DK146168B - DEEP COOLER - Google Patents

DEEP COOLER Download PDF

Info

Publication number
DK146168B
DK146168B DK437276AA DK437276A DK146168B DK 146168 B DK146168 B DK 146168B DK 437276A A DK437276A A DK 437276AA DK 437276 A DK437276 A DK 437276A DK 146168 B DK146168 B DK 146168B
Authority
DK
Denmark
Prior art keywords
evaporator
refrigerant
liquid
immersion
cooler
Prior art date
Application number
DK437276AA
Other languages
Danish (da)
Other versions
DK146168C (en
DK437276A (en
Inventor
Gustav Sune Heurlin
Original Assignee
Alfa Laval Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alfa Laval Ab filed Critical Alfa Laval Ab
Publication of DK437276A publication Critical patent/DK437276A/en
Publication of DK146168B publication Critical patent/DK146168B/en
Application granted granted Critical
Publication of DK146168C publication Critical patent/DK146168C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler
    • F25D31/003Liquid coolers, e.g. beverage cooler with immersed cooling element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

(19) DANMARK \Ra,(19) DENMARK \ Ra,

da) FREMLÆGGELSESSKRIFT od 146168 Bda) PRESENTATION LETTER od 146168 B

DIREKTORATET FORDIRECTORATE FOR

PATENT- OG VAREMÆRKEVÆSENETTHE PATENT AND TRADEMARK SYSTEM

(21) Patentansøgning nr.: 4372/76 (51) Int.CI.3: F 28 F 13/00 (22) Indleveringsdag: 29 sep 1976 // F 25 B 39/02 (41) Aim. tilgængelig: 31 marl977 (44) Fremlagt: 11 jul 1983 (86) International ansøgning nr.: - (30) Prioritet: 30 sep 1975 SE 7510921 (71) Ansøger: 'ALFA-LAVAL AKTIEBOLAG; S-147 00 Tumba, SE.(21) Patent Application No .: 4372/76 (51) Int.CI.3: F 28 F 13/00 (22) Filing Date: 29 Sep 1976 // F 25 B 39/02 (41) Aim. available: 31 marl977 (44) Submitted: 11 Jul 1983 (86) International application no .: - (30) Priority: 30 Sep 1975 SE 7510921 (71) Applicant: 'ALFA-LAVAL AKTIEBOLAG; S-147 00 Tumba, SE.

(72) Opfinder: Gustav Sune ‘Heurlin; SE.(72) Inventor: Gustav Sune ‘Heurlin; SEE.

(74) Fuldmægtig; Patentbureauet Hofman-Bang & Boutard (54) Dyppekøler(74) Clerk; Patent Office Hofman-Bang & Boutard (54) Immersion cooler

Den foreliggende opfindelse angår en dyppekøler af den i den indledende del af krav 1 angivne art. Ofte er det nævnte rør for tilførsel af kølemedium meget tyndt langs den del af sin strækning, der befinder sig inde i fordamperen således, at et ønsket tryk kan opretholdes i kondensatoren, og en ønsket ekspansion af kølemediet kan opnås i fordamperen. Det er dog også muligt at arrangere en speciel drøvling af røret kun ved den i fordamperen beliggende ende til opnåelse af de ønskede 3 driftsforhold. I praksis anvendte dyppekølere af den nævnte art 5 har i reglen en fordamper i form af to koncentrisk arrangerede - cylindre, der mellem sig afgrænser et i tværsnit ringformet kamli mer for det fordampede kølemedium. Også på anden måde udformede Φ 5 2 :146168 fordampere er dog kendt.The present invention relates to a immersion cooler of the type specified in the preamble of claim 1. Often said said medium for supplying refrigerant is very thin along the part of its section which is located inside the evaporator so that a desired pressure can be maintained in the condenser and a desired expansion of the refrigerant can be obtained in the evaporator. However, it is also possible to arrange a special throttling of the pipe only at the end located in the evaporator to achieve the desired 3 operating conditions. Practically used immersion coolers of the said type 5 usually have an evaporator in the form of two concentrically arranged cylinders, which between them delimit a cross-sectional annular chamber for the evaporated cooling medium. Also otherwise designed Φ 5 2: 146168 evaporators are known.

Et problem, der optræder alment ved dyppekølere af den oven for beskrevne art er, at der ofte dannes et lag af is af den afkølede væske på fordamperens udvendige side, d.v.s. på den side af fordamperen, der vender bort fra det nævnte centrale rum. Årsagen hertil antages at være, at den del af den afkølede væske, der befinder sig i nærheden af denne side af fordamperen, ikke udsættes for lige så stor omrøring som væsken inde i det centrale rum.A problem which generally occurs with immersion coolers of the type described above is that a layer of ice of the cooled liquid is often formed on the outside of the evaporator, i.e. on the side of the evaporator facing away from said central space. The reason for this is assumed to be that the part of the cooled liquid which is located near this side of the evaporator is not exposed to as much agitation as the liquid inside the central space.

På grund af risiko for isdannelse, der vil nedsætte dyppekølerens effektivitet, skal derfor fordampningstemperaturen inde i fordamperen holdes på et højere niveau, end hvad der i mange tilfælde egentlig er ønskeligt. F.eks. ved køling af mælk er det specielt tilstræbt, at isdannelse undgås, idet mælken i tilfælde af en sådan isdannelse får en dårlig smag. På den anden side ønskes der ved afkøling af mælk en så lav temperatur som muligt hos mælken til forhindring af bakterietilvækst i mælken ved opbevaring.Therefore, due to the risk of ice formation which will reduce the efficiency of the immersion cooler, the evaporation temperature inside the evaporator must be kept at a higher level than is actually desirable in many cases. For example. when cooling milk, special effort is made to avoid ice formation, as the milk has a bad taste in the event of such ice formation. On the other hand, when cooling milk, as low a temperature as possible of the milk is desired to prevent bacterial growth in the milk during storage.

Den foreliggende opfindelse har til formål at løse dette problem og derved muliggøre, at maksimal køleeffekt kan udtages af dyppekøleren.The present invention aims to solve this problem and thereby enable maximum cooling power to be taken out of the immersion cooler.

En dyppekøler ifølge opfindelsen er ejendommelig ved det, der er angivet i den kendetegnende del af krav 1.A immersion cooler according to the invention is characterized by what is stated in the characterizing part of claim 1.

Forklaringen på, at det beskrevne arrangement forhindrer isdannelse på den udvendige side. af den væg, som kølemedierøret har kontakt med, er at kølemediet, når det strømmer gennem dette rør, befinder sig i flydende form og har en relativt høj temperatur, d.v.s. den temperatur, som det har opnået i den oven for nævnte kondensator. Når kølemediet derefter ekspanderer i fordamperen, synker mediets temperatur betydeligt. Ved at kølemedierøret har kontakt med den her aktuelle fordampervæg , forhindres det ekspanderende, kolde kølemedium i at nedkøle denne væg til den samme lave temperatur som den imod det céntralerum vendende væg af fordamperen.The explanation that the described arrangement prevents ice formation on the outside. of the wall with which the refrigerant pipe is in contact is that the refrigerant, when flowing through this pipe, is in liquid form and has a relatively high temperature, i.e. the temperature which it has reached in the above-mentioned capacitor. As the refrigerant then expands in the evaporator, the temperature of the medium drops significantly. Because the refrigerant pipe has contact with the evaporator wall here in question, the expanding, cold refrigerant is prevented from cooling this wall to the same low temperature as the wall of the evaporator facing the central room.

Den foreliggende opfindelse kan med fordel tillempes med den type af forud kendt dobbeltkøler, hvis fordamper har form af et skrueformet opviklet rør.The present invention can be advantageously applied with the type of prior art dual cooler whose evaporator is in the form of a helically wound tube.

Opfindelsen skal i det følgende nærmere beskrives med henvisning til tegningen, der viser en dyppekøler af den nævnte type.The invention will be described in more detail below with reference to the drawing, which shows a immersion cooler of the type mentioned.

3 1Λ 616 8 På tegningen er skematisk vist et dyppekølerarrangement, der omfatter en kompressor 1, en kondensator 2 og en til nedsænkning i en væske, der skal køles, beregnet fordamper 3 i form af et nedadtil aflukket, skrueformet rør. En ledning 4, der er beregnet til et kølemedium, strækker sig mellem kompressoren l's trykside og kondensatoren 2. Mellem kondensatoren 2 og fordamperen 3 findes et tyndt rør 5, og mellem fordamperen 3 og kompressorens sugeside findes en ledning 6. Det tynde rør strækker sig ind i fordamperen 3 ved dennes øverste del og fortsætter nedad gennem den og udmunder ved 7 i den nedre del. Inde i fordamperen 3 strækker sig det tynde rør 5 langs med og i varmeoverføren-de kontakt med den del af fordamperrørvæggen, der er vendt radialt udad fra fordamperens centrale akse.3 1Λ 616 8 The drawing schematically shows an immersion cooler arrangement comprising a compressor 1, a condenser 2 and an evaporator 3 intended for immersion in a liquid to be cooled, in the form of a downwardly closed, helical tube. A line 4 intended for a refrigerant extends between the pressure side of the compressor 1 and the condenser 2. Between the condenser 2 and the evaporator 3 there is a thin tube 5, and between the evaporator 3 and the suction side of the compressor there is a line 6. The thin tube extends into the evaporator 3 at its upper part and continues downwards through it and empties at 7 into the lower part. Inside the evaporator 3, the thin tube 5 extends along and in heat-transferring contact with the part of the evaporator tube wall which faces radially outwards from the central axis of the evaporator.

Fordamperen 3 omgiver et centralt rum, gennem hvilket der strækker sig en drejelig aksel 8. Akselen 8 er opadtil forblindet med en motor 9 og bærer i sin nederste ende en propeller 10 , der er indrettet til at afgive en aksialt rettet væskestrømning gennem det nævnte centrale rum, der omgives af fordamperen 3.The evaporator 3 surrounds a central space, through which a rotatable shaft 8 extends. The shaft 8 is upwardly blinded with a motor 9 and carries at its lower end a propeller 10 which is adapted to deliver an axially directed flow of liquid through said central space surrounded by the evaporator 3.

Dyppekølerarrangementet arbejder på følgende måde:The immersion cooler arrangement works as follows:

Medens propelleren 10 afgiver en aksialt rettet strømning af væske, der skal køles, gennem det af fordamperen 3 omgivende centrale rum,komprimeres et gasformigt kølemedium i kompressoren l..Det komprimerede, gasformige kølemedium ledes fra kompressoren 1 til kondensatoren 2, hvor mediet kondenseres til væske. Kondensatorens ind- og udløb for kølemedium, der skal forårsage kondenseringen, er ikke vist på tegningen. Kølemediet strømmer derefter videre i væskeform og under relativt højt tryk gennem røret 5 og inde i dette gennem fordamperen 3. Når kølemediet strømmer ud i fordampningskammeret ved fordamperen 3's nedre del, ekspanderer mediet og overgår til gasform. Derved synker temperaturen i kølemediet kraftigt, og varme begynder at blive overført til dette medium fra den væske, der omgiver fordamperen 3, hvilken væske derfor afkøles. Det fordampede kølemedium strømmer videre opad gennem fordamperen 3 og derefter videre gennem ledningen 6While the propeller 10 emits an axially directed flow of liquid to be cooled through the central space surrounding the evaporator 3, a gaseous cooling medium is compressed in the compressor 1. The compressed gaseous cooling medium is led from the compressor 1 to the condenser 2, where the medium is condensed to liquid. The condenser inlet and outlet for the refrigerant that is to cause the condensation are not shown in the drawing. The refrigerant then flows further in liquid form and under relatively high pressure through the tube 5 and inside this through the evaporator 3. When the refrigerant flows out into the evaporation chamber at the lower part of the evaporator 3, the medium expands and changes to gaseous form. Thereby, the temperature in the refrigerant drops sharply and heat begins to be transferred to this medium from the liquid surrounding the evaporator 3, which liquid is therefore cooled. The evaporated refrigerant flows further upwards through the evaporator 3 and then further through the line 6

DK437276A 1975-09-30 1976-09-29 DEEP COOLER DK146168C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7510921 1975-09-30
SE7510921A SE394025B (en) 1975-09-30 1975-09-30 BAPTISM COOLER

Publications (3)

Publication Number Publication Date
DK437276A DK437276A (en) 1977-03-31
DK146168B true DK146168B (en) 1983-07-11
DK146168C DK146168C (en) 1983-12-05

Family

ID=20325671

Family Applications (1)

Application Number Title Priority Date Filing Date
DK437276A DK146168C (en) 1975-09-30 1976-09-29 DEEP COOLER

Country Status (11)

Country Link
AT (1) AT343702B (en)
BE (1) BE846169A (en)
CH (1) CH596521A5 (en)
DE (2) DE7627359U1 (en)
DK (1) DK146168C (en)
ES (1) ES451771A1 (en)
FI (1) FI61356C (en)
FR (1) FR2347633A1 (en)
IE (1) IE43615B1 (en)
IT (1) IT1065939B (en)
SE (1) SE394025B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE424772B (en) * 1980-07-25 1982-08-09 Pertinex Ab HEAT PUMP VAPOR
DE19654790C1 (en) * 1996-12-31 1998-07-16 Weiss Umwelttechnik Gmbh Heat exchanger for environmental chamber
CN108387044A (en) * 2018-04-24 2018-08-10 江苏省宜兴中等专业学校 A kind of ethylene oxide refrigerating plant

Also Published As

Publication number Publication date
ES451771A1 (en) 1977-08-16
DE7627359U1 (en) 1978-07-20
FR2347633B1 (en) 1979-09-28
FR2347633A1 (en) 1977-11-04
ATA655176A (en) 1977-10-15
FI762380A (en) 1977-03-31
IE43615B1 (en) 1981-04-08
SE7510921L (en) 1977-03-31
DK146168C (en) 1983-12-05
AT343702B (en) 1978-06-12
CH596521A5 (en) 1978-03-15
SE394025B (en) 1977-05-31
DE2639383A1 (en) 1977-04-07
FI61356B (en) 1982-03-31
FI61356C (en) 1982-07-12
IT1065939B (en) 1985-03-04
IE43615L (en) 1977-03-30
DK437276A (en) 1977-03-31
BE846169A (en) 1977-03-14

Similar Documents

Publication Publication Date Title
JP3343142B2 (en) refrigerator
US2493488A (en) Two temperature refrigerator, including a humidity control system
US2133949A (en) Refrigeration apparatus
US2512576A (en) Refrigerating method and apparatus
US3218825A (en) Refrigerating apparatus including means for cooling compressor motor
US2095008A (en) Refrigerating apparatus
US2909907A (en) Refrigerating apparatus with hot gas defrost means
US2165480A (en) Refrigerating apparatus
US2120185A (en) Refrigerating apparatus
DK146168B (en) DEEP COOLER
US2146797A (en) Refrigerating apparatus
US2640327A (en) Dual evaporator refrigeration apparatus
US2581044A (en) Refrigerating system
US2133951A (en) Refrigeration apparatus
US2172129A (en) Refrigerating apparatus
US20050247077A1 (en) Evaporator for a refrigeration system
JPH0755273A (en) Refrigeration system and refrigerator
US2329139A (en) Refrigerating apparatus
US2240284A (en) Refrigerating apparatus
US2239583A (en) Refrigerating system
US2446946A (en) Two-temperature refrigeration system
US2836964A (en) Refrigerating device comprising a gas-refrigerator
US1955087A (en) Refrigerating apparatus
US2436945A (en) Two temperature absorption refrigerating apparatus and method
US2219789A (en) Refrigerator

Legal Events

Date Code Title Description
PBP Patent lapsed