291 378 .

10 Rotorens vinger 3 er regelmæssigt fordelt om aksen x-x' i navet 2, og hver af vingerne 3 er drejelige om en akse 4, der fortrinsvis hælder fremad i forhold til rotorens omdrej-ningsakse x-x'. Hver vinges 3 akse 4 er forskudt hen mod den forreste kant af vingen og ligger i hovedsagen i den 15 forste fjerdedel af vingen, sâledes at den forreste masse af vingen mellem den forreste kant og aksen 4 er mindre end den bageste masse, som ligger pâ den anden side af aksen 4.The blades 3 of the rotor are regularly distributed about the axis x-x 'of the hub 2, and each of the blades 3 is rotatable about an axis 4, which is preferably inclined forwardly relative to the axis of rotation of the rotor x-x'. The axis 4 of each blade 3 is offset toward the leading edge of the blade and is substantially located in the first quarter of the wing, such that the leading mass of the blade between the leading edge and the axis 4 is smaller than the posterior mass lying on the the other side of the axis 4.

Under rotorens omdrejning er hver vinge 3 derfor udsat for en centrifugalkraft fQ, nâr rotoren roterer med en hastighed 20 V0. Denne kraft skyldes den kinetiske energi af den del af vingens 3 bageste masse, som ikke er afbalanceret af den forreste del. Denne ubalancerede eller pertuberende bageste masse M er antydet med skraveringer i fig. 1 og 2.Therefore, during rotation of the rotor, each blade 3 is subjected to a centrifugal force fQ as the rotor rotates at a speed of 20 V0. This force is due to the kinetic energy of the part of the rear mass of the wing 3 which is not balanced by the front part. This unbalanced or perturbing posterior mass M is indicated by shading in FIG. 1 and 2.

Vindmotorens rotor er forsynet med et regulerings-25 apparat, der sikrer en dynamisk afbalancering af vingerne 3, og som f.eks. for hver vinge 3 indbefatter et fjedrende tilbagef0ringsorgan 5, hvis ene ende er forbundet med rotorens stel 1, og hvis anden ende er hægtet til en cirkulær tvær-reguleringsplade 6, der er monteret sâ den roterer 30 sammen med rotornavet 2, og som bærer en tandring 7, som er centreret om rotoraksen x-x'. Denne tandring er ved hver vinge 3 i indgreb med et konisk tandhjul 8 med en spindel 9, som ved sin modsatte ende bærer et tandhjul 11, som er i indgreb med endnu et tandhjul 12, der er centreret om vingens 35 3 akse 4 og er fast forbundet med vingen. Nâr rotoren roterer med hastigheden V0, vil vingen derfor pâ grund af sin dyna- 8The rotor of the wind motor is provided with a regulating apparatus which ensures a dynamic balancing of the blades 3, and as e.g. for each blade 3 includes a resilient return member 5, one end of which is connected to the frame 1 of the rotor and the other end of which is connected to a circular cross-regulating plate 6 which is mounted to rotate 30 together with the rotor hub 2 and which carries a gear ring 7, centered on the rotor axis x-x '. This gear ring is engaged at each wing 3 by a tapered sprocket 8 with a spindle 9 which carries at its opposite end a gear 11 which engages another sprocket 12 centered on the axis 4 of the blade 35 and is firmly connected to the wing. Therefore, when the rotor rotates at the speed V0, the blade will due to its die 8

DK 156910 BDK 156910 B

miske ubalance spge at dreje tandringen 7 og régulerings-pladen 6 i urviserens retning i fig. 1, dvs. modsat omdrej-ningsretningen af rotoren, under pâvirkning af centrifugal-kraften fD, og det f jedrende tilbagefpringsorgan 5 udover pâ 5 reguleringspladen 6 et tryk, som overfpres til vingen 3 og frembringer en kraft F modsat rettet centrifugalkraften fD, som det er vist i fig. 2. Hver vinge 3 holdes derfor skrât-stillet i en vinkel a i forhold til det tværstillede rota-tionsplan P gennem vingens 3 drejeakse 4, hvilken vinkel er 10 ligevægtstillingen ved nominel rotationshastighed. Apparatet danner sâledes et centrifugalreguleringssystem.mimic imbalance spinning the tooth ring 7 and the regulating plate 6 clockwise in FIG. 1, i.e. opposite to the direction of rotation of the rotor, under the influence of centrifugal force fD, and the resilient springing member 5 in addition to the control plate 6, a pressure which is applied to the blade 3 and produces a force F opposite to the centrifugal force fD as shown in FIG. . 2. Each vane 3 is therefore inclined at an angle α with respect to the transverse rotation plane P through the pivot axis 4 of the vane 3, which angle is the equilibrium position at nominal rotational speed. The apparatus thus forms a centrifugal control system.

Ved nedsættelse af propellens rotationshastighed f.eks. pâ grund af fald i vindstyrken vil den kinetiske energi af den ubalancerede, bageste masse M bevirke at der 15 optræder en forstyrrende kraft fp, som spger at dre je vingen 3 mod kantstillings-stillingen, dvs. at bringe den til at ligge i det plan, som indeholder rotationsaksen x-x' og drejeaksen 4.By decreasing the rotational speed of the propeller e.g. due to decrease in wind force, the kinetic energy of the unbalanced posterior mass M causes a disturbing force fp to occur, which turns the blade 3 towards the edge position, ie. causing it to lie in the plane containing the axis of rotation x-x 'and the axis of rotation 4.

For at kompensere for denne forstyrrende kraft fp, 20 har vindmotoren ifpige opfindelsen organer, der kan til-vejebringe en kompensationskraft fc, som virker imod den forstyrrende kraft fp.In order to compensate for this disturbing force fp, the wind engine of the invention has means capable of providing a compensating force fc which acts against the disturbing force fp.

I fig. 1 og 3 er kompensationskraften fc tilvejebragt ved hjælp af en ring 13, som er fastgjort til régulerings-25 pladen 6 og danner et svinghjul. Ringen 13 har fortrinsvis stprst mulig diameter, som kan opnâs inden for rotorstellet 1, for herved at begrænse massen af ringen uden at indfpre aerodynamiske forstyrrelser.In FIG. 1 and 3, the compensating force fc is provided by a ring 13 which is attached to the regulating plate 6 and forms a flywheel. The ring 13 preferably has the highest possible diameter which can be obtained within the rotor frame 1, thereby limiting the mass of the ring without introducing aerodynamic disturbances.

Nâr hastigheden af rotoren synker vil ringen 13, der 3 0 danner svinghjul, soge yderligere at dreje reguleringspladen 6 i omdrejningsretningen, og denne rotation overfpres af et drejningsmoment, som virker pâ vingen 3 og forârsager frem-komsten af kompensationskraften fc. Denne kompensationskraft fc overvejer derfor den forstyrrende kraft fp, sâledes at 35 vingen 3 bevarer sin optimale angrebsvinkel i.As the speed of the rotor decreases, the ring 13, which forms the flywheel, will further rotate the control plate 6 in the direction of rotation, and this rotation is overpowered by a torque acting on the blade 3, causing the appearance of the compensating force fc. This compensating force fc therefore considers the interfering force fp such that the blade 3 retains its optimum angle of attack i.

99

DK 156910 BDK 156910 B

Der kan findes andre organer til at fremkalde kom-pensationskraften fc, nâr rotorhastigheden synker.Other means may be found to induce the compensation force fc as the rotor speed decreases.

Sâdanne organer kan f.eks. udgores af en kompensa-tionsmasse m anbragt pâ forsiden af hver vinges 3 profil 5 modsat den pertuberende forstyrrende bageste masse M. Denne masse m er antydet med stiplede linier i fig. 1 og 2.Such organs may e.g. is made up of a compensating mass m placed on the front of profile 3 of each wing opposite the perturbing disturbing rear mass M. This mass m is indicated by dotted lines in FIG. 1 and 2.

En anden udf0relsesform er skematisk vist i fig. 4.Another embodiment is schematically shown in FIG. 4th

I dette tilfælde bestâr de fjedrende tilbageforingsorganer for vingerne 3 af hydrauliske eller pneumatiske donkrafte 10 14, som er monteret mellem rotorstellet 1 og regulerings- pladen 6. Hver donkraft 14 er forbundet med et trykfluidum-forrâd 15 over et tryk- eller stromningshastighedsregulerende organ 16, som selv styres fra et apparat, der indbefatter en inertimasse 17.In this case, the resilient return means for the blades 3 consist of hydraulic or pneumatic jacks 10 14 mounted between the rotor frame 1 and the control plate 6. Each jack 14 is connected to a pressurized fluid supply 15 over a pressure or flow rate regulating means 16. which is itself controlled from an apparatus including an inertial mass 17.

15 Nâr rotorens hastighed synker, pâvirker apparatet med inertimassen 17 organet 16, sâledes at der tilfores ekstra fluidum til donkraften 14 og reguleringspladen 6 drejes i den retning, som bevirker at kompensationskraften fc opstâr.As the speed of the rotor decreases, the apparatus with the inertia mass 17 acts on the member 16 so that additional fluid is supplied to the jack 14 and the control plate 6 is rotated in the direction causing the compensating force fc to arise.

20 I udfdrelsesformerne i fig. 5 til 9 er et fjedrende stop 18 sâsom en fjeder eller en donkraft anbragt pâ et sted pâ reguleringsapparatet mellem et bevægeligt punkt af dette og et punkt af rotorarmaturet. F.eks. kan det fjedrende stop 18 være bâret af reguleringspladen 6, som det fjedrende 25 tilbagefdringsorgan 5 virker pâ, og som kan være mere eller mindre vinkelforskudt i forhold til rotorens nav 2. Navet 2 er fast forbundet med en radial finger 19, der kan komme i berering med det fjedrende stop 18.20 In the embodiments of FIG. 5 to 9, a resilient stop 18 such as a spring or jack is disposed at a location on the regulator between a movable point thereof and a point of the rotor luminaire. Eg. For example, the resilient stop 18 may be carried by the control plate 6 on which the resilient 25 spring means 5 acts, and which may be more or less angularly displaced relative to the rotor hub 2. The hub 2 is firmly connected to a radial finger 19 which may enter contact with the resilient stop 18.

Det fjedrende stop 18 virker mod det elastiske til-30 bageferingsorgan 5 og har en begrænset slaglængde. Det er herved muligt at tilvejebringe en kontrolleret ændring af vingernes stigning under den nominelle hastighed Vg, med en meget ringe variation af rotorens hastighed.The resilient stop 18 acts against the resilient retraction member 5 and has a limited stroke. Hereby it is possible to provide a controlled change in the pitch of the blades below the nominal speed Vg, with a very slight variation of the rotor speed.

Fig. 6B illustrerer det tilfælde, hvor rotoren roterer 35 med nominel hastighed Vg, og der findes et fjedrende stop 18. Ved den nominelle hastighed Vq indtager reguleringspladenFIG. 6B illustrates the case where the rotor rotates 35 at nominal speed Vg and there is a resilient stop 18. At the nominal speed Vq, the control plate occupies

DK 156910 BDK 156910 B

ίο 6 en sâdan stilling i forhold til navet 2, at det fjedrende stop 18 lige netop er i kontakt med fingeren 19, som er fast forbundet med rotornavet 2, og sâledes at stoppet ikke er sammentrykket og med andre ord ikke udover nogen kraft E 5 pâ reguleringspladen 6 (E=0) . Vingen 3 er derfor altid udsat for den totale tilbagefdringskraft F fra det elastiske til-bagef0ringsorgan 5, og den indtager folgelig samme vinkel a0 med det tværgâende plan P gennem drejeaksen 4 som i tilfældet i fig. 6A, hvor stoppet 12 ikke findes. Denne 10 stilling svarer til den stilling, der er vist i fig. 7.In such a position with respect to the hub 2 that the resilient stop 18 is just in contact with the finger 19, which is firmly connected to the rotor hub 2, and so that the stop is not compressed and in other words no force E 5 on the control plate 6 (E = 0). The blade 3 is therefore always exposed to the total retraction force F from the resilient retractor 5, and it consequently takes the same angle a0 with the transverse plane P through the pivot axis 4 as in the case of FIG. 6A, where the stop 12 is not present. This position corresponds to the position shown in FIG. 7th

Hvis rotorens omdrejningshastighed V faider til en værdi Vlf der er mindre end den nominelle hastighed v0, antager centrifugalkraften, som virker pâ vingen 3, en værdi f! (fig. 6C), der er mindre end dens værdi fQ, nâr rotoren 15 roterer med nominel hastighed V0. Pâ grund af den resul-terende ubalance bringer tilbageferingsorganet 5 vingen til at dre je om sin akse 4, sâ den forskydes i retning af det tværgâende plan P gennem vingens drejeakse 4, sâledes at vingen 3 nu med dette plan danner en vinkel a^, som er mindre 20 end den vinkel aq, der forekommer ved rotation med nominel hastighed V0. I denne ligevægtsstilling fungerer det fjedrende stop 18, idet det nu er sammentrykket af fjederen 19, sâledes som det tydeligt ses i fig. 8. Det fjedrende stop 18 udever sâ en kraft E, som modvirker kraften fra det 25 elastiske tilbageforingsorgan 5, og som er tydeligt mindre end denne kraft.If the rotor speed V decreases to a value Vlf less than the nominal speed v0, the centrifugal force acting on the blade 3 assumes a value f! (Fig. 6C), which is less than its value fQ when the rotor 15 rotates at rated speed V0. Due to the resulting imbalance, the retraction member 5 causes the blade to rotate about its axis 4, so that it is displaced in the direction of the transverse plane P through the axis of rotation of the wing 4, so that with this plane the wing 3 forms an angle α which is less than 20 the angle aq that occurs at rotation at rated speed V0. In this equilibrium position, the resilient stop 18 operates, now being compressed by the spring 19, as clearly seen in FIG. 8. The resilient stop 18 exceeds a force E which counteracts the force of the resilient return member 5 and is clearly less than this force.

Af foranstâende beskrivelse vil det fremgâ, at det fjedrende stop 18 kan tilpasses vingernes 3 stigning til vindhastigheder mindre end den minimale vindhastighed, hvor-30 til vindmotoren er konstrueret. Ved at pâvirke reguleringspladen 6 med et lavt drejningsmoment, bringes den til at influere pâ den oprindelige indstilling af vingernes 3 stigning og dermed pâ rotationshastigheden og perioden af den producerede elektriske strom.From the foregoing description, it will be seen that the resilient stop 18 can be adapted to the pitch of the blades 3 to wind speeds less than the minimum wind speed at which the wind engine 30 is designed. By actuating the control plate 6 with a low torque, it causes it to influence the original setting of the increase of the blades 3 and thus the rotational speed and the period of the electric current produced.

35 I en modificeret udforelsesform kan det fjedrende stop 18 være anbragt pâ rotorens stel 1 i stedet for pâIn a modified embodiment, the resilient stop 18 may be positioned on the rotor frame 1 instead of

DK 156910BDK 156910B

11 reguleringspladen 6. Fig. 9 viser en endestilling af det fjedrende stop 18, i den situation hvor rotoren roterer med en hastighed, der er storre end den nominelle. I dette til-fælde er det fjedrende tilbageforingsorgan 5 presset kraftigt 5 sammen, og det fjedrende stop 18 er adskilt fra fingeren 19, som er i fast forbindelse med rotornavet 2.11 control plate 6. FIG. 9 shows an end position of the resilient stop 18, in the situation where the rotor rotates at a speed greater than the nominal. In this case, the resilient return member 5 is forcefully compressed 5 and the resilient stop 18 is separated from the finger 19 which is firmly connected to the rotor hub 2.

Til styring af omdrejningshastigheden af rotoren i vindmotoren med stor n0jagtighed kan der tilfojes en lineær induktionsmotor 20, som indbefatter en stationær dæmper 21, 10 som virker pâ rotorskiven 22 eller fortrinsvis pâ inerti-ringen 13, der er fast forbundet med reguleringspladen 6, som vist ved stiplede linier i fig. 10. Denne lineære induktionsmotor 20 stromfodes og styres af differenseffekten mellem perioden for vekselstrom A produceret af generatoren 15 23, der drives af rotoren 2, og et periodisk elektrisk re- ferencesignal B. Referencesignalet B kan være frekvenssig-nalet fra det elektriske net eller udgangssignalet fra en kvarts-referenceoscillator 24 eller en oscillator af vilkâr-lig anden type. Mâlesignalet A og referencesignalet B pâfores 20 de to indgange til en frekvenskomparator 25, som afgiver et positivt eller negativt fejlsignal, der overfores til et apparat 26, som styrer elektricitetstilferslen til den lineære induktionsmotor 20.To control the rotational speed of the rotor in the high-precision wind motor, a linear induction motor 20 may be added, including a stationary damper 21, 10 acting on the rotor disc 22 or preferably on the inertia 13 firmly connected to the control plate 6, as shown. in dashed lines in FIG. 10. This linear induction motor 20 is current fed and controlled by the difference power between the period of alternating current A produced by the generator 15 23 driven by the rotor 2 and a periodic electrical reference signal B. The reference signal B may be the frequency signal from the electrical network or the output signal. from a quartz reference oscillator 24 or an oscillator of any other type. The measurement signal A and the reference signal B are applied to the two inputs of a frequency comparator 25 which transmits a positive or negative error signal which is transmitted to an apparatus 26 which controls the electricity supply to the linear induction motor 20.

Hvis rotorens omdrejningshastighed og dermed frekven-25 sen af den elektriske strom er mindre end de nominelle vær-dier, detekterer komparatoren 25 at frekvensen af mâlesignalet A er mindre end frekvensen af referencesignalet B og overforer et negativt fejlsignal til apparatet 26, som sâ stromfoder motoren 20, sâ denne pâ skiven 22 eller inerti-30 ringen 13 udover et drejningsmoment til forogelse af rota-tionshastigheden, eller et positivt drejningsmoment, sâledes at vingernes stigning reduceres. Hvis omvendt rotations-hastigheden og frekvensen har tendens til at overstige de fastsatte nominelle værdier, pâf0rer frekvenskomparatoren 35 25 styreapparatet 26 et positivt fejlsignal, og apparatet 26 f0der motoren 20 til bremsning, sâledes at den pâ skiven 12If the rotor speed of rotation and thus the frequency of the electric current is less than the nominal values, the comparator 25 detects that the frequency of the measuring signal A is less than the frequency of the reference signal B and transmits a negative error signal to the apparatus 26 which then feeds the motor. 20, this on the disc 22 or inertia 13, in addition to a torque to increase the rotational speed, or a positive torque, so as to reduce the pitch of the blades. Conversely, if the rotational speed and frequency tend to exceed the set nominal values, the frequency comparator 35 25 controls 26 a positive error signal and the apparatus 26 feeds the motor 20 for braking, so that on disk 12

DK 156910 BDK 156910 B

22 eller inertiringen 13 frembringer et modvirkende drejningsmoment eller negativt drejningsmoment til nedsættelse af omdrejningshastigheden, og sâledes fordger vingernes 3 stigning.22 or inertia 13 produces a counteracting torque or negative torque to reduce the speed of rotation, thus increasing the increase of the blades 3.

5 Ved at styre stigningen af vingerne sikrer motoren 20 sâledes opretholdelse af rotorhastigheden pâ en konstant værdi og dermed en fast période af den frembragte veksel-strom, hvis der ikke er behov for en storre effekt, end den der kan tilvejebringes af vinden.By controlling the pitch of the blades, the motor 20 thus ensures the maintenance of the rotor speed at a constant value and thus a fixed period of the alternating current produced, if no greater power is needed than that which can be provided by the wind.

10 Apparatet 26 soin styrer tilforslen af elektrisk strom til motoren 20 kan ogsâ være forbundet med en anemometer 27, som g0r det muligt at tage hensyn til vindhastigheden for at undgâ aerodynamisk udfald (stall) af propellen i tilfælde af utilstrækkelig vind. Hvis vindhastigheden derfor 15 faider til en lav værdi, sender anemometeret 27 til apparatet 26 et signal, som sâ modificerer det positive drejningsmoment pâ skiven 22 for at undgâ at propellen gâr i stà. Vindmoto-rens generator kan frembringe elektricitet, sâ snart starten har fundet sted.The apparatus 26 which controls the supply of electric current to the motor 20 may also be connected to an anemometer 27 which allows the wind speed to be taken into account to avoid aerodynamic failure (stall) of the propeller in case of insufficient wind. Therefore, if the wind speed 15 fades to a low value, the anemometer 27 sends to the apparatus 26 a signal which then modifies the positive torque on the disc 22 to prevent the propeller from stalling. The wind turbine generator can generate electricity as soon as it has started.

20 Drejningsmomentet fra den lineære motor 20 bor kun udgore en lille brokdel af regulatordrejningsmomentet, der tilve j ebringes fra vingerne 3, for at det ikke skal kunne neutralisere dette drejningsmoment og heller ikke medfdre risiko for installationen i tilfælde af uregelmæssigheder.20 The torque from the linear motor 20 should constitute only a small fraction of the regulator torque provided from the blades 3 so as not to neutralize this torque nor pose a risk of installation in the event of irregularities.

25 Generelt kræver centrifugalreguleringssystemet for at skulle kunne fungere korrekt, dvs. for at vingernes 3 stigning kan varieres, variation af virkningen af centri-fugalkraften og derfor af rotorens omdrejningshastighed. I det tilfælde hvor vindmotoren er forsynet med en synkron 30 eller asynkron vekselstromsgenerator, der skal kobles direkte til et netværk med fast période, bliver variationen af has-tigheden nul eller utilstrækkelig til at sikre denne regu-lering. Omdrejningshastigheden forbliver konstant, men rotorens ydelse vokser pâ ukontrolleret màde med vindhastigheden, 35 hvorved der er risiko for odelæggelse af bâde de elektriske og mekaniske dele af vindmotoren.In general, the centrifugal control system requires in order to function properly, i.e. in order that the pitch of the blades 3 can be varied, variation of the effect of the centrifugal force and therefore of the rotor speed of rotation. In the case where the wind motor is provided with a synchronous 30 or asynchronous alternator to be connected directly to a fixed-period network, the variation of the speed becomes zero or insufficient to ensure this control. The speed of rotation remains constant, but the performance of the rotor grows in an uncontrolled manner with the wind speed, thereby risking destruction of both the electrical and mechanical parts of the wind engine.

1313

DK 156910 BDK 156910 B

For at overvinde denne ulempe kan der ifolge opfin-delsen findes et ekstra dæmpningsorgan, som er anbragt pâ samme mâde som den lineære induktionsmotor 20, og som udnyt-ter den roterende skive 22 eller inertiringen 13 til frern-5 bringelse af hvirvelstromme i bremseperioden. Dette ekstra dæmpningsorgan fodes som funktion af strOmkarakteri st ikkeme og en maksimal grænseværdi for produktionsstrommens inten-sitet, som bestemmes af et kendt apparat. Dette ekstra dæmpningsorgan begrænser sâledes vindmotorens ydelse og eventuelt 10 dens hastighed og hindrer skader som folge heraf.In order to overcome this disadvantage, according to the invention, an additional damping means may be provided which is arranged in the same manner as the linear induction motor 20 and which utilizes the rotary disc 22 or the inertia 13 for generating eddy current during the braking period. This additional damping means is fed as a function of the current characteristics and a maximum limit value for the intensity of the production current, which is determined by a known apparatus. This additional damping means thus limits the performance of the wind engine and, optionally, its speed and prevents damage as a result.

Claims (4)

1. Vindmotor med en rotor med vinger (3) med variabel stigning op til kantstilling ved drejning om deres respektive akser (4), idet de er dynamisk uafbalancerede og derfor har 5 en ubalanceret eller pertuberende bageste masse (M), og med en fjedrende reguleringsanordning, der til mekanisk afbalan-cering af vingernes stilling er indrettet til at pâvirke hver vinge med en reguleringskraft, som er resultanten af de modsat rettede pâvirkninger fra hhv. en af rotations-10 hastigheden afhængig kraft og en fjedrende tilbageforings-kraft, hvilken reguleringskraft sikrer, at vingen holdes i den 0nskede vinkelstilling om sin akse, nâr rotoren roterer med sin nominelle hastighed, kendetegnet ved kompensationsorganer (m,13), der er f0lsomme over for dece-15 leration af rotoren og er indrettede til ved synkende om-drejningshastighed af rotoren automatisk og 0jeblîkkeligt pâ hver vinge at udove en kraft, som afviger fra de afbalan-cerede kræfter, der sikrer reguleringen, og som i hovedsagen er lig med og modsat rettet den pertuberende kraft, der er 20 frembragt af den kinetiske energi af vingens bageste eller uafbalancerede masse, sâledes at vingen ojeblikkeligt fra decelerationens beskyttelse bibeholder den vinkelstilling, den da indtager.1. Wind motor with a rotor with blades (3) with variable pitch up to edge position by rotating about their respective axes (4), being dynamically unbalanced and therefore having an unbalanced or perturbing rear mass (M) and with a resilient a regulating device adapted for mechanically balancing the position of the blades to actuate each blade with a regulating force which is the result of the opposite directional influences from respectively. a force dependent on the rotational speed and a resilient return force, which control force ensures that the blade is held in the desired angular position about its axis as the rotor rotates at its nominal speed, characterized by compensating means (m, 13), which are sensitive opposite deceleration of the rotor and is adapted to exert automatically and evidently on each vane a force which is different from the balanced forces which ensure the regulation and which is substantially equal to the decreasing rotational speed of the rotor. and, in the opposite direction, the perturbing force produced by the kinetic energy of the rear or unbalanced mass of the blade, so that the blade retains immediately the angular position it then occupies from the deceleration. 2. Vindmotor if0lge krav 1, kendetegnet 25 ved, at kompensationsorganerne for hver vinge (3) indbefatter en masse (m), der er anbragt pâ forsiden af vingeprof ilet modsat den pertuberende masse (M) og kun er bâret af vingen.Wind engine according to claim 1, characterized in that the compensating means for each wing (3) includes a mass (m) located on the front of the wing profile opposite to the perturbing mass (M) and carried only by the wing. 3. Vindmotor if0lge krav 1 i hvilket rotoren indbefatter en reguleringsanordning med en koaksial regulerings- 30 plade (6) eller et lignende organ, der kan foretage en fast-sat vinkelbevægelse i forhold til rotoren, transmissions-organer (7-12) til overforing af vingernes (3) drejebevægelse om deres akser (4) til réguleringspladen (6) og fjedrende tilbageforingsorganer (5) mellem rotorens stel (1) og regu-35 leringspladen (6) og indrettede til at holde vingerne (3) i den onskede vinkelstilling om deres respektive akser, nâr DK 156910 B rotoren roterer med sin nominelle hastighed, hvorhos for-bindelsen mellem vingerne (3) og pladen (6) er en sâdan, at fald i pladens hastighed i forhold til rotorens medf0rer en voksende stigning af vingerne helt op til kantstilling, og 5 at omvendt accélération af pladen medforer en formindskelse af stigningen, kendetegnet ved, at kompensations-organerne indbefatter en ring (13), som er fast forbundet med reguleringspladen (6), og som har en diameter, der er storre end reguleringspladens (6) diameter, hvilken ring 10 danner et inerti-svinghjul.A wind engine according to claim 1 wherein the rotor includes a regulating device with a coaxial regulating plate (6) or a similar means capable of making an angular movement relative to the rotor, transmission means (7-12) for transmission of the rotary movement of the blades (3) about their axes (4) to the regulating plate (6) and resilient return means (5) between the frame (1) of the rotor and the control plate (6) and arranged to hold the blades (3) in the desired angular position about their respective axes as the DK 156910 B rotor rotates at its nominal speed, where the connection between the blades (3) and the plate (6) is such that a decrease in the speed of the plate relative to the rotor results in a growing increase of the blades completely. up to edge position, and 5 that reverse acceleration of the plate causes a decrease in pitch, characterized in that the compensating means includes a ring (13) which is fixedly connected to the control plate (6) and which has a diameter; which is larger than the diameter of the control plate (6), which ring 10 forms an inertia flywheel. 4. Aerogenerator ifolge krav 3, kendetegnet ved/ at kompensationsorganerne, idet vingernes fjed-rende tilbageforingsorganer er hydrauliske apparater (14), bestâr af organer (15,16), som kan indvirke pâ stromnings-15 hastigheden og tilforselstrykket af fluidet i de hydrauliske apparater pâ en sâdan mâde, at der kompenseres for de for-styrrende kræfter, som fremkaldes af den uafbalancerede bageste masse.An aerogenerator according to claim 3, characterized in that the compensating means, the resilient spring means of the wings being hydraulic apparatus (14), consist of means (15, 16) which can influence the flow velocity and the supply pressure of the fluid in the hydraulic apparatus in such a way as to compensate for the disturbing forces induced by the unbalanced posterior mass.
DK413784A 1983-06-08 1984-08-29 WIND ENGINE DK156910C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8309486 1983-06-08
FR8309486A FR2547360B1 (en) 1983-06-08 1983-06-08 IMPROVEMENTS ON WIND AIR GENERATORS OR WIND MOTORS INCLUDING A VARIABLE STEP PROPELLER ROTOR
FR8300268 1983-12-30
PCT/FR1983/000268 WO1984002752A1 (en) 1982-12-30 1983-12-30 Improvements to wind motors and aerogenerators

Publications (4)

Publication Number Publication Date
DK413784D0 DK413784D0 (en) 1984-08-29
DK413784A DK413784A (en) 1984-08-29
DK156910B true DK156910B (en) 1989-10-16
DK156910C DK156910C (en) 1990-03-12

Family

ID=9289586

Family Applications (1)

Application Number Title Priority Date Filing Date
DK413784A DK156910C (en) 1983-06-08 1984-08-29 WIND ENGINE

Country Status (3)

Country Link
JP (1) JPS61500981A (en)
DK (1) DK156910C (en)
FR (1) FR2547360B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050727A (en) * 2019-09-20 2021-04-01 株式会社Fev再生可能エネルギー開発技研 Propeller-type wind power generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL57405C (en) *
DE904400C (en) * 1951-08-12 1954-02-18 Fritz Huebner Wind turbine with adjustable blades
FR2291378A1 (en) * 1974-11-14 1976-06-11 Carre Jean Wind driven electric generator - with automatically variable pitch blades to prevent overspeed
US4352629A (en) * 1981-10-19 1982-10-05 United Technologies Corporation Wind turbine

Also Published As

Publication number Publication date
DK413784D0 (en) 1984-08-29
JPS61500981A (en) 1986-05-15
DK156910C (en) 1990-03-12
FR2547360B1 (en) 1987-10-23
FR2547360A1 (en) 1984-12-14
DK413784A (en) 1984-08-29

Similar Documents

Publication Publication Date Title
US5584655A (en) Rotor device and control for wind turbine
US4495423A (en) Wind energy conversion system
EP0530315B1 (en) Free-yaw, free-pitch wind-driven electric generator apparatus
WO1996020343A9 (en) Rotor device and control for wind turbine
US4355955A (en) Wind turbine rotor speed control system
CN101395369A (en) Wind power generation system, and control method therefor
CN106968888B (en) A kind of small wind turbine vane change device
US4653982A (en) Windmill with controller for controlling rotor RPM
WO2002094655A2 (en) The use of aerodynamic forces to assist in the control and positioning of aircraft control surfaces and variable geometry systems
NO784315L (en) SLOPE CONTROLLER FOR THE ROTOR BLADES ON A WIND ENGINE
EP0025791B1 (en) A wind turbine
KR20190066539A (en) A rotor assembly for a rotorcraft with torque controlled collective pitch
US4641039A (en) Wind motors and aerogenerators
EP4239192A1 (en) System and method for use of a tunable mass damper to reduce vibrations in wind turbine blades in a locked or idling condition of the rotor hub
EP0021790A1 (en) Vertical-axis windmills and turbines
US4474531A (en) Windmill with direction-controlled feathering
DK156910B (en) WIND ENGINE
US4748339A (en) Wind turbine operated electrical generator system
EP0776820A1 (en) Propeller propulsion unit for aircrafts in general
WO2004088131A1 (en) Self-regulating wind turbine
EP0346711A2 (en) High-efficiency turbine, in particular for exploiting wind power in auxiliary power sources for aeronautical applications
US2876847A (en) Air driven propeller and governor therefor
GB2151712A (en) Ram air turbine
US20230049189A1 (en) Automatic-Aerodynamic Pitch Control for Wind Turbine Blade
WO1986004385A1 (en) Ram air turbine

Legal Events

Date Code Title Description
PBP Patent lapsed