DK149937B - PROCEDURE FOR OPERATING A COOLING INSTALLATION AND PLANT FOR EXERCISING THE PROCEDURE - Google Patents
PROCEDURE FOR OPERATING A COOLING INSTALLATION AND PLANT FOR EXERCISING THE PROCEDURE Download PDFInfo
- Publication number
- DK149937B DK149937B DK648972AA DK648972A DK149937B DK 149937 B DK149937 B DK 149937B DK 648972A A DK648972A A DK 648972AA DK 648972 A DK648972 A DK 648972A DK 149937 B DK149937 B DK 149937B
- Authority
- DK
- Denmark
- Prior art keywords
- temperature
- compressor
- oil
- oil separator
- capacitor
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
- F25B1/047—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
- F04C29/042—Heating; Cooling; Heat insulation by injecting a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/006—Cooling of compressor or motor
- F25B31/008—Cooling of compressor or motor by injecting a liquid
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
i 149937 oi 149937 o
Den foreliggende opfindelse angår køleanlæg med et strømningskredsløb for kølemiddel, og med en kompressor af skruerotortyp.en, en kondensator og en fordamper, og nærmere bestemt sådanne anlæg, der også omfatter orga-5 ner, som er indrettet til at cirkulere olie og til at føre olien gennem kompressoren, og hvor der er tilvejebragt en olieseparator i kredsløbet mellem kompressorens afgang og indgangen til kondensatoren.The present invention relates to refrigeration systems having a refrigerant flow circuit, and with a screw rotor type compressor, a capacitor and an evaporator, and more particularly such systems which also include means adapted to circulate oil and to pass the oil through the compressor and where an oil separator is provided in the circuit between the outlet of the compressor and the input of the capacitor.
I køleanlæg af denne art indsprøjtes olien i kom-10 pressorens kompressionskamre for at køle det luftformige kølemiddel under kompressionen og for at tætne spillerummet ved indgrebsfladerne mellem rotorene og ved omkredsen og endefladerne af rotorene. Desuden tjener olie ligeledes som smøremiddel for rotorene ved kompressorer med ikke-15 -synkroniserede rotorer.In refrigeration systems of this kind, the oil is injected into the compression chambers of the compressor to cool the gaseous refrigerant during compression and to seal the clearance at the engagement surfaces between the rotors and at the circumferences and end faces of the rotors. In addition, oil also serves as a lubricant for the rotors of compressors with non-synchronized rotors.
Efter at have passeret kompressoren har olien en temmelig høj temperatur, og må derfor afkøles, før den i-gen indsprøjtes i kompressoren. Hidtil har denne afkøling sædvanligvis fundet sted i en oliekøler, der f.eks. anven-2o der vand som kølende medium. Eftersom det er store varmemængder, der skal fjernes fra olien, bliver disse oliekølere temmelig omfangsrige. Når kølemidlet består af ammoniak, må køleren desuden fremstilles af stål, som gør fremstillingen kostbar.After passing the compressor, the oil has a fairly high temperature and must therefore be cooled before injecting it again into the compressor. So far, this cooling has usually taken place in an oil cooler which e.g. use water as cooling medium. Because there are large amounts of heat to be removed from the oil, these oil coolers become quite bulky. Furthermore, when the refrigerant consists of ammonia, the cooler must be made of steel, which makes the production expensive.
25 Det har tidligere været foreslået at anvende fly dende kølemiddel som kølemedium ved at indføre det i kompressoren i et køleanlæg. Nogle af disse kendte forslag repræsenterer forsøg på at opnå den Ønskede afkøling af den komprimerede luftart uden anvendelse af olie, mens an-30 dre er beregnet på at skulle løse specielle problemer ved driften af visse arter af kølekompressorer. Flydende kølemidler har imidlertid meget dårlige tætnings- og smøreegenskaber, og derfor har erstatningen af olie med flydende kølemiddel i skruerotorkompressorer ikke haft nogen 35 fremgang.25 It has previously been proposed to use air coolant as a refrigerant by introducing it into the compressor in a refrigeration plant. Some of these known proposals represent attempts to achieve the desired cooling of the compressed gas species without the use of oil, while others are intended to solve particular problems in the operation of certain types of refrigeration compressors. However, liquid refrigerants have very poor sealing and lubrication properties, and therefore the replacement of liquid refrigerant oil in screw rotor compressors has not progressed.
149937149937
OISLAND
22
Den foreliggende opfindelse har som formål at tilvejebringe et køleanlæg af den i beskrivelsens indledning angivne art, og som yderligere omfatter organer til indføring af flydende kølemiddel i en del af kredsløbet mel-5 lem indgangen til kompressoren og indgangen til oliekøleren, samt en fremgangsmåde til drift af et sådant anlæg. I-følge denne fremgangsmåde'styres indføringen af det flydende kølemiddel på en sådan måde, at temperaturen i olieseparatoren holdes på et niveau, der kun ligger lidt over køle-10 midlets fortætningstemperatur ved det i olieseparatoren herskende tryk, men at temperaturen forhindres i at falde til denne fortætningstemperatur.It is an object of the present invention to provide a refrigeration plant of the kind set forth in the preamble of the specification and further comprising means for introducing liquid refrigerant into a portion of the circuit between the input of the compressor and the input of the oil cooler, and a method of operation. of such a plant. According to this method, the introduction of the liquid refrigerant is controlled in such a way that the temperature of the oil separator is kept at a level which is only slightly above the condensation temperature of the refrigerant at the pressure prevailing in the oil separator, but that the temperature is prevented from falling. to this condensing temperature.
Anlægget ifølge opfindelsen er ejendommeligt ved, organer, der er indrettet til at reagere på i det mindste 15 én parameter, som er betegnende for forskellen mellem temperaturen i olieseparatoren og temperaturen i kondensatoren, og ved indstillelige organer, der er indrettet til at ændre mængden af flydende kølemiddel, der indføres i den nævnte del af kredsløbet, samt ved organer, der er indrettet til 2o styrende at forbinde de reagerende organer med de indstillelige organer på en sådan måde, at temperaturforskellen holdes lille, men forhindres i at synke ned til 0.The plant according to the invention is characterized by means adapted to respond to at least one parameter which is characteristic of the difference between the temperature of the oil separator and the temperature of the capacitor, and by adjustable means adapted to change the amount of liquid refrigerant introduced into said portion of the circuit, as well as by means adapted to control the reacting means with the adjustable means in such a way that the temperature difference is kept small but prevented from sinking down to 0.
Olien må fjernes fra luftarten, før luftarten træder ind i kondensatoren, i det olie, der medføres af det 25 luftformige kølemiddel, efterhånden vil ophobes i fordamperen. Hvis på den anden side flydende kølemiddel sammen med olien adskilles fra det luftformige kølemiddel i olieseparatoren, vil dette forårsage alvorlige forstyrrelser og endog svigt af hele anlægget på grund af fordampning 30 af det flydende kølemiddel inden i oliepumpen og i skrue-rotorkompressorens lejer, som er tryksmurte med en del af olien, der passerer gennem pumpen. På grund af de høje driftstryk hos kølekompressorer og den forholdsvis lille afstand mellem rotorakslerne må de radiale lejer være 35 af den glatte lejetype og kræver derfor perfekt smøring.The oil must be removed from the gas before the gas enters the condenser, in the oil carried by the gaseous coolant, which will eventually accumulate in the evaporator. On the other hand, if liquid refrigerant together with the oil is separated from the gaseous refrigerant in the oil separator, this will cause serious interference and even failure of the entire system due to evaporation of the liquid refrigerant within the oil pump and in the screw rotor compressor bearings which are lubricated with a portion of the oil passing through the pump. Due to the high operating pressures of cooling compressors and the relatively small distance between the rotor shafts, the radial bearings must be 35 of the smooth bearing type and therefore require perfect lubrication.
149937149937
OISLAND
33
Af de foran nævnte grunde må luftarten forhindres i at kondensere i olieseparatoren. På den anden side er det ønskeligt at sænke oliens temperatur så meget som muligt for at forøge den kølende virkning'af olien, når den ind-5 sprøjtes i kompressoren. Opfindelsen gør det muligt at opnå en ønsket, lav olietemperatur uden anvendelse af en særskilt oliekøler, idet man samtidigt undgår risiko for kondensering af det luftformige kølemiddel inde i olieseparatoren .For the aforementioned reasons, the gas species must be prevented from condensing in the oil separator. On the other hand, it is desirable to lower the temperature of the oil as much as possible to increase the cooling effect of the oil when injected into the compressor. The invention makes it possible to achieve a desired low oil temperature without the use of a separate oil cooler, while at the same time avoiding the risk of condensation of the gaseous refrigerant inside the oil separator.
10 Opfindelsen skal i det følgende beskrives nærmere, idet der henvises til tegningen, på hvilken: fig. 1 viser skematisk en udførelsesform for et køleanlæg ifølge opfindelsen, fig. 2 et detaljeret billede af drivorganer, der 15 indgår i det i fig. 1 viste anlæg, og fig. 3 en modifikation af den i fig. 1 viste udførelsesform.The invention will now be described in more detail with reference to the drawing, in which: 1 schematically shows an embodiment of a refrigeration system according to the invention; FIG. 2 is a detailed view of drive means included in the embodiment of FIG. 1, and FIG. 3 is a modification of the embodiment shown in FIG. 1.
Det i fig. 1 viste køleanlæg omfatter et strømningskredsløb for kølemiddel med en kompressor 10 af skrue-20 rotortypen, en kondensator 12 og en fordamper 14. I den viste udførelsesform er kondensatoren 12 af den art, i hvilken kølemidlet passerer gennem lige rør, der strækker sig mellem hoveder ved enderne af en fortrinsvis cylindrisk kappe, som omgiver rørene, og gennem hvilken der 25 cirkulerer kølevand på kendt måde. Fordamperen 14 er anbragt i et kølerum 16, og flydende kølemiddel tilføres til fordamperen gennem en ledning 18 og over en ekspansionsventil 20, som på kendt måde styres i afhængighed af temperaturen i kølerummet 16.The FIG. 1, a refrigerant flow circuit comprising a screw rotor type compressor 10, a capacitor 12, and an evaporator 14. In the embodiment shown, the capacitor 12 is the type in which the refrigerant passes through straight tubes extending between heads. at the ends of a preferably cylindrical sheath surrounding the tubes through which cooling water circulates in a known manner. Evaporator 14 is placed in a cold room 16 and liquid refrigerant is supplied to the evaporator through a conduit 18 and over an expansion valve 20 which is known in a manner known in the manner dependent on the temperature of the coolant 16.
30 Kompressoren 10 kan være af i det væsentlige sam me art, som den i britisk patent nr. 1.171.291 omhandlede.The compressor 10 may be of substantially the same type as that disclosed in British Patent No. 1,171,291.
Olie indsprøjtes således fra en tilførselsledning i kompressorens kompressionskamre for tætning og køling og forlader kompressoren sammen med det dampformige kølemiddel 35 gennem en ledning 24, der fører til en olieseparator 26 af passende art. Den oliefri højtryksdamp af kølemidlet o 4 149937 strømmer gennem en ledning 28 til kondensatoren 12, hvor den kondenserer, mens olien fjernes fra olieseparatoren 26 af en pumpe 30 og leveres til en ledning 22, som danner pumpens afgangsledning.Thus, oil is injected from a supply line into the compressor's sealing and cooling compression chambers and leaves the compressor together with the vapor coolant 35 through a conduit 24 leading to an appropriate oil separator 26. The oil-free high-pressure steam of the refrigerant flows through a conduit 28 to the capacitor 12, where it condenses, while the oil is removed from the oil separator 26 by a pump 30 and supplied to a conduit 22 which forms the pump discharge line.
5 Ifølge opfindelsen er der tilvejebragt en ledning 32 mellem kondensatoren 12's afgang og kompressoren 10. I kompressoren er der tilvejebragt mindst en dyse, der er forbundet med ledningen 32 og anbragt på en sådan måde, at den kan indsprøjte flydende kølemiddel i kompressorens 10 kompressionskamre, før trykket i disse kamre har nået kompressorens afgangstryk. På denne måde vil trykket af det flydende kølemiddel være tilstrækkeligt til indsprøjtning af kølemidlet i kompressionskamrene mod det i kamrene herskende tryk på dette kompressionstrin.According to the invention, a conduit 32 is provided between the outlet of capacitor 12 and compressor 10. At least one nozzle connected to conduit 32 is provided in the compressor so that it can inject liquid refrigerant into the compression chambers of compressor 10. before the pressure in these chambers has reached the discharge pressure of the compressor. In this way, the pressure of the liquid refrigerant will be sufficient to inject the refrigerant into the compression chambers against the pressure prevailing in the chambers at this compression stage.
15 I ledningen 32 er der tilvejebragt en doserings ventil 33, der er indstillelig ved hjælp af et drivorgan 34. Dette organ 34 styres af et termoelement med et lodde-sted 35 anbragt ved indgangen til olieseparatoren 26 og udsat for temperaturen af det komprimerede fluidum, der 20 trænger ind i separatoren, og et andet loddested 36 anbragt inden i kondensatoren 12. Drivorganet 34 indeholder elementer til omdannelse· af den af termoelementet frembragte strøm til indstillingskræfter til indstilling af ventilen 33, således at en voksende temperaturforskel mel-25 lem loddestederne 35 og 36 bevirker, at ventilen 33 påvirkes mod åbningsretningen, og at aftagende temperaturforskel medfører en påvirkning mod lukkeretningen. På denne måde er det muligt at holde temperaturforskellen i det væsentlige konstant og på en værdi af f.eks. ca. 5 til 30 15°C. Uanset det luftformige kølemiddels kondensations temperatur er temperaturen i olieseparatoren 26 derfor lidt højere, således at der ikke kan forekomme nogen fortætning i separatoren. Yderligere er temperaturen af olien, der forlader separatoren gennem ledningen 22, ligeledes kun 35 lidt højere end kondensationstemperaturen, hvilket resulterer i den bedst mulige kølevirkning, når olien indsprøjtes i kompressoren.In the conduit 32 there is provided a metering valve 33 which is adjustable by a drive means 34. This means 34 is controlled by a thermocouple with a soldering point 35 located at the entrance to the oil separator 26 and exposed to the temperature of the compressed fluid. 20 penetrating the separator and another soldering point 36 disposed within capacitor 12. The drive means 34 contains elements for converting the current generated by the thermocouple to adjusting forces for adjusting the valve 33 such that a growing temperature difference between the soldering points 35 and 36 causes the valve 33 to act toward the opening direction and decreasing temperature difference causes an impact toward the closing direction. In this way it is possible to keep the temperature difference substantially constant and at a value of e.g. ca. 5 to 30 ° C. Therefore, regardless of the condensation temperature of the gaseous coolant, the temperature of the oil separator 26 is slightly higher, so that no condensation can occur in the separator. Further, the temperature of the oil leaving the separator through conduit 22 is also only 35 slightly higher than the condensation temperature, resulting in the best possible cooling effect when the oil is injected into the compressor.
149937149937
OISLAND
55
Kompressoren 10's kapacitet kan ændres ved hjælp af en skydeventil som angivet i britisk patentskrift nr.The capacity of the compressor 10 can be changed by means of a sliding valve as disclosed in British Pat.
1.171.291, således at temperaturen i kølerummet 16 automatisk holdes i det væsentlige konstant på kendt måde. Ved 5 den viste udførelsesform er skydeventilen indstillelig ved hjælp af en hydraulisk servomotor 38.1,171,291, so that the temperature in the cold storage room 16 is automatically kept substantially constant in known manner. In the embodiment shown, the sliding valve is adjustable by means of a hydraulic servomotor 38.
Hvis temperaturen i kølerummet 16 viser tilbøjelighed til at synke under den ønskede, forud fastlagte værdi, bevæges skydeventilen således, at den formindsker kom-10 pressorens kapacitet. Denne formindskelse af kapaciteten medfører en formindskelse af kompressionsarbejdet og følgelig ligeledes af behovet for køling. Hastigheden af oliepumpen 30 ændres imidlertid ikke, og derfor bliver mængden af indsprøjtet olie uændret. Desuden er modtrykket i kom-15 pressoren på det sted, hvor kondensatet indsprøjtes, ved nedsat kapacitet mindre end trykket ved fuld kapacitet, og derfor bliver mængden af indsprøjtet kondensat til at begynde med forøget. Af disse grunde vil kompressorens afgangstemperatur til at begynde med aftage, indtil trykket 20 i kredsløbets højtryksdel har antaget en noget lavere værdi som følge af kompressorens formindskede kapacitet. Det er klart, at der på denne måde foreligger en risiko for, at temperaturen i olieseparatoren 26 midlertidigt kan synke ned på kondensationstemperaturen.If the temperature in the cooling chamber 16 shows a tendency to sink below the desired predetermined value, the sliding valve is moved so as to decrease the capacity of the compressor. This decrease in capacity causes a reduction in the compression work and consequently also the need for cooling. However, the speed of the oil pump 30 does not change and therefore the amount of oil injected remains unchanged. In addition, the compressor pressure at the point where the condensate is injected is at reduced capacity less than the full capacity pressure, and therefore the amount of injected condensate is initially increased. For these reasons, the outlet temperature of the compressor will initially decrease until the pressure 20 in the high pressure portion of the circuit assumes a somewhat lower value due to the reduced capacity of the compressor. It is clear that in this way there is a risk that the temperature of the oil separator 26 may temporarily drop to the condensation temperature.
25 For at eliminere denne risiko forløber servomo- toren 38's stempelstang ud gennem den fra kompressoren fjerneste ende af servomotoren. Den udragende ydre del af stempelstangen bærer en kam 42, der samvirker med en kamfølger 44, som er drivende forbundet med drivorganet 34.25 To eliminate this risk, the piston rod 38 of the servomotor extends through the farthest end of the servomotor from the compressor. The protruding outer portion of the piston rod carries a cam 42 which cooperates with a cam follower 44 which is pivotally connected to the drive member 34.
30 Når kammen 42 bevæges mod højre fra den i figuren viste stilling, som svarer til skydeventilens stilling ved fuld kapacitet, idet skydeventilen indstilles i en stilling svarende til formindsket kapacitet, påvirker kamfølgeren 44 drivorganet 34 og bringer dette organ til at indstil-35 le doseringsventilen 33 mod lukkeretningen, således at mængden af indsprøjtet kondensat formindskes.When the cam 42 is moved to the right from the position shown in the figure which corresponds to the position of the sliding valve at full capacity, with the sliding valve being set to a position corresponding to diminished capacity, the cam follower 44 influences the drive means 34 33 to the closing direction so that the amount of condensate injected is reduced.
66
OISLAND
149937149937
Kammen 42 kan være udformet således, at den for enhver stilling af skydeventilen bestemmer en foreløbig, specifik indstilling af doseringsventilen 33, ved hvilken indstilling tilførslen af kondensat til kompressoren er 5 tilstrækkeligt til at holde temperaturen af den komprimerede luftart på et niveau, som er højere end fortætnings- eller kondenseringstemperaturen for det luftformige kølemiddel ved det tryk, som herkser i kredsløbets højtryksdel, når anlægget arbejder under betingelser, der 10 svarer til'en stationær tilstand ved den aktuelle stilling af skydeventilen. Det skal bemærkes, at ulemperne, der er forbundet med en unødvendig høj temperatur i olieseparatoren, er mindre end de ulemper, der er en følge af kondensation, og derfor er doseringsventilen 33 styret 15 således, at temperaturen i olieseparatoren ved alle ændringer af kompressorens kapacitet ligger godt og vel o-ver kondensationstemperaturen under overgangsperioderne mellem forskellige kapaciteter hos kompressoren. Når forhold svarende til en stationær tilstand først er opnået, sikrer 20 termoelementet 35, 36 og drivorganet 34, at temperaturen i olieseparatoren 26 kun er 5 til 15°C højere end kondensationstemperaturen.The cam 42 may be configured such that it determines for each position of the sliding valve a preliminary, specific setting of the metering valve 33, at which setting the supply of condensate to the compressor is sufficient to keep the temperature of the compressed gas at a higher level. than the condensing or condensing temperature of the gaseous refrigerant at the pressure which exceeds the high pressure portion of the circuit when the system operates under conditions corresponding to a stationary state at the current position of the sliding valve. It should be noted that the disadvantages associated with an unnecessarily high temperature in the oil separator are less than the disadvantages caused by condensation, and therefore the metering valve 33 is controlled 15 such that the temperature of the oil separator at all changes in the compressor capacity well above the condensation temperature during the transition periods between different capacities of the compressor. When conditions corresponding to a stationary state are first achieved, the thermocouple 35, 36 and the drive means 34 ensure that the temperature of the oil separator 26 is only 5 to 15 ° C higher than the condensation temperature.
Drivorganet 34 er vist i enkeltheder men skematisk i fig. 2. Som det fremgår af figuren er de to lednin-25 ger 50 fra termoelementet 35, 36 forbundet til et styreorgan 52, der er indrettet til at levere strøm til en elektromotor 54, således at denne drives i den ene eller den anden retning i afhængighed af de fra termoelementet modtagende signaler. Motorens aksel 56 bærer en snekke 58, 30 som er i indgreb med et snekkehjul 64, der er monteret på en aksel 62, som er vinkelret på motorakselen 56. Ligeledes monteret på akselen 62 findes et tandhjul 60, der er drivende forbundet med snekkehjulet 64 over en ikke vist skridkobling, og som er i indgreb med en tandstang 66.The drive means 34 is shown in detail but schematically in FIG. 2. As can be seen in the figure, the two wires 50 of the thermocouple 35, 36 are connected to a control means 52 arranged to supply power to an electric motor 54 so that it is driven in one or the other direction in the dependence on the signals received from the thermocouple. The shaft 56 of the motor carries a worm 58,30 which is engaged by a worm wheel 64 mounted on a shaft 62 perpendicular to the motor shaft 56. Also mounted on the shaft 62 is a gear 60 driven integrally with the worm wheel 64. over a skid coupling not shown and which engages a rack 66.
35 Tandstangen 66 er indrettet til at indstille doseringsventilen 33.The rack 66 is adapted to adjust the metering valve 33.
149937149937
OISLAND
77
Ved den øvre ende er kamfølgeren 44 forsynet med et hovedelement 68 med en langsgående slids 70, der forskydeligt optager en stift 72, som er monteret ved den nedre ende af tandstangen 66.At the upper end, the cam follower 44 is provided with a main member 68 with a longitudinal slot 70 which slidably accommodates a pin 72 mounted at the lower end of the rack 66.
5 I figurerne er kammen 42 vist i en stilling, som svarer til fuldkapacitet af kompressoren 10. I denne stilling er stiften 72 anbragt et kort stykke fra den nedre ende af slidsen, således at tandstangen 66 frit kan bevæge sig i slidsen 70 i begge retninger under indflydelse af 10 signalerne fra termoelementet 35, 36 til finindstilling af doseringsventilen 33 under betingelser svarende til en stationær tilstand.5 In the figures, the cam 42 is shown in a position corresponding to full capacity of the compressor 10. In this position, the pin 72 is placed a short distance from the lower end of the slot, so that the rack 66 can move freely in the slot 70 in both directions. under the influence of the signals from the thermocouple 35, 36 for fine tuning of the metering valve 33 under conditions corresponding to a stationary state.
Når kompressorens skydeventil indstilles mod højre til en stilling for nedsat kapacitet, hæves kamfølgeren 15 44 og skubber tandstangen 66 opad. Denne bevægelse af tandstangen 66 er mulig på grund af virkningen af skrid-koblingen mellem tandhjulet 60 og snekkehjulet 64.When the compressor slide valve is set to the right to a reduced capacity position, cam follower 15 44 is raised and pushing rack 66 upward. This movement of the rack 66 is possible due to the effect of the slip coupling between the gear 60 and the worm 64.
Når tandstangen 66 bevæges opad, drøvles doseringsventilen 33 gradvist, således at mængden af indsprøj-20 tet, flydende kølemiddel formindskes i det væsentlige i forhold til kompressorens aftagende kompressionsarbejde.As the rack 66 moves upward, the metering valve 33 is gradually throttled so that the amount of injected liquid refrigerant is substantially reduced relative to the compressor's decreasing compression work.
På denne måde forhindres temperaturen af det komprimerede fluidum i at synke ned til kondensationstemperaturen under indstillingsbevægelsen af kompressorens skydeventil.In this way, the temperature of the compressed fluid is prevented from sinking to the condensation temperature during the adjusting movement of the compressor's slide valve.
25 Når temperaturen i kølerummet 16 nærmer sig den ønskede, forud fastlagte værdi, afbremses og stoppes skydeventi-lens indstillingsbevægelse, og termoelementet 35, 36 overtager styringen af doseringsventilen 33 for finindstilling af temperaturen i olieseparatoren i forhold til 30 temperaturen i kondensatoren. Under betingelser svarende til stationær tilstand ved den således opnåede delbelastning, er stiften 72 placeret nær ved den nedre ende af slidsen 70.As the temperature of the coolant chamber 16 approaches the desired predetermined value, the sliding valve setting movement is slowed down and the thermocouple 35, 36 takes over control of the metering valve 33 for fine-tuning the temperature of the oil separator relative to the temperature of the capacitor. Under conditions similar to the steady state at the partial load thus obtained, the pin 72 is located near the lower end of the slot 70.
Hvis temperaturen i kølerummet 16 senere viser 35 tilbøjelighed til at stige, bringes skydeventilen til at bevæge sig hen imod den til fuld kapacitet svarende stil- 8 149937 o ling, og kamfølgeren 44 trækkes nedad. Denne nedadgående bevægelse finder sted, uden at tandstangen 66 aktiveres, idet slidsen 70 kan bevæge sig nedad i forhold til stiften 72.If the temperature in the cold room 16 later shows a tendency to rise, the sliding valve is caused to move towards the full capacity position and the cam follower 44 is pulled downward. This downward movement occurs without the rack 66 being actuated, the slot 70 being able to move downwardly relative to the pin 72.
Derfor forbliver doseringsventilen i dens delvis drøvlede 5 stilling, indtil termoelementerne 35, 36 reagerer på den stigende temperatur og bevirker, at motoren 54 driver ventilen 33 i åbningsretningen.Therefore, the metering valve remains in its partially swirled position until the thermocouples 35, 36 react to the rising temperature and cause the motor 54 to drive the valve 33 in the opening direction.
I fig. 3 er vist en modifikation af den foran beskrevne styreanordning. Ifølge denne modifikation indsprøj-10 tes det flydende kølemiddel i kompressorens afgangsledning 24, hvor trykket er noget større end trykket i kondensatoren 12. Af den grund er der tilvejebragt en pumpe 74, til hvilken der føres flydende kølemiddel fra kondensatoren gennem en ledning 32A. Pumpen 74 er af den art, der 15 har en énvejsventil ved afgangen og organer til omledning af en variable mængde væske, der føres tilbage til kondensatoren 12 gennem en ledning 76. I denne ledning 76 er tilvejebragt en ventil 33A, som er indrettet til at blive drevet af et organ svarende til det foran beskrevne organ 34.In FIG. 3 is a modification of the control device described above. According to this modification, the liquid refrigerant is injected into the outlet line 24 of the compressor, the pressure being somewhat greater than the pressure in the capacitor 12. For this reason, a pump 74 is provided to which liquid refrigerant is supplied from the capacitor through a conduit 32A. The pump 74 is of the kind having a one-way valve at the outlet and means for diverting a variable amount of liquid which is fed back to the capacitor 12 through a conduit 76. In this conduit 76 is provided a valve 33A which is arranged to be driven by a device similar to the device described above 34.
20 For at formindske mængden af indsprøjtet kølemiddel påvirkes ventilen 33A imidlertid i åbningsretningen, idet den maksimale mængde opnås, når ventilen 33A er helt lukket.However, to reduce the amount of injected refrigerant, valve 33A is actuated in the opening direction, with the maximum amount being obtained when valve 33A is fully closed.
Eftersom fortætnings- eller kondenseringstemperaturen for en luftart varierer med dennes tryk, kan termo-25 elemtentet 35, 36 erstattes af en temperaturføler og en trykføler, som er anbragt i olieseparatoren 26. Disse følere kan forbindes til en regneenhed, der er indrettet til at frembringe et signal, som repræsenterer forskellen mellem temperaturen i olieseparatoren og kølemidlets for-30 tætningstemperatur ved det tryk, der hersker i oliesepa ratoren, idet dette signal anvendes til styring af tilførsel af det afkølende flydende kølemiddel.Since the condensation or condensing temperature of a gas varies with its pressure, the thermocouple 35, 36 can be replaced by a temperature sensor and a pressure sensor located in the oil separator 26. These sensors can be connected to a calculator adapted to produce a signal representing the difference between the temperature of the oil separator and the sealing temperature of the refrigerant at the pressure prevailing in the oil separator, this signal being used to control the supply of the cooling liquid refrigerant.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB6027471A GB1384397A (en) | 1971-12-28 | 1971-12-28 | Refrigeration plants |
GB6027471 | 1971-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
DK149937B true DK149937B (en) | 1986-10-27 |
DK149937C DK149937C (en) | 1987-10-26 |
Family
ID=10485338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK648972A DK149937C (en) | 1971-12-28 | 1972-12-27 | PROCEDURE FOR OPERATING A COOLING INSTALLATION AND PLANT FOR EXERCISING THE PROCEDURE |
Country Status (12)
Country | Link |
---|---|
US (2) | US3811291A (en) |
JP (1) | JPS5544862B2 (en) |
CA (1) | CA974073A (en) |
CS (1) | CS164220B2 (en) |
DD (1) | DD102797A5 (en) |
DE (1) | DE2261336C2 (en) |
DK (1) | DK149937C (en) |
GB (1) | GB1384397A (en) |
IN (1) | IN138133B (en) |
IT (1) | IT972677B (en) |
NL (1) | NL176016C (en) |
SE (1) | SE395314B (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5425804B2 (en) * | 1973-03-08 | 1979-08-30 | ||
GB1479451A (en) * | 1973-06-18 | 1977-07-13 | Svenska Rotor Maskiner Ab | Meshing screw compressors |
CS189674B2 (en) * | 1973-11-19 | 1979-04-30 | Hall Thermotank Prod Ltd | Method of and apparatus for compressing gas or steam and for lubricating the compressing machine |
US3913346A (en) * | 1974-05-30 | 1975-10-21 | Dunham Bush Inc | Liquid refrigerant injection system for hermetic electric motor driven helical screw compressor |
US3922873A (en) * | 1974-11-14 | 1975-12-02 | Carrier Corp | High temperature heat recovery in refrigeration |
US3990264A (en) * | 1974-11-14 | 1976-11-09 | Carrier Corporation | Refrigeration heat recovery system |
USRE30252E (en) * | 1974-11-14 | 1980-04-08 | Carrier Corporation | High temperature heat recovery in refrigeration |
US4018583A (en) * | 1975-07-28 | 1977-04-19 | Carrier Corporation | Refrigeration heat recovery system |
GB1564897A (en) * | 1975-09-29 | 1980-04-16 | Sevenska Rotor Maskiner Ab | Gas compression system and method with oil cooling |
US4275570A (en) * | 1980-06-16 | 1981-06-30 | Vilter Manufacturing Corporation | Oil cooling means for refrigeration screw compressor |
US4497185A (en) * | 1983-09-26 | 1985-02-05 | Dunham-Bush, Inc. | Oil atomizing compressor working fluid cooling system for gas/vapor/helical screw rotary compressors |
IT1171707B (en) * | 1983-09-30 | 1987-06-10 | Babcock Samifi Spa | DEVICE FOR COOLING OIL IN A COMPRESSION AND, IN PARTICULAR, SCREW COMPRESSION UNIT |
SE447757B (en) * | 1985-03-22 | 1986-12-08 | Svenska Rotor Maskiner Ab | PROCEDURE FOR OIL LINING OF COOLING PLANT FOR COOLING, SEALING AND LUBRICATING A SCREW COMPRESSOR INCLUDED IN THE PLANT |
JPS6361410U (en) * | 1986-10-09 | 1988-04-23 | ||
JPS6361409U (en) * | 1986-10-09 | 1988-04-23 | ||
US5168721A (en) * | 1991-03-28 | 1992-12-08 | K-Whit Tools, Inc. | Refrigerant recovery device |
US5231841A (en) * | 1991-12-19 | 1993-08-03 | Mcclelland Ralph A | Refrigerant charging system and control system therefor |
US5222369A (en) * | 1991-12-31 | 1993-06-29 | K-Whit Tools, Inc. | Refrigerant recovery device with vacuum operated check valve |
US5758506A (en) * | 1996-07-03 | 1998-06-02 | White Industries, Llc | Method and apparatus for servicing automotive refrigeration systems |
US6122924A (en) * | 1999-06-30 | 2000-09-26 | Carrier Corporation | Hot gas compressor bypass using oil separator circuit |
JP4330369B2 (en) * | 2002-09-17 | 2009-09-16 | 株式会社神戸製鋼所 | Screw refrigeration equipment |
US8181478B2 (en) * | 2006-10-02 | 2012-05-22 | Emerson Climate Technologies, Inc. | Refrigeration system |
US7647790B2 (en) * | 2006-10-02 | 2010-01-19 | Emerson Climate Technologies, Inc. | Injection system and method for refrigeration system compressor |
US8769982B2 (en) * | 2006-10-02 | 2014-07-08 | Emerson Climate Technologies, Inc. | Injection system and method for refrigeration system compressor |
BE1022707B1 (en) * | 2015-02-11 | 2016-08-19 | Atlas Copco Airpower Naamloze Vennootschap | Method and device for controlling the oil temperature of an oil-injected compressor installation or vacuum pump and valve used in such a device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2739450A (en) * | 1952-09-30 | 1956-03-27 | Carrier Corp | Refrigeration system provided with compressor unloading mechanism |
US2776542A (en) * | 1955-07-07 | 1957-01-08 | Gen Electric | Motor cooling means for hermetically sealed refrigerant compressor unit |
US3062020A (en) * | 1960-11-18 | 1962-11-06 | Gen Motors Corp | Refrigerating apparatus with compressor output modulating means |
US3165681A (en) * | 1962-12-31 | 1965-01-12 | Honeywell Inc | Motor control apparatus employing a balanceable switching device |
US3379033A (en) * | 1966-08-10 | 1968-04-23 | Vilter Manufacturing Corp | Refrigeration system and apparatus |
US3408826A (en) * | 1967-01-27 | 1968-11-05 | Dunham Bush Inc | Refrigeration system and systems for cooling and controlling compressors |
US3408828A (en) * | 1967-09-08 | 1968-11-05 | Dunham Bush Inc | Refrigeration system and system for separating oil from compressed gas |
GB1287309A (en) | 1970-10-29 | 1972-08-31 | Kuehlautomat Veb | Screw rotor compressor |
US3791165A (en) * | 1971-11-18 | 1974-02-12 | Carrier Corp | Charging method and apparatus for a refrigeration system |
-
1971
- 1971-12-28 GB GB6027471A patent/GB1384397A/en not_active Expired
-
1972
- 1972-12-14 US US00314993A patent/US3811291A/en not_active Expired - Lifetime
- 1972-12-15 DE DE2261336A patent/DE2261336C2/en not_active Expired
- 1972-12-20 IT IT33302/72A patent/IT972677B/en active
- 1972-12-22 SE SE7216854A patent/SE395314B/en unknown
- 1972-12-23 IN IN2220/72A patent/IN138133B/en unknown
- 1972-12-25 JP JP12945072A patent/JPS5544862B2/ja not_active Expired
- 1972-12-27 DK DK648972A patent/DK149937C/en not_active IP Right Cessation
- 1972-12-28 NL NLAANVRAGE7217736,A patent/NL176016C/en not_active IP Right Cessation
- 1972-12-28 CS CS9020A patent/CS164220B2/cs unknown
- 1972-12-28 DD DD167947A patent/DD102797A5/xx unknown
- 1972-12-28 CA CA160,085A patent/CA974073A/en not_active Expired
-
1979
- 1979-10-05 US US06/082,422 patent/USRE30869E/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
IT972677B (en) | 1974-05-31 |
GB1384397A (en) | 1975-02-19 |
CA974073A (en) | 1975-09-09 |
JPS4873838A (en) | 1973-10-05 |
NL7217736A (en) | 1973-07-02 |
DD102797A5 (en) | 1973-12-20 |
JPS5544862B2 (en) | 1980-11-14 |
NL176016C (en) | 1985-02-01 |
CS164220B2 (en) | 1975-11-07 |
DK149937C (en) | 1987-10-26 |
USRE30869E (en) | 1982-02-23 |
DE2261336A1 (en) | 1973-07-05 |
AU5011772A (en) | 1974-06-20 |
NL176016B (en) | 1984-09-03 |
DE2261336C2 (en) | 1985-05-09 |
SE395314B (en) | 1977-08-08 |
US3811291A (en) | 1974-05-21 |
IN138133B (en) | 1975-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK149937B (en) | PROCEDURE FOR OPERATING A COOLING INSTALLATION AND PLANT FOR EXERCISING THE PROCEDURE | |
KR100268111B1 (en) | Conpressor for use in refrigerator | |
US3795117A (en) | Injection cooling of screw compressors | |
EP1075631B1 (en) | Electronic controlled expansion valve | |
US3856493A (en) | Energy recovery system for oil injected screw compressors | |
US5228301A (en) | Methods and apparatus for operating a refrigeration system | |
CA2140179C (en) | Two mop expansion valves, one pressure setting for heating mode and one for cooling mode | |
CA2140192C (en) | Combined oil return and compressor discharge temperature limitation regarding flooded economizer heat exchanger | |
CN100387916C (en) | Cooling apparatus and method for setting refrigerant sealing amount for the same | |
USRE30499E (en) | Injection cooling of screw compressors | |
EP2959239B1 (en) | Oil management for heating, ventilation and air conditioning system | |
KR20080111146A (en) | Refrigeration device | |
US4223537A (en) | Air cooled centrifugal water chiller with refrigerant storage means | |
DK149995B (en) | Cooling Systems | |
CN101939599A (en) | Refrigeration device | |
JP6835651B2 (en) | Refrigerator controller, turbo chiller, chiller control method and program | |
US2048025A (en) | Refrigerating apparatus | |
JP6295105B2 (en) | Turbo refrigerator | |
US3548612A (en) | Refrigerating compressor with oil cooler | |
US4384460A (en) | Means and method for modulating and controlling the capacity of a vapor compression cycle device | |
US2133966A (en) | Method and apparatus for controlling refrigerating machines | |
US4112701A (en) | Method and means for cooling the oil in a system including a compressor with oil supply, as well as such systems | |
CN103175346B (en) | Oil injection type split-compressor and heat pump | |
US2097539A (en) | Refrigerating apparatus | |
NO133513B (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |