DK144784B - encapsulation - Google Patents

encapsulation Download PDF

Info

Publication number
DK144784B
DK144784B DK139873AA DK139873A DK144784B DK 144784 B DK144784 B DK 144784B DK 139873A A DK139873A A DK 139873AA DK 139873 A DK139873 A DK 139873A DK 144784 B DK144784 B DK 144784B
Authority
DK
Denmark
Prior art keywords
encapsulated
water
approx
reaction
aqueous phase
Prior art date
Application number
DK139873AA
Other languages
Danish (da)
Other versions
DK144784C (en
Inventor
H B Scher
Original Assignee
Stauffer Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stauffer Chemical Co filed Critical Stauffer Chemical Co
Publication of DK144784B publication Critical patent/DK144784B/en
Application granted granted Critical
Publication of DK144784C publication Critical patent/DK144784C/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)
  • Fats And Perfumes (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fireproofing Substances (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

(19) DANMARK(19) DENMARK

|p (12, FREMUEGGELSESSKRIFT <„) 14478¼B| p (12, PREFACE SCRIPTURE <„) 14478¼B

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM

(21) Ansøgning nr. 1598/75 (51) IntCI.3 B 01 J 13/02 (22) Indleveringsdag 1 5 · niar · 1 975 (24) Løbedag 15· mar. 1975 (41) Aim. tilgængelig 1 6. sep. 1975 (44) Fremlagt 7· jun. 1982 (86) International ansøgning nr. -(86) International indleveringsdag -(85) Videreførelsesdag (62) Stamansøgning nr.(21) Application No. 1598/75 (51) IntCI.3 B 01 J 13/02 (22) Submission date 1 5 · niar · 1 975 (24) Running day 15 · mar. 1975 (41) Aim. available 1 Sep 6 1975 (44) Posted 7 Jun. 1982 (86) International application no. - (86) International filing day - (85) Continuation day (62) Master application no.

(30) Prioritet 15. raar. 1972, 25^795* US 12· Jan. 1975* 525171, US(30) Priority 15. weird. 1972, 25 ^ 795 * US 12 · Jan. 1975 * 525171, US

(71) Ansøger STAUFFER CHEMICAL COMPANY, Westport, US.(71) Applicant STAUFFER CHEMICAL COMPANY, Westport, US.

(72) Opfinder Herbert Benson Scher, US.(72) Inventor Herbert Benson Scher, US.

(74) Fuldmægtig Firmaet Chas. Hude.(74) Associate Company Chas. Hude.

(54) Indkapslings fremgangs måde.(54) The way of encapsulation.

Fremgangsmåde til indkapsling af en hydrofob væske eller opløsning i en omhylning af polyurinstof.Process for encapsulating a hydrophobic liquid or solution in a polyurea wrapper.

Opfindelsen angår en fremgangsmåde til indkapsling af en hydrofob væske eller opløsning i en omhylning af polyurinstof.The invention relates to a method for encapsulating a hydrophobic liquid or solution in a polyurea enclosure.

Opfindelsen tjener til fremstillingen af mindre eller ganske små kapsler, som har en membran eller tynd væg og et legeme af et eller andet materiale, f.eks. en væske.The invention is for the manufacture of small or very small capsules having a membrane or thin wall and a body of some material, e.g. a liquid.

i Kapslerne har en række anvendelser, såsom til indeslutning af farve stoffer, sværter, kemiske reagenser, farmaceutisk virksomme stoffer, smagsstoffer, fungicider, baktericider og pesticider såsom herbicider, insekticider og lignende, hvilke stoffer kan være opløst,suspenderet eller på anden måde dispergeret i eller som det materiale, der skal indesluttes af kapslen.The Capsules have a variety of uses, such as for the containment of colorants, inks, chemical reagents, pharmaceuticals, flavors, fungicides, bactericides and pesticides such as herbicides, insecticides and the like, which may be dissolved, suspended or otherwise dispersed in or as the material to be enclosed by the capsule.

2 1447842 144784

Materialet, son skal indkapsles, kan anvendes i den oprindelige dispersion ved en temperatur over dets smletepunkt, eller opløses eller dispergeres i passende organiske opløsningsmidler, som ikke er blandbare med vand. Karakteren af det med vand ikke blandbare materiale, som skal indkapsles, kan i sin oprindelse være organisk eller uorganisk. Når materialet er indkapslet,opretholdes væsken eller anden form indtil den frigøres ved hjælp af visse hjælpemidler eller instrumenter, som bryder, knuser, smelter, opløser eller på anden måde fjerner kapselhuden, eller indtil der sker frigørelse ved diffusion under passende betingelser. Et særligt vigtigt træk ved nærværende opfindelse sammen med andre træk og fordele, som kommer på tale ved nærværende opfindelse, er fremgangsmåden til polymerisation, som indebærer reaktion mellem polyisocyanatmonomere til dannelse af en kapselhud af polyurinstof.The material to be encapsulated can be used in the original dispersion at a temperature above its melting point, or dissolved or dispersed in suitable organic solvents which are immiscible with water. The nature of the water-immiscible material to be encapsulated may in its origin be organic or inorganic. When the material is encapsulated, the liquid or other form is maintained until released by certain aids or instruments which break, crush, melt, dissolve or otherwise remove the capsule skin or until release by diffusion under appropriate conditions. A particularly important feature of the present invention, along with other features and advantages of the present invention, is the process of polymerization which involves the reaction of polyisocyanate monomers to form a capsule skin of polyurea.

Der er tidligere blevet anvendt eller beskrevet en lang række metoder til indkapslingsformål. Blandt disse er fremgangsmåden, hvori den indesluttende film afsættes ved kondensation, og andre metoder, som indebærer polymer!sering af et stof, som er indeholdt i dråber eller i en omgivende kontinuerlig væskefase, således at den resulterende polymere afsættes på overfladen af sådanne dråber. En anden fremgangsmåde indebærer skydning af dråber gennem en faldende film af flydende kapselvægmateriale, som derefter størkner omkring de individuelle dråber. Der kendes forskellige fremgangsmåder til indkapsling ved grænsefladekondensation mellem direkte virkende komplementære reagenter. Blandt disse fremgangsmåder er reaktioner til fremstilling af forskellige typer polymere som kapselvægge. Mange sådanne reaktioner til fremstilling af overtræksstoffet sker mellem en amin, som må have mindst difunktionel karakter, og et andet reagerende mellemprodukt af syre eller nærmere angivet syre-afledt karakter, som til fremstilling af et polyamid er et difunktionelt eller poly= funktionelt syrechlorid. De mest anvendte eller foreslåede aminer ved disse fremgangsmåder eksemplificeres af ethylendiamin eller lignende med mindst to primære aminogrupper.A variety of methods have been used or described for encapsulation purposes in the past. Among these are the process in which the enclosing film is deposited by condensation, and other methods involving polymerization of a substance contained in droplets or in a surrounding continuous liquid phase such that the resulting polymer is deposited on the surface of such droplets. Another approach involves shooting droplets through a falling film of liquid capsule wall material, which then solidifies around the individual droplets. Various methods of encapsulation by interface condensation between directly acting complementary reagents are known. Among these methods are reactions to prepare various types of polymers such as capsule walls. Many such reactions for the preparation of the coating occur between an amine which must have the least difunctional character and another reacting intermediate of acid or, more specifically, the acid-derived character, which for the preparation of a polyamide is a difunctional or poly-functional acid chloride. The most commonly used or suggested amines in these processes are exemplified by ethylenediamine or the like with at least two primary amino groups.

Til mange indkapslingsmetoder er der til slut et krav, om at de indkapslede materialer skal skilles fra dannelsesmediet. Under denne behandlingsproces underkastes kapselvægmaterialet store 3 U4784 spændinger og belastninger. Af denne årsag er den meget ønskede tynde hud eller cellevæg særdeles begrænset ved tidligere kendte fremgangsmåder. Et særligt formål med nærværende opfindelse er tilvejebringelsen af en hidtil ukendt og forbedret indkapslingsmetode, som er hurtig og effektiv, og som undgår nødvendigheden af fraskillelse af det indkapslede materiale. En særlig fordel er derfor den mulige dannelse af særdeles tynd hud eller cellevæg i forbindelse med kapslerne.Finally, for many encapsulation methods, there is a requirement that the encapsulated materials be separated from the formation medium. During this treatment process, the capsule wall material is subjected to high stresses and stresses. For this reason, the much desired thin skin or cell wall is extremely limited by methods known in the art. A particular object of the present invention is to provide a novel and improved encapsulation method which is fast and efficient and avoids the necessity of separation of the encapsulated material. A particular advantage is therefore the possible formation of extremely thin skin or cell wall in connection with the capsules.

Grænsefladepolymerisation indebærer sædvanligvis, at to ikke blandbare væsker, f.eks. henholdsvis vand og organisk opløsningsmiddel indeholdende komplementære, direkte virkende organiske mellemprodukter, som vil reagere med hinanden til tilvejebringelse af et fast polykondensat, bringes sammen. Sådanne polykondensater, såsom et polyamid, en polyester, en polyurethan, et polyurinstof eller lignende stoffer kan dannes ud fra harpiksmellemprodukter eller monomere. Det er også blevet foreslået at sprøjte dråber af organisk opløsningsmiddel indeholdende et disyrechlorid ind i en vandig væske indeholdende f.eks. ethylenglycol med det formål at indkapsle den organiske væske eller olie i polyesterkapsler. Disse forsøg har imidlertid kun haft ringe praktisk værdi i forskellige henseender.Interface polymerization usually implies that two immiscible liquids, e.g. water and organic solvent, respectively, containing complementary, direct-acting organic intermediates, which will react with each other to provide a solid polycondensate, are brought together. Such polycondensates, such as a polyamide, a polyester, a polyurethane, a polyurea, or similar substances can be formed from resin intermediates or monomers. It has also been proposed to spray droplets of organic solvent containing a diacid chloride into an aqueous liquid containing e.g. ethylene glycol for the purpose of encapsulating the organic liquid or oil in polyester capsules. However, these trials have had little practical value in various respects.

Der kræves f.eks. et særligt apparat til denne metode. Forskellige forsøg har endvidere vist vanskeligheden ved at tilvejebringe de ønskede kapsler i diskret form, hvorved der vil ske sammensmeltning af de delvis formede kapsler til en heterogen materialemasse, som mangler adskilt kapseldannelse. Kontrol med kapselstørrelse eller ensartethed er besværlig ved tidligere kendte fremgangsmåder. Fremgangsmåderne synes at være begrænset af reaktionstyperne og de pågældende produkter. En særlig indkapslingsmetode ved grænseflade-polykondensation beskrives i U.S.A. patent 3.577.515, udstedt 4. maj 1971. Dette patentskrift angiver en kontinuerlig eller portionsvis fremgangsmåde, som kræver en første reaktant og en anden reaktant, som er komplementær til den første reaktant, med hver reaktant i separat fase, således at den første og den anden reaktant reagerer på grænsefladen mellem dråberne til dannelse af indkapslede dråber. Som det fremgår af det følgende, fjerner nærværende opfindelse nødvendigheden af en anden reaktant, idet det har vist sig, at en indkapslingsmasse af polyurinstoftype kan dannes med stor lethed og give særlige fordele.For example, a special apparatus for this method. Furthermore, various experiments have shown the difficulty of providing the desired capsules in discrete form, whereby the partially formed capsules will be fused to a heterogeneous mass of material lacking separate capsule formation. Capsule size control or uniformity is troublesome in prior art methods. The procedures appear to be limited by the reaction types and the products in question. A special encapsulation method for interface polycondensation is described in U.S.A. U.S. Patent 3,577,515, issued May 4, 1971. This patent discloses a continuous or portion process requiring a first reactant and a second reactant complementary to the first reactant with each reactant in a separate phase so that the first and the second reactant reacts at the interface between the droplets to form encapsulated droplets. As will be apparent from the following, the present invention removes the need for another reactant, as it has been found that a polyurea type encapsulating mass can be formed with great ease and confer particular advantages.

4 1U7844 1U784

Fremgangsmåden ifølge opfindelsen er kendetegnet ved, at a) der i en vandig fase tilberedes en opløsning, som indeholder vand og eventuelt et overfladeaktivt stof, fortrinsvis 0,01-3,0 vægt%, beregnet på den vandige fase, b) denne vandige fase tilsættes en organisk fase, som omfatter det hydrofobe materiale, der skal indkapsles,og et polyisocyanat, fortrinsvis et aromatisk polyisocyanat eller en blanding af polyisocy= . anater, c) den organiske fase dispergeres i den vandige fase for at danne smådråber af den organiske fase i den vandige fase, og d) et beskyttelseskolloid, fortrinsvis 0,1-5,0 vægt%, beregnet på den vandige fase, tilsættes enten ved tilberedning af den vandige fase eller efter dispergeringen.The process according to the invention is characterized in that a) a solution is prepared in an aqueous phase containing water and optionally a surfactant, preferably 0.01-3.0% by weight, based on the aqueous phase, b) this aqueous phase an organic phase is added which comprises the hydrophobic material to be encapsulated and a polyisocyanate, preferably an aromatic polyisocyanate or a mixture of polyisocy. anates, c) the organic phase is dispersed in the aqueous phase to form droplets of the organic phase in the aqueous phase, and d) a protective colloid, preferably 0.1-5.0% by weight, based on the aqueous phase, is added either by preparing the aqueous phase or after the dispersion.

I modsætning til de hidtil kendte fremgangsmåder og svarende til en foretrukket udførelsesform for opfindelsen opnås der en virksom indkapsling ved grænsefladepolymerisation af et di- eller polyisocyanat ved hjælp af en fremgangsmåde, hvor der tilsættes to i det væsentlige ikke med hinanden blandbare væsker, hvoraf den ene er en vandig og den anden en organisk fase, af hvilken der fremstilles en dispersion, og den organiske fase indeholder isocyanatet til dannelse af kapselvæggen af polyurinstof. Ved fremgangsmåden ifølge opfindelsen til dannelsen af kapselvæggen ved hjælp af grænsefladepolymerisation, hydro= lyseres en isocyanatmonomer under dannelse af en amin, som igen reagerer med yderligere isocyanatmonomere under dannelse af polyurinstof-omhylningen. Under hydrolysen af den isocyanatmonomere frigøres CC^.Contrary to the known methods and corresponding to a preferred embodiment of the invention, an effective encapsulation is obtained by the interfacial polymerization of a di- or polyisocyanate by a process in which two substantially immiscible liquids are added, one of which is is an aqueous and the other an organic phase from which a dispersion is prepared and the organic phase contains the isocyanate to form the capsule wall of polyurea. In the process of the invention for the formation of the capsule wall by interface polymerization, an isocyanate monomer is hydrolyzed to form an amine which in turn reacts with additional isocyanate monomers to form the polyurea envelope. During the hydrolysis of the isocyanate monomer, CC 2 is released.

Når man én gang har fremstillet den dispersion, som fører til dannelse af smådråber af organisk fase en homogen flydende fase, dvs. den vandige fase, kræves der ikke tilsætning af en yderligere reaktionskomponent. Efter fremstillingen af dispersionen gennemføres dannelsen af poly= urinstofomhylningerne om de dispergerede smådråber ved opvarmning af den homogene flydende fase eller ved indføring af en katalytisk mængde af en amin, eller et andet stof, som accelererer isocyanatets hydro= 5 144784 lysehastighed, såsom f.eks. tri-n-butyltinacetat, hvorhos yderligere dispersionens pH-værdi til enhver tid kan indstilles til den ønskede værdi, og herunder den ønskede kondensationsreaktion på grænsefladerne mellem faserne finde sted.Once the dispersion leading to the formation of organic phase droplets has been prepared, a homogeneous liquid phase, i.e. in the aqueous phase, no additional reaction component is required. Following the preparation of the dispersion, the formation of the polyurea envelopes on the dispersed droplets is effected by heating the homogeneous liquid phase or by introducing a catalytic amount of an amine or other substance which accelerates the rate of light of the isocyanate, such as e.g. . tri-n-butyltin acetate, wherein further the pH of the dispersion can be adjusted at any time to the desired value, including the desired condensation reaction at the interfaces between the phases.

På denne måde dannes i enhver henseende fuldt tilfredsstillende enkelt kapsler, hvis væg består af det ved reaktionen dannede poly= urinstof, og som indeholder den organiske fase. Ved fremgangsmåden ifølge opfindelsen er reaktionen, som danner kapselvæggen i almindelighed fuldstændig, således at der i alt væsentligt intet uomsat poly= isocyanat bliver tilbage. Til mange anvendelser er det ikke nødvendigt at skille kapslerne fra den homogene fase, dvs. det omhyllede materiale kan anvendes direkte. En fraskillelse forud for anvendelsen kan dog gennemføres ved hjælp af en vilkårlig af de normale fraskillelses-metoder omfattende f.eks. bundfældning, filtrering eller skumning af de samlede kapsler, vaskning og ønsket tørring. Det ved hjælp af fremgangsmåden ifølge opfindelsen opnåede produkt er særlig velegnet til direkte anvendelse til bekæmpelse af skadelige organismer, hvorhos der kan tilsættes yderligere stoffer, såsom fortykkelsesmidler, bio= cider, overfladeaktive midler, dispergeringsmidler til at forbedre lagringsstabiliteten og gøre anvendelsen lettere. Som hjælpemidler ved fremstillingen af den indledende dispersion af den organiske fase i den vandige fase,kan der tilsættes et egnet emulgerings- eller dis= pergeringshjælpemiddel, og en styring af fremgangsmåden med hensyn til størrelsen og homogeniteten af de til sidst opnåede kapsler kan foregå ved hjælp af sædvanlige fremgangsmåder, som finder anvendelse ved dispergering af én væske i en anden.In this way, in any respect, fully satisfactory single capsules are formed, the wall of which consists of the polyurea formed in the reaction and which contains the organic phase. In the process of the invention, the reaction which forms the capsule wall is generally complete, leaving essentially no unreacted polyisocyanate. For many applications, it is not necessary to separate the capsules from the homogeneous phase, ie. the wrapped material can be used directly. However, a separation prior to use may be effected by any of the normal separation methods comprising e.g. precipitation, filtration or foaming of the total capsules, washing and desired drying. The product obtained by the process according to the invention is particularly well suited for direct use to control harmful organisms to which additional substances such as thickeners, biocides, surfactants, dispersants can be added to improve storage stability and facilitate use. As aids in the preparation of the initial dispersion of the organic phase in the aqueous phase, a suitable emulsifying or dispersing aid may be added and a control of the process with respect to the size and homogeneity of the finally obtained capsules may be effected by means of of conventional methods applicable to dispersing one liquid in another.

Tre foretrukne udførelsesformer for fremgangsmåden ifølge opfindelsen til fremstilling af kapseldispersioner fremgår af de på tegningen viste blokdiagrammer, fig. 1, fig. 2 og fig. 3.Three preferred embodiments of the method according to the invention for preparing capsule dispersions are shown in the block diagrams shown in the drawing. 1, FIG. 2 and FIG. Third

Ved gennemførelsen af fremgangsmåden ifølge opfindelsen går man altid således frem, at man først, f.eks. ved simpel omrøring,fremstiller en opløsning, som indeholder vand, et egnet overfladeaktivt stof og en be-skyttelseskolloid. Disse tre bestanddele danner den vandige eller homo= gene fase til fremgangsnåden. Den vandige fase indeholder i det væsentlige ingen bestanddele som på nogen måde kan reagerer med i den vandige fase indeholdt materiale, eller en gruppe af sådanne materialer. Det 6 1447 84 overfladeaktive stof og beskyttelseskolloid i den vandige fase deltager ikke i polykondensationsreaktionen, ved hvilken kapselvæggen dannes.In carrying out the method according to the invention, it is always stated that first, e.g. by simple stirring, prepares a solution containing water, a suitable surfactant and a protective colloid. These three components form the aqueous or homogeneous phase of the process. The aqueous phase contains substantially no constituents which can in any way react with material contained in the aqueous phase, or a group of such materials. The aqueous phase surfactant and protective colloid do not participate in the polycondensation reaction at which the capsule wall is formed.

Som en yderligere eksemplificering kan de overfladeaktive midler i den vandige eller kontinuerlige fase beskrives som ikke-ioniske, anioniske eller kationiske overfladeaktive midler i HLB-(hydrophil-lipophil -balance-) området fra ca. 12 til ca. 16. Der er mange overfladeaktive midler, som tilfredsstiller dette HLB-områdekrav. Blandt de acceptable overfladeaktive midler er forbindelserne, der kendes som natriumisopropyInaphthalensulfonat, polyoxyethylensorbitololeat= laurat og ethoxylerede nonylphenoler, de foretrukne overfladeaktive midler er imidlertid af arten polyethylenglycolethre af lineære alkoholer. Skønt det overfladeaktive middel her beskrives som værende i den vandige fase, kan det også anbringes i den organiske fase. Uden særlig henvisning til fasen, hvori det overfladeaktive middel anbringes, vil der være en deling og fordeling af det overfladeaktive middel mellem hver fase efter blanding af faserne afhængigt af den relative opløselighed deri. Anvendelsen af et overfladeaktivt middel kan udelades, forudsat at der anvendes en tilstrækkelig stor forskydningshastighed til dannelse af dispersionen.As a further example, in the aqueous or continuous phase, the surfactants can be described as nonionic, anionic or cationic surfactants in the HLB (hydrophilic-lipophilic balance) range of approx. 12 to approx. 16. There are many surfactants that meet this HLB area requirement. Among the acceptable surfactants are the compounds known as sodium isopropylinaphthalenesulfonate, polyoxyethylene sorbitol oleate laurate and ethoxylated nonylphenols, however, the preferred surfactants are of the polyethylene glycol ethers of linear alcohols. Although the surfactant herein is described as being in the aqueous phase, it can also be applied to the organic phase. Without particular reference to the phase in which the surfactant is placed, there will be a division and distribution of the surfactant between each phase after mixing of the phases, depending on the relative solubility therein. The use of a surfactant can be omitted, provided that a sufficiently high shear rate is used to form the dispersion.

I den foretrukne udførelsesform af nærværende opfindelse anvendes et overfladeaktivt middel. Området for koncentrationen af overfladeaktivt middel, som har vist sig mest acceptabelt i dette system, er fra ca. 0,01 til ca. 3,0 vægt% på basis af den vandige fase. Der kan anvendes højere koncentrationer af overfladeaktivt middel uden øget dispergeringslethed.In the preferred embodiment of the present invention, a surfactant is used. The range of surfactant concentration, which has proven most acceptable in this system, is from ca. 0.01 to approx. 3.0% by weight of the aqueous phase. Higher surfactant concentrations can be used without increased dispersion ease.

I den vandige eller kontinuerlige fase findes endvidere et beskyttende kolloid, som kan være valgt fra en lang række af sådanne materialer. De anvendelige beskyttende kolloider kan eksemplificeres ved hjælp af følgende: Polyacrylater, methylcellulose, polyvinyl= alkohol, polyacrylamid og poly(methylvinylether/maleinsyreanhydrid). Den anvendte mængde kolloid vil afhænge af forskellige faktorer, såsom molekylvægt, art og effektivitet i mediet, forenelighed og lignende. Det har vist sig, at det beskyttende kolloid kan tilsættes til den vandige fase forud for tilsætningen af den organiske fase til den vandige fase. Det beskyttende kolloid kan alternativt tilsættes til systemet efter tilsætningen af den organiske fase eller 7 U4784 efter dispergeringen deraf. Som et andet alternativ kan det beskyttende kolloid tilsættes delvis forud for tilsætningen af den organiske fase og delvis efter dispergeringstrinnet. Der anvendes sædvanligvis fra ca. 0,1 til ca. 5,0 vægt% på basis af den vandige fase.In the aqueous or continuous phase, there is also a protective colloid which may be selected from a wide variety of such materials. The useful protective colloids can be exemplified by the following: Polyacrylates, methyl cellulose, polyvinyl alcohol, polyacrylamide and poly (methyl vinyl ether / maleic anhydride). The amount of colloid used will depend on various factors such as molecular weight, nature and efficiency of the medium, compatibility and the like. It has been found that the protective colloid can be added to the aqueous phase prior to the addition of the organic phase to the aqueous phase. Alternatively, the protective colloid may be added to the system after the addition of the organic phase or after its dispersion. As another alternative, the protective colloid may be added partially prior to the addition of the organic phase and partly after the dispersion step. It is usually used from approx. 0.1 to approx. 5.0% by weight based on the aqueous phase.

En anden fase, benævnt som den organiske fase, omfatter materialet, som skal indkapsles, og et polyisocyanat. Materialet, som skal ind-kapsles, kan anvendes i en koncentreret form eller i en opløsning af et med vand ikke-blandbart opløsningsmiddel. Materialet, som skal indkapsles, kan anvendes som opløsningsmidlet for polyisocyanatet.Another phase, referred to as the organic phase, comprises the material to be encapsulated and a polyisocyanate. The material to be encapsulated can be used in a concentrated form or in a solution of a water-immiscible solvent. The material to be encapsulated can be used as the solvent for the polyisocyanate.

Til opnåelse af en ønsket koncentration af aktivt materiale i slutproduktet kan der imidlertid anvendes et med vand ikke blandbart organisk opløsningsmiddel til at opløse materialet, som skal indkapsles, og polyisocyanatet. Materialet, som skal indkapsles, og polyisocyanatet tilsættes samtidigt til den vandige fase. Skønt materialet, som skal indkapsles, og polyisocyanatet kan tilsættes separat under langsom omrøring i reaktionsbeholderen i et tidsrum tilstrækkelig til at forårsage en homogen organisk opløsning, er den foretrukne fremgangsmåde samtidig tilsætning af den organiske fases komponenter i en forblandet tilstand. Det vil sige, at materialet, som skal indkapsles, og polyisocyanatet forblandes til opnåelse af en homogen fase før tilsætning til og blanding med den vandige fase. Mængden af den organiske fase kan variere fra ca. 1 til ca. 75 volumen^ af den vandige fase, som er til stede i reaktionsbeholderen. Koncentrationerne i den nedre del af dette område er forholdsvis uønskede, da de giver en meget fortyndet kapselsuspension, Den foretrukne mængde organisk fase er ca. 25 til ca. 50 volumen^.However, to obtain a desired concentration of active material in the final product, a water-immiscible organic solvent can be used to dissolve the material to be encapsulated and the polyisocyanate. The material to be encapsulated and the polyisocyanate are simultaneously added to the aqueous phase. Although the material to be encapsulated and the polyisocyanate can be added separately with slow stirring in the reaction vessel for a period of time sufficient to cause a homogeneous organic solution, the preferred method is the simultaneous addition of the organic phase components in a premixed state. That is, the material to be encapsulated and the polyisocyanate are premixed to obtain a homogeneous phase prior to addition to and mixing with the aqueous phase. The amount of the organic phase can vary from approx. 1 to approx. 75 volumes of the aqueous phase present in the reaction vessel. Concentrations in the lower part of this range are relatively undesirable as they give a very dilute capsule suspension. The preferred amount of organic phase is approx. 25 to approx. 50 volumes ^.

Karakteren af det organiske polyisocyanat bestemmer frigørelsesegenskaberne af kapslen dannet ved denne fremgangsmåde. Polyisocyanaterne bestemmer endvidere den strukturelle fysiske styrke af kapselhuden.The nature of the organic polyisocyanate determines the release properties of the capsule formed by this process. The polyisocyanates further determine the structural physical strength of the capsule skin.

De organiske polyisocyanater, som der er tænkt på ved denne fremgangsmåde, omfatter de medlemmer af den aromatiske polyisocyanat-klasse, som omfatter de aromatiske diisocyanater, den aliphatiske diisocyanatklasse, lineære aliphatiske diisocyanater med høj molekylvægt og isocyanatprepolymere. Repræsentanter for de aromatiske diisocyanater og de andre polyisocyanater er følgende:The organic polyisocyanates contemplated by this process include those members of the aromatic polyisocyanate class which comprise the aromatic diisocyanates, the aliphatic diisocyanate class, high molecular weight aliphatic diisocyanates and isocyanate prepolymers. Representatives of the aromatic diisocyanates and the other polyisocyanates are as follows:

q U478Aq U478A

OISLAND

l-chlor-2,4-phenylendiisocyanat m-phenylendii so cyanat p-phenylendiisocyanat 4,4’-methylenbis-(phenylisocyanat) 2,4-tolylendiisocyanat toly1endiisocyanat (60% 2,4-isomer, 40% 2,6-isomer) 2,6-tolylendiisocyanat 3,3'-dimethy1-4,4'-biphenylendiisocyanat 4,4'-methylenbis-(2-methylphenylisocyanat) 3,3’-dimethoxy-4,4 *-biphenylendiisocyanat 2,21,5,5'-tetramethyl-4,4'-biphenylendiisocyanat 80% 2,4- og 20% 2,6-isomer af tolylendiisocyanat p olymethylenpolyphenyli so cyanat (PAPI).1-Chloro-2,4-phenylene diisocyanate m-phenylenedii so cyanate p-phenylene diisocyanate 4,4'-methylenebis (phenylisocyanate) 2,4-tolylene diisocyanate thiolene diisocyanate (60% 2,4-isomer, 40% 2,6-isomer) 2,6-tolylene diisocyanate 3,3'-dimethyl-4,4'-biphenylene diisocyanate 4,4'-methylenebis- (2-methylphenylisocyanate) 3,3'-dimethoxy-4,4 * -biphenylene diisocyanate 2,21,5,5 -tetramethyl-4,4'-biphenylene diisocyanate 80% 2,4- and 20% 2,6-isomer of tolylene diisocyanate p olymethylene polyphenyli cyanate (PAPI).

Det er særdeles ønskeligt at anvende kombinationer af de ovenfor nævnte organiske polyisocyanater. Sådanne kombinationer, som f.eks. polymethylenpolyphenylisocyanat og tolylendiisocyanat indeholdende 80% 2,4- og 20% 2,6-isomere giver glimrende kapselindeslutninger med enestående styrede frigørelsesegenskaber.It is highly desirable to use combinations of the above-mentioned organic polyisocyanates. Such combinations, e.g. polymethylene polyphenyl isocyanate and tolylene diisocyanate containing 80% 2.4- and 20% 2.6-isomers provide excellent capsule inclusions with uniquely controlled release properties.

Mængden af organisk polyisocyanat, som anvendes ved fremgangsmåden, vil bestemme vægindholdet i kapslerne dannet derved. Der vil almindeligvis på basis af den organiske fase være mere end ca. 2 vægt% organisk polyisocyanat til stede. Dette er imidlertid på ingen måde .begrænsende, og der kan anvendes en større mængde, som nærmer sig 100%. 100% vil naturligvis ikke være helt ønskeligt, da dette vil resultere i et produkt uden indkapslet materiale. Det foretrukne område er fra ca. 2,0 til ca. 75 vægt% organisk polyisocyanat, idet der derved dannes et indkapslet materiale med et tilsvarende vægindhold, d.v.s. ca. 2,0 til ca. 75,0%. Det foretrukne område er nærmere angivet fra ca. 5,0 til ca. 50,0% vægindhold.The amount of organic polyisocyanate used in the process will determine the wall content of the capsules formed thereby. Generally, on the basis of the organic phase, there will be more than approx. 2% by weight of organic polyisocyanate present. However, this is by no means limiting and a greater amount approaching 100% can be used. Of course, 100% will not be completely desirable as this will result in a product without encapsulated material. The preferred range is from approx. 2.0 to approx. 75% by weight of organic polyisocyanate, thereby forming an encapsulated material having a corresponding wall content, i.e. ca. 2.0 to approx. 75.0%. The preferred range is specified from ca. 5.0 to approx. 50.0% wall content.

Ved fremgangsmåden ifølge opfindelsen, som anvender de to ovenfor beskrevne i det væsentlige ikke blandbare faser, går man ved de foretrukne udførelsesformer frem efter følgende almene fremgangsmådetrin: det væsentlige bliver der ifølge fremgangsmåden fremstillet en dis= persion af den organiske fase i den vandige (homogene) fase, hvorved 144784 9 der er dispergeret smådråber af den organiske fase af ønsket størrelse i den vandige fase. Den ønskede kondensationsreaktion bevirkes derefter ved indstilling af pH af den resulterende blanding og temperaturen indenfor det passende temperaturområde på grænsefladerne mellem dråberne og den kontinuerlige fase, fig. 1. Visse variationer i rækkefølgen af trinene mellem indstilling af pH og tilførelse af nødvendig varme vil fremgå i den følgende diskussion og de følgende eksempler.In the process of the invention, which uses the two essentially immiscible phases described above, the preferred embodiments proceed according to the following general process steps: essentially, a dispersion of the organic phase in the aqueous (homogeneous) phase is prepared. ) phase, whereby droplets of the organic phase of the desired size are dispersed in the aqueous phase. The desired condensation reaction is then effected by adjusting the pH of the resulting mixture and the temperature within the appropriate temperature range on the interfaces between the droplets and the continuous phase. 1. Certain variations in the order of the steps between adjusting the pH and applying the required heat will appear in the following discussion and the following examples.

Temperaturen af to-faseblandingen, d.v.s. dispersionen af den organiske fase i den vandige fase, hæves til ca. 40-60°C. Temperaturområdet for kondensationsreaktionen ved nærværende opfindelse er mellem ca.The temperature of the two-phase mixture, i.e. the dispersion of the organic phase in the aqueous phase is raised to approx. 40-60 ° C. The temperature range of the condensation reaction of the present invention is between ca.

20 og ca. 90°C. Skønt varmen til at indlede reaktionen kan tilføres til dispersionen af den organiske fase i den vandige fase samtidig med eller efter indstillingen af pH til den ønskede værdi, kan den vandige fase opvarmes til den nødvendige temperatur forud for tilsætningstrinene for den organiske fase og dispersionen, fig. 3. Ved denne alternative fremgangsmåde udføres indstillingen af pH,efter at dispersionen er sket, og pH holdes indenfor de nedenfor diskuterede grænser.20 and approx. 90 ° C. Although the heat to initiate the reaction can be applied to the dispersion of the organic phase in the aqueous phase at the same time or after adjusting the pH to the desired value, the aqueous phase can be heated to the required temperature prior to the addition steps of the organic phase and the dispersion. . 3. In this alternative method, the pH is adjusted after the dispersion has occurred and the pH is kept within the limits discussed below.

Ved en udførelsesform af nærværende opfindelse, fig. 2, har det vist sig, at der kan tilsættes en katalysator, som er i stand til at øge hastigheden for isocyanathydrolysen, f.eks. af den basiske amintype, til den organiske fase eller den vandige fase forud for indledningen af den ønskede kondensationsreaktion. Dette trin er imidlertid ikke nødvendigt med henblik på heldig udøvelse af nærværende opfindelse. Når det vælges at substituere en katalysator med forøgelse i temperaturen ved fremgangsmåden, er det derved opnåede produkt sammenligneligt med et ikke katalyseret system. Øget temperatur og katalysator kan anvendes samtidigt til at bevirke den ønskede polykondensationsreaktion. Katalysatoren ved en sådan fremgangsmåde tilsættes fortrinsvis til den organiske fase og tilsættes på det tidspunkt, hvor den vandige og den organiske fase blandes. Forskellige katalysatorer har vist sig acceptable, deres valg vil afhænge af faktorer, som let kan bestemmes af fagfolk. Det har vist sig, at visse basiske organiske aminer, fortrinsvis tertiære aminer og alkyltinacetater, såsom tributyltinacetat og di-n-butyltindiacetat ίο 1U78Å er acceptable katalysatorer. Når der anvendes et alkyltinacetat, bruges ca. 0,001 til ca. 1,0 vægt% på basis af den organiske fase. Omfattet af de basiske organiske tertiære aminer er triethylendiamin, N,N,Nr,N’-tetrarnethy1-1,3-butan-diamin, triethylamin, tri-n-butylamin og lignende. Mængden af katalysator vil variere med det særlige system og de særlige betingelser. Når der anvendes en basisk organisk amin, bruges ca. 0,01 til ca. 10,0 vægt% på basis af den organiske fase.In one embodiment of the present invention, FIG. 2, it has been found that a catalyst capable of increasing the rate of isocyanate hydrolysis, e.g. of the basic amine type, to the organic phase or the aqueous phase prior to the initiation of the desired condensation reaction. However, this step is not necessary for the successful practice of the present invention. When it is chosen to substitute a catalyst with increase in the temperature of the process, the product thus obtained is comparable to a non-catalyzed system. Increased temperature and catalyst can be used simultaneously to effect the desired polycondensation reaction. The catalyst in such a process is preferably added to the organic phase and added at the time the aqueous and organic phase are mixed. Various catalysts have proved acceptable, their choices will depend on factors which can be readily determined by those skilled in the art. It has been found that certain basic organic amines, preferably tertiary amines and alkyltin acetates, such as tributyltin acetate and di-n-butyltin diacetate of IU78Å are acceptable catalysts. When an alkyl tin acetate is used, approx. 0.001 to approx. 1.0% by weight based on the organic phase. Included in the basic organic tertiary amines are triethylenediamine, N, N, Nr, N'-tetrarnethyl1-1,3-butane diamine, triethylamine, tri-n-butylamine and the like. The amount of catalyst will vary with the particular system and conditions. When a basic organic amine is used, approx. 0.01 to approx. 10.0% by weight based on the organic phase.

Det vil ofte vise sig, at vand er svagt opløseligt i det med vand ikke blandbare materiale, som skal indkapsles. Den mængde vand, som vil blive opløst i materialet, der skal indkapsles, vil afhænge af karakteren af materialet. Mængden af opløst vand vil sædvanligvis være forholdsvis lille. Under anvendelse af et med vand ikke blandbart materiale, som kan opløse en betydelig mængde vand, foretrækkes imidlertid en lille afvigelse fra de her beskrevne normale fremgangsmåder. Det har i et sådant system vist sig, at der fremkommer partikler med dårligt afgrænset vægstruktur. Vel afgrænsede mikrokapsler, som falder indenfor beskrivelsen af nærværende opfindelse, kan fremstilles ved at tilsætte en passende katalysator til den vandige fase, efter at emulsionen er dannet. Massepolymerisationen finder derved sted på grænsefladen, hvor katalysatoren er til stede. Der tilrådes ingen opvarmning af blandingen, idet polymer ellers ikke vil dannes kun på overfladen, men en øget mængde vil dannes i det med vand ikke blandbare materiale, som kan opløse en betydelig mængde vand. Denne fremgangsmåde udføres fortrinsvis ved stuetemperatur (15-30°C).It will often be found that water is slightly soluble in the water-immiscible material to be encapsulated. The amount of water that will be dissolved in the material to be encapsulated will depend on the nature of the material. The amount of dissolved water will usually be relatively small. However, using a water-immiscible material capable of dissolving a significant amount of water, a slight deviation from the normal methods described herein is preferred. It has been found in such a system that particles with poorly defined wall structure appear. Well-defined microcapsules which fall within the scope of the present invention can be prepared by adding a suitable catalyst to the aqueous phase after the emulsion is formed. The mass polymerization thus takes place on the interface where the catalyst is present. No heating of the mixture is recommended, otherwise polymer will not form only on the surface, but an increased amount will form in the water-immiscible material which can dissolve a significant amount of water. This process is preferably carried out at room temperature (15-30 ° C).

Denne fremgangsmåde med tilsætning af katalysator til den vandige fase efter dispersionen er ikke begrænset til indkapsling af alene med vand ikke blandbart materiale, som kan opløse en betydelig mængde vand, men finder almen anvendelse i forbindelse med ethvert med vand ikke blandbart materiale, som vil blive diskuteret og beskrevet i det følgende.This process of adding catalyst to the aqueous phase after the dispersion is not limited to encapsulation of water-immiscible alone which can dissolve a significant amount of water, but finds general use in connection with any water-immiscible material which will be discussed and described in the following.

Ved fremgangsmåden ifølge opfindelsen fremstilles mest hensigtsmæssigt den vandige fase som beskrevet ovenfor. Den organiske fase tilsættes fortrinsvis i forblandet tilstand under omrøring til den vandige fase. Efter tilsætning af den organiske fase til den vandige fase anvendes et passende disperge- 11 1ΛΛ784 ringshjælpemiddel til at dispergere en væske i en anden. Der kan bekvemt anvendes et hvilket som helst udstyr med stor forskydning til opnåelse af den ønskede dråbestørrelse i området fra ca. 0,5 mikron til ca. 4000 mikron. Det aktuelle område vil afhænge af den ønskede slutanvendelse. Det foretrukne område til de fleste pesticide anvendelser er f.eks. fra ca. 1 mikron til ca. 100 mikron. Nærværende fremgangsmåde kan anvendes til fremstilling af kapsler med meget varieret, men ensartet størrelse. Når den passende dråbestørrelse er opnået, afbrydes dispergeringshjælpemidlet, som anvendes til at give den ønskede dråbestørrelse. Der kræves kun svag omrøring til resten af fremgangsmåden.By the method of the invention, the aqueous phase is most conveniently prepared as described above. The organic phase is preferably added in the premixed state with stirring to the aqueous phase. After adding the organic phase to the aqueous phase, a suitable dispersing aid is used to disperse one liquid into another. Conveniently, any large displacement equipment can be used to obtain the desired droplet size in the range of from approx. 0.5 microns to approx. 4000 microns. The current range will depend on the end use you want. The preferred area for most pesticidal applications is e.g. from approx. 1 micron to approx. 100 microns. The present method can be used to make capsules of very varied but uniform size. When the appropriate droplet size is obtained, the dispersing aid used to provide the desired droplet size is discontinued. Only slight agitation is required for the rest of the process.

Fremgangsmåden ifølge opfindelsen kan give tilfredsstillende udførelse og produktion af indkapslet materiale uden indstilling til en særlig pH-værdi. Det vil sige, at der ikke kræves indstilling af pH af systemet under indkapslingsfremgangsmåden. Indkapslingsmetoden vil skride frem ved en pH-værdi mellem ca. 0 og ca. 14. Det ønskelige ved en indstilling af pH til en særlig værdi vil afhænge af karakteren af komponenterne i systemet, såsom overfladeaktivt middel, kolloid, katalysator, temperatur, materiale, der skal indkap-sles,og lignende. Hvis pH får lov til at falde til under ca. 7,0, vil carbondioxid, f.eks. blive frigjort under forløbet af reaktionen. Hvis det er ønskeligt at undgå denne udvikling af carbondioxid, kan indstillingen ske til en pH-værdi på mindst ca. 7,0. Ved udførelsesformen på fig. 1 og 2, indstilles pH efter dispersionen og holdes ved denne værdi under den resterende del af kondensationsreaktionen. Indstillingen af pH kan finde sted i den vandige fase forud for tilsætningen og dispergeringen deri af den organiske fase. Indstillingen og opretholdelsen af et særligt pH under reaktionen kan gennemføres med forskellige vandopløselige baser eller syrer, som ikke kan reagere med polyisocyanatmellemproduktet. Der anvendes fortrinsvis koncentreret natriumhydroxid (25% opløsning), kaliumhydroxid, saltsyre og lignende.The process of the invention can provide satisfactory performance and production of encapsulated material without adjustment to a particular pH value. That is, no adjustment of the pH of the system is required during the encapsulation process. The encapsulation method will proceed at a pH value between approx. 0 and approx. 14. The desirability of adjusting the pH to a particular value will depend on the nature of the components of the system, such as surfactant, colloid, catalyst, temperature, material to be encapsulated, and the like. If the pH is allowed to drop below approx. 7.0, carbon dioxide, e.g. be released during the course of the reaction. If it is desirable to avoid this evolution of carbon dioxide, the adjustment can be made to a pH value of at least approx. 7.0. In the embodiment of FIG. 1 and 2, the pH is adjusted to the dispersion and maintained at this value during the remainder of the condensation reaction. The pH adjustment can take place in the aqueous phase prior to the addition and dispersion therein of the organic phase. The setting and maintenance of a particular pH during the reaction can be carried out with various water-soluble bases or acids which cannot react with the polyisocyanate intermediate. Concentrated sodium hydroxide (25% solution), potassium hydroxide, hydrochloric acid and the like are preferably used.

Udviklingen af carbondioxid kan forårsage betydelig uønsket skumdannelse og/eller rumfangsudvidelse, som påvirker bearbejdningen af reaktionsblandingen uheldigt. Et alternativ til indstillingen af pH med henblik på at undgå det overskydende skum, som dannes ved carbon= dioxidudviklingen, er tilsætningen af et antiskumningsmiddel. Ved 144784 12 anvendelse af et antiskumningsmiddel er det muligt at fremstille det indkapslede materiale tilfredsstillende ved et surt pH uden tilsætning af base til det sure system. Antiskumningsmidlet kan tilsættes på et vilkårligt tidspunkt under bearbejdningen af blandingen, når nævnte polymerkapselindslutninger er dannet til indkapsling af et med vand ikke blandbart materiale.The evolution of carbon dioxide can cause significant undesirable foaming and / or volume expansion which adversely affects the processing of the reaction mixture. An alternative to adjusting the pH to avoid the excess foam formed by the evolution of carbon dioxide is the addition of an antifoaming agent. By using an antifoaming agent, it is possible to prepare the encapsulated material satisfactorily at an acidic pH without adding base to the acidic system. The anti-foaming agent may be added at any time during the processing of the mixture when said polymer capsule enclosures are formed to encapsulate a water immiscible material.

Skønt den ønskede kondensationsreaktion på grænsefladen mellem dråberne og den kontinuerlige fase sker meget hurtigt, størstedelen i løbet af den første halve times reaktionstid, fortsættes reaktionsbetingelserne med henblik på at sikre næsten afslutning af kondensationsreaktionen i systemet, ca. 2-3 timer. Under passende indstillede betingelser eller med en passende katalysator kan reaktionstiden afkortes. Ved slutningen af dette tidsrum er dannelsen af en kapselvæg afsluttet, idet organisk materiale derved er indesluttet i en hud af et polykondensat, og der eksisterer et anvendeligt indkapslet produkt. Et særligt træk ved nærværende opfindelse, som er meget ønskeligt, ligger i den kendsgerning, at der til visse påtænkte anvendelser ikke kræves yderligere fraskillelse eller behandling af det indkapslede materiale, d.v.s., at produktet kan anvendes direkte. Det indkapslede materiale kan anvendes til forskellige direkte anvendelser på dette tidspunkt eller indirekte ved at indføje materialet i andre produkter.Although the desired condensation reaction at the interface between the droplets and the continuous phase occurs very rapidly, most during the first half hour of reaction time, the reaction conditions are continued in order to ensure almost completion of the condensation reaction in the system, approx. 2-3 hours. Under appropriate conditions or with a suitable catalyst, the reaction time can be shortened. At the end of this time, the formation of a capsule wall is completed, thereby enclosing organic matter in a skin of a polycondensate and a usable encapsulated product exists. A particular feature of the present invention, which is highly desirable, lies in the fact that for certain contemplated uses, no further separation or treatment of the encapsulated material is required, i.e., that the product can be used directly. The encapsulated material can be used for various direct applications at this time or indirectly by inserting the material into other products.

Tykkelsen eller den kemiske sammensætning af kapselvæggen kan vælges eller styres på forskellige måder. Disse egenskaber kan f.eks. påvirkes ved styring af reaktionsbetingelsen, ved kemisk valg, især ved dannelse af tværbinding, som bestemmes af funktionaliteten af polyisocyanatet ifølge opfindelsen. Tykkelsen af kapselhuden kan også påvirkes ved at variere mængderne af reaktanter i den organiske fase. En bekvem fremgangsmåde til at kontrollere størrelsen af kapslen er indstilling af omrøringshastigheden, d.v.s., at der ved tilvejebringelse af den oprindelige dispersion af den organiske fase kan opnås mindre kapsler med højere omrøringshastigheder, som resulterer i en større forskydningskraft.The thickness or chemical composition of the capsule wall can be selected or controlled in various ways. These properties can e.g. is influenced by the control of the reaction condition, by chemical choice, especially by the formation of crosslinking, which is determined by the functionality of the polyisocyanate of the invention. The thickness of the capsule skin may also be affected by varying the amounts of reactants in the organic phase. A convenient method of controlling the size of the capsule is to adjust the agitation rate, i.e., by providing the initial dispersion of the organic phase, smaller capsules with higher agitation rates can be obtained, resulting in a greater shear force.

Forsøg har vist, at kapsler fremstillet ifølge opfindelsen kan anvendes på samme måde som produkter fremstillet ved andre indkapslingsmetoder. Indkapslede herbicider eller insekticider kan således 13 U4784 f.eks. indarbejdes i dispersioner til anvendelsesformål til styret frigørelse af det indkapslede materiale på det ønskede sted. Man bør bemærke en særlig anvendelighed til indkapsling af forskellige flygtige eller ustabile insekticider og herbicider. Ved indkapsling undgås for tidlig fordampning eller anden ødelæggelse af materialet.Tests have shown that capsules made according to the invention can be used in the same way as products made by other encapsulation methods. Thus, encapsulated herbicides or insecticides may e.g. incorporated into dispersions for use in controlling the release of the encapsulated material at the desired site. Particular attention should be paid to the encapsulation of various volatile or unstable insecticides and herbicides. When encapsulated, premature evaporation or other destruction of the material is avoided.

En sådan indkapsling kan også tjene til det formål at forhale eller forlænge virkningstiden, når dette ønskes. Styret frigørelse af disse materialer er vigtig med henblik på miljøbeskyttelse og den passende virkning på organismen, som skal styres, såvel som mindsket toksicitet på gavnlige organismer.Such encapsulation can also serve for the purpose of delaying or prolonging the duration of operation when desired. Controlled release of these materials is important for environmental protection and the appropriate effect on the organism to be controlled, as well as reduced toxicity to beneficial organisms.

Fremgangsmåden ifølge opfindelsen kan gennemføres, som diskontinuerlig eller kontinuerlig fremgangsmåde, eller som en kombination heraf.The process according to the invention can be carried out as a continuous or continuous process or as a combination thereof.

Såfremt fremgangsmåden ifølge opfindelsen gennemføres diskontinuerligt så bringes alle de forskellige væsker og reaktionskomponenter sammen, og de forskellige reaktionstrin gennemføres i passende rækkefølge i denne væskemængde.· Den kontinuerlige fremgangsmåde kan modificeres således, at der anvendes egnede reaktionskar, hvormed der så bliver opnået en kontinuerlig eller en til denne fremstillingsform svarende gennemførelse af indkapslingsmetoden. Ved den kontinuerlige form for fremgangsmåden ifølge opfindelsen kan dispersionen og omrøringen af de reagerende faser med passende hastighed gennemføres fortløbende således, at der kontinuerligt opnås en egnet dispersion af smådråber i den homogene fase, og at en mængde af denne dispersion af smådråber i en homogen fase kontinuerligt afgives til et reaktionskar, hvori pH-værdijusteringen og den nødvendige varmemængde til opnåelse af kondensationen kan gennemføres. Ved den kontinuerlige form kan den egnede reaktionshastighed indstilles ved udvælgelse af de tilsvarende fremstillingsbetingelser. Såvel den diskontinuerlige som den kontinuerlige fonn af fremgangsmåden er meget gunstig, således at valget kun afhænger af de ønskede fremstillingsbetingelser.If the process according to the invention is carried out discontinuously, all the various liquids and reaction components are brought together and the various reaction steps are carried out in the appropriate order in this amount of liquid. The continuous process can be modified so that suitable reaction vessels are used to obtain a continuous or an embodiment of the encapsulation method corresponding to this embodiment. In the continuous form of the process according to the invention, the dispersion and stirring of the reacting phases can be carried out at an appropriate rate continuously so that a suitable dispersion of droplets in the homogeneous phase is continuously obtained and that an amount of this dispersion of droplets in a homogeneous phase is obtained. is continuously delivered to a reaction vessel in which the pH value adjustment and the amount of heat required to obtain the condensation can be carried out. In the continuous form, the appropriate reaction rate can be set by selecting the corresponding manufacturing conditions. Both the discontinuous and the continuous form of the process are very favorable so that the choice depends only on the desired manufacturing conditions.

Eksempel 1.Example 1.

Vand (500 ml) indeholdende 1,0% neutraliseret beskyttende poly(methyl-vinylether/maleinsyreanhydrid)-kolloid (Gantrez AN 139") og 0,2% lineær alkoholdethoxylatCfemulgeringsmiddel ("Tergitol 15-S-20") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammen- 14 U4784 blandes 167 g O-ethyl-S-phenylethylphosphondithioat (et insekticid), 39 g polymethylenpolyphenylisocyanat (PAPI) og 19,5 g tolylendiiso= cyanat (TDI 80% 2,4 og 20% 2,6). Denne blanding tilsættes derefter til en reaktionsbeholder og emulgeres med en omrører med stor forskydning. Det resulterende partikelstørrelsesområde er ca. 1-20 mikron. Der kræves kun svag omrøring til resten af reaktionen. Temperaturen af reaktanterne hæves til 50°C i løbet af et tidsrum på 17 minutter, og samtidig holdes pH af dispersionen på 8,5 ved tilsætning af 25% natriumhydroxidopløsning. Temperaturen af reaktionsblandingen holdes ved 50°C, og pH holdes ved 8,5 i 2¾ time for at afslutte grænseflade-polymerisationen.Water (500 ml) containing 1.0% neutralized protective poly (methyl vinyl ether / maleic anhydride) colloid (Gantrez AN 139 ") and 0.2% linear alcohol ethoxylate C emulsifier (" Tergitol 15-S-20 ") is placed in an open reaction vessel In a separate container, 167 g of O-ethyl-S-phenylethylphosphone dithioate (an insecticide), 39 g of polymethylene polyphenylisocyanate (PAPI) and 19.5 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2) are mixed. This mixture is then added to a reaction vessel and emulsified with a high shear stirrer, the resulting particle size range is about 1-20 microns, only slight stirring is required for the remainder of the reaction, the temperature of the reactants is raised to 50 ° C. for a period of 17 minutes, and at the same time the pH of the dispersion is maintained at 8.5 by the addition of 25% sodium hydroxide solution, the temperature of the reaction mixture is maintained at 50 ° C and the pH is maintained at 8.5 for 2¾ hours to complete the interface polymerization.

På dette tidspunkt kan der f.eks. tilsættes 0,25% natriumbentonit-fortykningsmiddel og 0,05% natriumpentachlorphenatbiocid til udformning af produktet uden fraskillelse eller yderligere vaskning.At this point, e.g. 0.25% sodium bentonite thickener and 0.05% sodium pentachlorophenate biocide are added to form the product without separation or further washing.

pH af præparatet indstilles sædvanligvis til 9,75 ved tilsætning af 25% NaOH-opløsning, og reaktionsblandingen afkøles til stuetemperatur. Disse præparater dispergeres meget godt i vand, og der iagttages diskrete kapsler under et mikroskop. Kapslerne har et vægindhold på ca. 26%.The pH of the preparation is usually adjusted to 9.75 by adding 25% NaOH solution and the reaction mixture is cooled to room temperature. These preparations are very well dispersed in water and discrete capsules are observed under a microscope. The capsules have a wall content of approx. 26%.

Eksempel 2.Example 2.

Vand (500 ml) indeholdende 1,5% beskyttende hydroxypropylmethylcellu= losekolloid ("Methocel 65HG”) og 0,2% lineær alkoholethoxylatemul-geringsmiddel ("Tergitol 15-S-20") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 150 g S-ethyldiiso= butylthiocarbamat (et herbicid), 35 g polymethylenpolyphenyliso= cyanat (PAPI), 17,5 g tolylendiisocyanat (TDI 80% 2,4 og 20% 2,6) og 0,05 g tributyltinacetatkatalysator. Denne blanding tilsættes derefter til reaktionsbeholderen og omrøres med en omrører med stor hastighed. Det resulterende partikelstørrelsesområde er ca. 1-20 μ.Water (500 ml) containing 1.5% protective hydroxypropyl methyl cellulose loose colloid ("Methocel 65HG") and 0.2% linear alcohol ethoxylate emulsifier ("Tergitol 15-S-20") is placed in an open reaction vessel. 150 g of S-ethyldiiso = butylthiocarbamate (a herbicide), 35 g of polymethylene polyphenyliso cyanate (PAPI), 17.5 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2.6) and 0.05 g of tributyltin acetate catalyst. then to the reaction vessel and stirred with a high speed stirrer.The resulting particle size range is about 1-20 µ.

Der kræves kun svag omrøring til resten af reaktionen. pH af reaktionsblandingen indstilles nu til 8,0 med 10% natriumhydroxidopløsning. Dette pH holdes i 3 timer ved fortsat tilsætning af 10% na= triumhydroxidopløsning. Tilstedeværelsen af katalysatoren tillader, at grænsefladepolymerisationen kan udføres ved stuetemperatur (25°C). Dette præparat dispergeres meget godt i vand, og der kan iagttages diskrete kapsler under et mikroskop. Disse kapsler har et vægindhold på ca. 26%.Only slight stirring is required for the rest of the reaction. The pH of the reaction mixture is now adjusted to 8.0 with 10% sodium hydroxide solution. This pH is maintained for 3 hours by continued addition of 10% sodium hydroxide solution. The presence of the catalyst allows the interface polymerization to be carried out at room temperature (25 ° C). This preparation is very well dispersed in water and discrete capsules can be observed under a microscope. These capsules have a wall content of approx. 26%.

1515

Eksempel 3.Example 3

144784144784

Vand (500 ml) indeholdende 0,5% "beskyttende polyacrylamidkolloid ("Cyanamer A370") og 0,2% lineær alkoholethoxylat ("Tergitol 15-S-20") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 167 g O-ethyl-S-phenylethylphosphondithioat (et insekticid), 14,5 g polymethylenpolyphenylisocyanat (PAPI) og 14,5 g tolylendiiso= cyanat (TDI 80% 2,4 og 20% 2,6). Den vandige fase i den åbne reaktionsbeholder opvarmes til 45°C, hvorefter den organiske blanding ovenfor tilsættes til reaktionsbeholderen og emulgeres med en omrører med stor forskydning. På dette tidspunkt er pH lig med ca. 6,5. Det resulterende partikelstørrelsesområde er 1-20 μ. Der kræves kun svag omrøring til resten af reaktionen. pH af reaktionsblandingen indstilles til 8,5 med 25% natriumhydroxidopløsning. Temperaturen af reaktionsblandingen indstilles til 50°C. Temperaturen og pH af reaktionsblandingen holdes ved henholdsvis 50°C og 8,5 i 3 timer for at afslutte grænsefladepolymerisationen. pH holdes ved 8,5 ved fortsat tilsætning af 25% natriumhydroxidopløsning. På dette tidspunkt kan der tilsættes 0,25% natriumbentonitfortykningsmiddel til kapseldispersionen og pH indstilles til 9,8 til udformning af det indkapslede materiale uden yderligere fraskillelse eller behandling. Præparatet nedkøles til stuetemperatur. Dette præparat kan dispergeres let i vand, og diskrete kapsler kan iagttages under et mikroskop. Disse kapsler har et vægindhold på ca. 15%.Water (500 ml) containing 0.5% "protective polyacrylamide colloid (" Cyanamer A370 ") and 0.2% linear alcohol ethoxylate (" Tergitol 15-S-20 ") is placed in an open reaction vessel. In a separate container, 167 g of O -ethyl-S-phenylethylphosphone dithioate (an insecticide), 14.5 g of polymethylene polyphenyl isocyanate (PAPI) and 14.5 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2.6). The aqueous phase of the open reaction vessel is heated. to 45 ° C, then the organic mixture above is added to the reaction vessel and emulsified with a high shear stirrer, at which point the pH equals about 6.5 The resulting particle size range is 1-20 µm. The pH of the reaction mixture is adjusted to 8.5 with 25% sodium hydroxide solution. The temperature of the reaction mixture is adjusted to 50 ° C. The temperature and pH of the reaction mixture are maintained at 50 ° C and 8.5 for 3 hours, respectively, to complete the interface polymerization. held at 8 , 5 by continued addition of 25% sodium hydroxide solution. At this point, 0.25% sodium bentonite thickener can be added to the capsule dispersion and the pH is adjusted to 9.8 to form the encapsulated material without further separation or treatment. The preparation is cooled to room temperature. This preparation can be easily dispersed in water and discrete capsules can be observed under a microscope. These capsules have a wall content of approx. 15%.

Eksempel 4.Example 4

Vand (100 ml) indeholdende 3% beskyttende polyacrylatkolloid ("Goodrite K-718") og 0,2% lineær alkoholethoxylatemulgeringsmiddel ("Tergitol 15-S-20") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 30 g 4'-ethylphenylgeranylether-6,7-epoxid (insekthormonlignende) og 2,4 g tolylendiisocyanat (TDI 80% 2,4- og 20% 2,6-). Denne blanding tilsættes derefter til den åbne reaktionsbeholder og emulgeres med en omrører med stor forskydning.Water (100 ml) containing 3% protective polyacrylate colloid ("Goodrite K-718") and 0.2% linear alcohol ethoxylate emulsifier ("Tergitol 15-S-20") is placed in an open reaction vessel. In a separate container, 30 g of 4'-ethylphenylgeranyl ether-6,7-epoxide (insect hormone-like) and 2.4 g of tolylene diisocyanate (TDI 80% 2.4- and 20% 2.6-) are mixed together. This mixture is then added to the open reaction vessel and emulsified with a high shear stirrer.

Det resulterende partikelstørrelsesområde er 1-20 μ. Der kræves kun svag omrøring til resten af reaktionen. For at øge hastigheden for grænsefladepolymerisationen hæves temperaturen af reaktanterne nu til over 50°C i et tidsrum på 15 minutter, og samtidig holdes pH af dispersionen på 8,5 ved tilsætning af 10% natriumhydroxidopløs- 16 UA784 ning. Temperaturen og pH af reaktionsblandingen holdes ved henholdsvis 50°C og 8,5 i 2 timer for at afslutte grænsefladepolymerisationen. pH af præparatet indstilles til 8,9. Præparatet blev afkølet til stuetemperatur. Dette præparat dispergeres meget godt i vand, og diskrete kapsler kan iagttages under et mikroskop. Disse kapsler har et vægindhold på ca. 7,4%.The resulting particle size range is 1-20 μ. Only slight stirring is required for the rest of the reaction. To increase the rate of the interface polymerization, the temperature of the reactants is now raised to above 50 ° C for a period of 15 minutes, and at the same time the pH of the dispersion is maintained at 8.5 by the addition of 10% sodium hydroxide solution. The temperature and pH of the reaction mixture are maintained at 50 ° C and 8.5 for 2 hours, respectively, to complete the interface polymerization. The pH of the preparation is adjusted to 8.9. The preparation was cooled to room temperature. This preparation is very well dispersed in water and discrete capsules can be observed under a microscope. These capsules have a wall content of approx. 7.4%.

Eksempel 5.Example 5

Vand (500 ml) indeholdende 1,0% beskyttende polyvinylalkoholkolloid ("Vinol 540") og 0,2% lineær alkoholethoxylatemulgeringsmiddel ("Tergitol 15-S-20") anbringes i en åben reaktionsbeholder. Temperaturen af denne opløsning hæves til 40°C. I en særskilt beholder sammenblandes 50 g S-ethyldipropylthiocarbamat (et herbicid) og 10 g polymethylenpolyphenylisocyanat (PAPI). Denne blanding tilsættes derefter til reaktionsbeholderen og emulgeres med en omrører med stor hastighed. Temperaturen af systemet hæves derefter til 60°C og svag omrøring fortsættes i 1½ time, mens temperaturen holdes ved 50°C. Materialet filtreres derefter fra og vaskes tre gange og får lov til at tørre ved stuetemperatur. Mikroskopisk undersøgelse viser diskrete spheroide partikler. Kapslerne har et vægindhold på 25%·Water (500 ml) containing 1.0% protective polyvinyl alcohol colloid ("Vinol 540") and 0.2% linear alcohol ethoxylate emulsifier ("Tergitol 15-S-20") is placed in an open reaction vessel. The temperature of this solution is raised to 40 ° C. In a separate container, 50 g of S-ethyl dipropylthiocarbamate (a herbicide) and 10 g of polymethylene polyphenyl isocyanate (PAPI) are mixed together. This mixture is then added to the reaction vessel and emulsified with a high speed stirrer. The temperature of the system is then raised to 60 ° C and gentle stirring is continued for 1½ hours while maintaining the temperature at 50 ° C. The material is then filtered off and washed three times and allowed to dry at room temperature. Microscopic examination shows discrete spheroid particles. The capsules have a wall content of 25% ·

Eksempel 6.Example 6

Vand (500 ml) indeholdende 3,0% beskyttende hydroxypropylmethylcellu= losekolloid ("Methocel 65 HG") og 0,2% lineær alkoholethoxylatemul-geringsmiddel ("Tergitol 15-S-20") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 150 g S-ethyldipropyl= thiocarbamat (et herbicid), 35 g p olymethylenpolyphenyli s o cyanat (PAPI), 17*5 g tolylendiisocyanat (TDI 80% 2,4- og 20% 2,6-) og 0,05 g tributyltinacetatkatalysator. Denne blanding tilsættes derefter til reaktionsbeholderen og emulgeres under anvendelse af en omrører med stor hastighed. Det resulterende partikelstørrelse er ca. 5 mikron.Water (500 ml) containing 3.0% protective hydroxypropyl methyl cellulose colloid ("Methocel 65 HG") and 0.2% linear alcohol ethoxylate emulsifier ("Tergitol 15-S-20") is placed in an open reaction vessel. In a separate container, 150 g of S-ethyl dipropyl = thiocarbamate (a herbicide), 35 gp olymethylene polyphenylsocyanate (PAPI), 17 * 5 g tolylene diisocyanate (TDI 80% 2.4- and 20% 2.6-) and 0 are mixed. 05 g of tributyltin acetate catalyst. This mixture is then added to the reaction vessel and emulsified using a high speed stirrer. The resulting particle size is approx. 5 microns.

Der kræves kun svag omrøring til resten af reaktionen. Temperaturen af systemet hæves langsomt til 50°C i løbet af 1Ί time. Ved 50°C fandt betydelig skumning sted. Systemet holdes ved 50°C i yderligere 1½ time, hvorefter det afkøles til stuetemperatur. Mikroskopisk undersøgelse af systemet viste diskrete, velformede kapsler. Disse kapsler har et vægindhold på 26%.Only slight stirring is required for the rest of the reaction. The temperature of the system is slowly raised to 50 ° C over 1Ί hours. At 50 ° C considerable foaming took place. The system is kept at 50 ° C for an additional 1½ hours, after which it is cooled to room temperature. Microscopic examination of the system revealed discrete, well-shaped capsules. These capsules have a wall content of 26%.

U4784U4784

Eksempel 7.Example 7

1717

Vand (500 ml) indeholdende 3% beskyttende polyacrylatkolloid ("Good-rite K-718") og 0,3% lineær alkoholethoxylatemulgeringsmiddel ("Tergitol 15-S-7") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 30 g S-ethyldiisobutylthiocarbamat (et herbicid), 6,7 g polymethylenpolyphenylisocyanat (PAPI) og 3,3 g tolylendiisocyanat (TDI 80% 2,4 og 20% 2,6). Den organiske fase tilsættes derefter til reaktionsbeholderen og emulgeres med en omrører med stor forskydning. Det resulterende partikelstørrelsesområde er ca. 1-10 μ. Der kræves kun svag omrøring til resten af reaktionen. pH af reaktionsblandingen indstilles til 4,5 med koncentreret saltsyre. Temperaturen af reaktionsblandingen hæves til 50° og holdes ved denne temperatur i 3 timer. Systemet afkøles til stuetemperatur. pH forblev ved 4,5 under forløbet af reaktionen. Dette produkt kan dis-pergeres let i vand, og diskrete kapsler kan iagttages under mikroskopet. Disse kapsler har et vægindhold på ca. 25%.Water (500 ml) containing 3% protective polyacrylate colloid ("Good-rite K-718") and 0.3% linear alcohol ethoxylate emulsifier ("Tergitol 15-S-7") is placed in an open reaction vessel. In a separate container, 30 g of S-ethyl diisobutylthiocarbamate (a herbicide), 6.7 g of polymethylene polyphenyl isocyanate (PAPI) and 3.3 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2.6) are mixed. The organic phase is then added to the reaction vessel and emulsified with a high shear stirrer. The resulting particle size range is approx. 1-10 µ. Only slight stirring is required for the rest of the reaction. The pH of the reaction mixture is adjusted to 4.5 with concentrated hydrochloric acid. The temperature of the reaction mixture is raised to 50 ° and maintained at this temperature for 3 hours. The system is cooled to room temperature. The pH remained at 4.5 during the course of the reaction. This product can be easily dispersed in water and discrete capsules can be observed under the microscope. These capsules have a wall content of approx. 25%.

Eksempel 8.Example 8.

Vand (900 ml) indeholdende 0,3% lineær alkoholethoxylatemulgerings-middel ("Tergitol 15-S-7") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 334 g S-ethyldiisobutylthiocarbamat (et herbicid), 20,7 g polymethylenpolyphenylisocyanat og 20,7 g tolylendiisocyanat (TDI 80% 2,4 og 20% 2,6). Den organiske fase tilsættes derefter til reaktionsbeholderen og emulgeres med en omrører med stor forskydning. Det resulterende partikelstørrelsesområde er 5-15 μ. Der kræves kun svag omrøring til resten af reaktionen. 100 g 5,0% vandig opløsning af beskyttende polyacrylamidkolloid ("Cyanamer A-370") tilsættes derefter til reaktionsblandingen. Temperaturen af reaktionsblandingen hasves til 50°C, og samtidig holdes pH af dispersionen ved 8,5 ved tilsætning af 25% natriumhydroxidopløsning. Temperaturen af reaktionsblandingen holdes ved 50°C, og pH holdes ved 8,5 i ca. 3 timer for at afslutte grænsefladepolymerisationen. Reaktionsblandingen afkøles til stuetemperatur. Reaktionsblandingen kan dispergeres let i vand, og diskrete partikler kan iagttages under mikroskopet. Disse partikler har et vægindhold på ca. 11%.Water (900 ml) containing 0.3% linear alcohol ethoxylate emulsifier ("Tergitol 15-S-7") is placed in an open reaction vessel. In a separate container, 334 g of S-ethyl diisobutylthiocarbamate (a herbicide), 20.7 g of polymethylene polyphenyl isocyanate and 20.7 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2.6) are mixed. The organic phase is then added to the reaction vessel and emulsified with a high shear stirrer. The resulting particle size range is 5-15 μ. Only slight stirring is required for the rest of the reaction. 100 g of 5.0% aqueous solution of protective polyacrylamide colloid ("Cyanamer A-370") is then added to the reaction mixture. The temperature of the reaction mixture is raised to 50 ° C and at the same time the pH of the dispersion is maintained at 8.5 by the addition of 25% sodium hydroxide solution. The temperature of the reaction mixture is maintained at 50 ° C and the pH is maintained at 8.5 for approx. 3 hours to complete the interface polymerization. The reaction mixture is cooled to room temperature. The reaction mixture can be easily dispersed in water and discrete particles can be observed under the microscope. These particles have a wall content of approx. 11%.

Eksempel 9.Example 9

18 14478418 144784

Dette eksempel "belyser anvendelsen af en meget basisk pH-værdi (d.v.s. pH = 13,6).This example "illustrates the use of a very basic pH (i.e., pH = 13.6).

Vand (500 ml) indeholdende 2,0% beskyttende hydroxypropylmethylcellu-losekolloid ("Methocel 65 HG,r), 0,2% lineær alkoholethoxylatemulgerings-middel ("Tergitol 15-S-20") og 1,5% natriumhydroxid (pH = 13,6) anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 150 g S-ethyldiisobutylthiocarbamat (et herbicid), 35,0 g polymethylenpolyphenylisocyanat (PAPI), 17,5 g tolylendiisocyanat (TDI 80% 2,4 og 20% 2,6) og 0,05 g tributyltinacetat. Den vandige fase afkøles til 9°C. Den organiske fase tilsættes derefter til reaktionsbeholderen og emulgeres med en omrører med stor forskydning.Water (500 ml) containing 2.0% protective hydroxypropyl methyl cellulose colloid ("Methocel 65 HG, r), 0.2% linear alcohol ethoxylate emulsifier (" Tergitol 15-S-20 ") and 1.5% sodium hydroxide (pH = In a separate container, 150 g of S-ethyl diisobutylthiocarbamate (a herbicide), 35.0 g of polymethylene polyphenyl isocyanate (PAPI), 17.5 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2) are mixed together. , 6) and 0.05 g of tributyltin acetate The aqueous phase is cooled to 9 DEG C. The organic phase is then added to the reaction vessel and emulsified with a high shear stirrer.

Alle partikler blev formindsket til under 40 μ i størrelse. Der kræves kun svag omrøring til resten af reaktionen. Temperaturen fik lov til at stige langsomt til stuetemperatur (22°C). Omrøringen fortsattes i ca. 16 timer. Der blev iagttages diskrete partikler under et mikroskop. Partiklerne har et vægindhold på ca. 25%.All particles were reduced to below 40 μ in size. Only slight stirring is required for the rest of the reaction. The temperature was allowed to rise slowly to room temperature (22 ° C). Stirring was continued for approx. 16 hours. Discrete particles were observed under a microscope. The particles have a wall content of approx. 25%.

Eksempel 10.Example 10.

Dette eksempel belyser anvendelsen af en meget sur pH-værdi (d.v.s. pH = 0).This example illustrates the use of a very acidic pH (i.e., pH = 0).

Vand (500 ml) indeholdende 3,0% beskyttende polyvinylalkoholkolloid ("Vinol 540"), 0,3% lineær alkoholethoxylatemulgeringsmiddel ("Ter= gitol 15-S-7") og 3,7% saltsyre (pH = 0) anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 150 g S-n-propyl-di-n-propylthiocarbamat (et herbicid), 17,7 g polymethylenpolyphenyl= isocyanat (PAPI) og 8,8 g tolylendiisocyanat (TDI 80% 2,4 og 20% 2,6). Denne blanding tilsættes derefter til reaktionsbeholderen og emulgeres med en omrører med stor forskydning. Alle partikler blev reduceret til under 15 μ i størrelse. Der kræves kun svag omrøring til resten af reaktionen. Temperaturen af reaktanterne hæves til 50°C i løbet af 20 minutter. Temperaturen af reaktionsblandingen holdes ved 50°C i 2-|- time for at afslutte grænsefladepolymerisationen. Der blev iagttages diskrete partikler under et mikroskop. Kapslerne havde et vægindhold på ca. 15%.Water (500 ml) containing 3.0% protective polyvinyl alcohol colloid ("Vinol 540"), 0.3% linear alcohol ethoxylate emulsifier ("Ter = gitol 15-S-7") and 3.7% hydrochloric acid (pH = 0) is applied. an open reaction vessel. In a separate container, 150 g of Sn-propyl di-n-propylthiocarbamate (a herbicide), 17.7 g of polymethylene polyphenyl = isocyanate (PAPI) and 8.8 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2.6) are mixed. ). This mixture is then added to the reaction vessel and emulsified with a high shear stirrer. All particles were reduced to below 15 μ in size. Only slight stirring is required for the rest of the reaction. The temperature of the reactants is raised to 50 ° C over 20 minutes. The temperature of the reaction mixture is kept at 50 ° C for 2 - hour to complete the interface polymerization. Discrete particles were observed under a microscope. The capsules had a wall content of approx. 15%.

Eksempel 11.Example 11.

U4784 19U4784 19

Dette er et eksempel på indkapsling af med vand ikke blandbart materiale, som kan opløse en betydelig mængde vand, i dette tilfælde 5,4%.This is an example of encapsulating water-immiscible material that can dissolve a significant amount of water, in this case 5.4%.

Vand (500 ml) indeholdende 1,0% beskyttende polyacrylamidkolloid ("Cyanamer A370") og 0,3% lineær alkoholethoxylat ("Tergitol 15-S-20") anbringes i en åben reaktionsbeholder. I en særskilt beholder sammenblandes 33,4 g tris-p-chlorethylphosphat (et antændelseshæmmende middel), 4,0 g polymethylenpolyphenylisocyanat (PAPI) og 2,0 g tolylen= diisocyanat (TDI 80% 2,4 og 20% 2,6). Blandingen tilsættes derefter til reaktionsbeholderen og emulgeres med en omrører med stor forskydning. Det resulterende partikelstørrelsesområde er 2-15 μ. Der kræves kun svag omrøring til resten af reaktionen. På dette tidspunkt tilsættes 1,0 g triethylendiaminkatalysator opløst i 10 ml vand til den vandige fase, og pH indstilles til 9,5. pH holdes ved 9,5 ved tilsætning af 25% natriumhydroxidopløsning og omrøringen fortsættes ved stuetemperatur (ca. 25°C) i 17 timer. Der blev iagttaget diskrete, velformede mikrokapsler under et mikroskop. Kapslerne har et vægindhold på 15%.Water (500 ml) containing 1.0% protective polyacrylamide colloid ("Cyanamer A370") and 0.3% linear alcohol ethoxylate ("Tergitol 15-S-20") is placed in an open reaction vessel. In a separate container, 33.4 g of tris-p-chloroethyl phosphate (an anti-inflammatory agent), 4.0 g of polymethylene polyphenyl isocyanate (PAPI) and 2.0 g of tolylene = diisocyanate (TDI 80% 2.4 and 20% 2.6) are mixed. . The mixture is then added to the reaction vessel and emulsified with a high shear stirrer. The resulting particle size range is 2-15 μ. Only slight stirring is required for the rest of the reaction. At this point, 1.0 g of triethylenediamine catalyst dissolved in 10 ml of water is added to the aqueous phase and the pH is adjusted to 9.5. The pH is maintained at 9.5 by the addition of 25% sodium hydroxide solution and stirring is continued at room temperature (about 25 ° C) for 17 hours. Discrete, well-shaped microcapsules were observed under a microscope. The capsules have a wall content of 15%.

Eksempel 12.Example 12.

Dette eksempel belyser indkapslingen af et normalt fast materiale ved indeslutningsdannelse omkring et med vand ikke blandbart opløsningsmiddel, hvori det faste materiale er opløst.This example illustrates the encapsulation of a normal solid by enclosure formation around a water-immiscible solvent in which the solid is dissolved.

Vand (500 ml) indeholdende 2,0% hydrolyseret beskyttende poly(methyl= vinylether/maleinsyreanhydrid)kolloid ("Gantrez AN119") og 0,3% lineær alkoholethoxylatemulgeringsmiddel ("Tergitol 15-S-7") anbringes i en åben reaktionsbeholder. pH af denne opløsning indstilles til 4,5. I en særskilt beholder sammenblandes 167 g af en 30% opløsning af N-(mercaptomethyl)-phthalimid-S-(0,O-dimethylphosphordithioat) (et insekticid med smeltepunkt på 72°C) i et tungt aromatisk naphtha-opløsningsmiddel ("Panasol AN-3"), 8,3 g polymethylenpolyphenyliso= cyanat (PAPI) og 4,2 g tolylendiisocyanat (TDI 80% 2,4 og 20% 2,6). Denne blanding tilsættes derefter til reaktionsbeholderen og emul- 20Water (500 ml) containing 2.0% hydrolyzed protective poly (methyl = vinyl ether / maleic anhydride) colloid ("Gantrez AN119") and 0.3% linear alcohol ethoxylate emulsifier ("Tergitol 15-S-7") is placed in an open reaction vessel. The pH of this solution is adjusted to 4.5. In a separate container, 167 g of a 30% solution of N- (mercaptomethyl) -phthalimide-S- (O-dimethylphosphorodithioate) (an insecticide having a melting point of 72 ° C) is mixed in a heavy aromatic naphtha solvent ("Panasol" AN-3 "), 8.3 g of polymethylene polyphenylisocyanate (PAPI) and 4.2 g of tolylene diisocyanate (TDI 80% 2.4 and 20% 2.6). This mixture is then added to the reaction vessel and emulsifier

14478A14478A

geres med en omrører med stor forskydning. Alle partikler formindskes til en størrelse under 20 μ. Der kræves kun svag omrøring til resten af reaktionen. Temperaturen af reaktanterne hæves til 50°C i løbet af 20 minutter. Temperaturen af reaktionsblandingen holdes ved 50°C i 2¾ time for at afslutte grænsefladepolymerisationen. Præparatet dispergeres meget godt i vand, og diskrete kapsler blev iagttaget under et mikroskop. Kapslerne har et vægindhold på ca. 7,5%. Der blev ikke iagttages krystaller af insekticid under et mikroskop,efter at præparatet var blevet lagret ved stuetemperatur i 2 dage.be done with a large displacement stirrer. All particles are reduced to a size below 20 µ. Only slight stirring is required for the rest of the reaction. The temperature of the reactants is raised to 50 ° C over 20 minutes. The temperature of the reaction mixture is maintained at 50 ° C for 2¾ hours to complete the interface polymerization. The preparation is very well dispersed in water and discrete capsules were observed under a microscope. The capsules have a wall content of approx. 7.5%. Insecticide crystals were not observed under a microscope after the preparation was stored at room temperature for 2 days.

Eksempel 13.Example 13

Dette eksempel belyser indkapslingen af to med vand ikke blandbare stoffer i den organiske fase.This example illustrates the encapsulation of two water-immiscible substances in the organic phase.

Vand (500 ml) indeholdende 0,5% beskyttende polyacrylamidkolloid ("Cyanamer A370") og 0,3% lineær alkoholethoxylat ("Tergitol 15-S-7") anbringes i en åben reaktionsbeholder, og pH indstilles til 8,5. I en særskilt beholder sammenblandes 138,5 g S-ethyldipropylthiocarba= mat (et herbicid), 11,5 g Ν,Ν-diallyldichloracetamid (en herbicidmodgift), 35,0 g polymethylenpolyphenylisocyanat (PAPI) og 17,5 g tolylendiisocyanat (TDI 80% 2,4 og 20% 2,6). Denne blanding tilsættes derefter til den åbne reaktionsbeholder og emulgeres med en omrører med stor forskydning. Det resulterende partikelstørrelsesområde er 5-30 μ. Der kræves kun svag omrøring til resten af reaktionen. Reaktionsblandingen opvarmes derefter til 50°C i løbet af 26 minutter. Reaktionsblandingen holdes ved 50°C i 2¾ time. pH holdes ved 8,5 ved tilsætning af 25% natriumhydroxidopløsning. Dette præparat dispergeres meget godt i vand og diskrete mikrokapsler kan iagttages under et mikroskop. Disse kapsler har et vægindhold på ca. 25%.Water (500 ml) containing 0.5% protective polyacrylamide colloid ("Cyanamer A370") and 0.3% linear alcohol ethoxylate ("Tergitol 15-S-7") is placed in an open reaction vessel and the pH is adjusted to 8.5. In a separate container, 138.5 g of S-ethyl dipropylthiocarbate (an herbicide), 11.5 g of Ν, Ν-diallyldichloroacetamide (a herbicide antidote), 35.0 g of polymethylene polyphenylisocyanate (PAPI) and 17.5 g of tolylene diisocyanate (TDI) are mixed. % 2.4 and 20% 2.6). This mixture is then added to the open reaction vessel and emulsified with a high shear stirrer. The resulting particle size range is 5-30 µ. Only slight stirring is required for the rest of the reaction. The reaction mixture is then heated to 50 ° C over 26 minutes. The reaction mixture is kept at 50 ° C for 2¾ hours. The pH is maintained at 8.5 by the addition of 25% sodium hydroxide solution. This preparation is very well dispersed in water and discrete microcapsules can be observed under a microscope. These capsules have a wall content of approx. 25%.

Som tidligere nævnt og belyst ved hjælp af eksemplerne giver indkapslingsfremgangsmåden ifølge nærværende opfindelse kapsler med en styret frigørelse af indkapslet organisk materiale. Som eksempel og af særlig betydning er fremgangsmåden og kapslerne der som en bestanddel i den organiske fase omfatter herbicider af thiocarbamatklassen, såsom S-ethyldiisobutylthiocarbamat, S-ethyl-dipropylthiocarbamat, S-ethyl-hexahydro-l-H-az epin-1-carb othi o at, S-propyl-hexahydro-l-H- c arb othi o at, S-propy1-dipropy1thio carbamat, S-ethyl-ethyl-cyclo= 21 144784 hexyl-thiocarbamat, S-propyl-butylethyl-thiocarbamat, organiske phosphorinsekticider af arten organiske phosphon- og phosphorthioater og dithioater såsom O-ethyl-S-phenyl-ethyl-phosphondithioat, S-/Tp-chlorphenylthio)methyl7-0,0-dimethyl-phosphordithioat, S-£~(p-chlor= phenylthio)methyl7-0,O-diethylphosphordithioat, 0,O-dimethyl-O-p-nitrophenyl-phosphorthioat, 0,0-diethyl-0-p-nitrophenyl-phosphor= thioat og insekthormoner og lignende såsom:As previously mentioned and illustrated by way of the examples, the encapsulation method of the present invention provides capsules with a controlled release of encapsulated organic material. By way of example and of particular importance are the process and capsules comprising as an ingredient in the organic phase, herbicides of the thiocarbamate class, such as S-ethyl diisobutylthiocarbamate, S-ethyl dipropylthiocarbamate, S-ethylhexahydro-1H-az epin-1-carb othi o that, S-propyl-hexahydro-1 H -carb othi o, S-propyl-dipropylthio carbamate, S-ethyl-ethyl-cyclo = hexyl-thiocarbamate, S-propyl-butylethyl-thiocarbamate, organic phosphorous insecticides of the organic species phosphone and phosphorothioates and dithioates such as O-ethyl-S-phenyl-ethyl-phosphone dithioate, S- / T-chlorophenylthio) methyl7-0,0-dimethyl phosphorus dithioate, S- (~ p-chloro = phenylthio) methyl7-0 , O-diethylphosphorous dithioate, O, O-dimethyl-Op-nitrophenyl phosphorothioate, 0,0-diethyl-O-p-nitrophenyl phosphorothioate, and insect hormones and the like, such as

Cecropia - ungdomshormon - ICecropia - juvenile hormone - I

1-(4'-ethvl)-phenoxv-5,7-dimethvl-6,7-epoxy-trans-2-octen l-(3' Λ'-methylendioxy)-phenoxy-5,7--diiiiethvl-6,7-epoxy-trans-2-nonen1- (4'-Ethyl) -phenoxy-5,7-dimethyl-6,7-epoxy-trans-2-octene 1- (3'-''-methylenedioxy) -phenoxy-5,7-dimethyl-6, 7-epoxy-trans-2-nonene

Ethvl-5,7,ll-trimethyldodeca-2,4-dienoat Isopropyl-ll-methoxy-5,7,ll-trimethvl-dodeca-2,4-dienoatEthyl 5,7,11-trimethyldodeca-2,4-dienoate Isopropyl-11-methoxy-5,7,11-trimethyl-dodeca-2,4-dienoate

Claims (2)

22 144784 Kapsler med forbindelser, som kan anvendes til plantesygdomskontrol, giver en metode til en kontrol af sygdom i lang tid under anvendelse af forbindelser, som almindeligvis anses for kun at have effektivitet i kort tid. På lignende måde kan herbicider, nematocider, insekticider, rotteudrydelsesmidler og jordnæringsstoffer indkapsles med nyttige resultater. Kemikalier, som anvendes til frøbehandling, kan også let indkapsles ved fremgangsmåden ifølge opfindelsen. Der kan indkapsles andre biologiske produkter omfattende: Midler mod indvoldsorme, lamphret- og slimstyringsmidler, algicider, kemikalier til svømmebassiner, midler mod mider, acaracider, dyrelokningsmidler, antiseptiske midler, deodorantmidler, desinfektionsmidler, midler mod meldug og lignende. Materialet, som skal indkapsles under anvendelse af fremgangsmåden ifølge opfindelsen, kan være af enhver art, som er ikke blandbar med vand. Materialet behøver ikke kun at bestå af en type, men kan være en kombination af to eller flere typer med vand ikke blandbare materialer. En sådan kombination er f.eks. under anvendelse af et passende med vand ikke blandbart materiale et virksomtherbicid og et virksomt insekticid. I betragtning kommer endvidere et med vand ikke blandbart materiale, som skal indkapsles, og som omfatter en virksom bestanddel, såsom et herbicid og en uvirksom bestanddel, såsom et opløsningsmiddel eller hjælpestof. Indkapsling af et fast materiale kan udføres ved denne fremgangsmåde ved at danne en opløsning af det faste materiale i et passende opløsningsmiddel. Derved kan et normalt fast med vand ikke blandbart materiale indkapsles. F.eks. kan insekticidet N-(mercaptomethyl)-phthalimid-S-(0,0-dimethyl= phosphordithioat), smeltepunkt 72°C indkapsles ved først at opløse det faste stof i et passende opløsningsmiddel, såsom et tungt aromatisk naphthaopløsningsmiddel. Patentkrav.Capsules with compounds which can be used for plant disease control provide a method for long-term disease control using compounds which are generally considered to be effective only for a short time. Similarly, herbicides, nematocides, insecticides, rat exterminators, and soil nutrients can be encapsulated with useful results. Chemicals used for seed treatment can also be readily encapsulated by the process of the invention. Other biological products may be encapsulated including: Intestinal worms, lamps and mucus controllers, algicides, swimming pool chemicals, mites, acaracides, animal attractants, antiseptics, deodorant, disinfectants, mildew and the like. The material to be encapsulated using the method of the invention may be of any kind immiscible with water. The material need not only consist of one type, but may be a combination of two or more types of water immiscible materials. Such a combination is e.g. using a suitable water immiscible material, a herbicide and an effective insecticide. In addition, a water-immiscible material to be encapsulated which comprises an active ingredient such as a herbicide and an inert ingredient such as a solvent or excipient is also contemplated. Encapsulation of a solid can be accomplished by this process by forming a solution of the solid in a suitable solvent. Thereby a normal solid with water immiscible material can be encapsulated. Eg. For example, the insecticide N- (mercaptomethyl) -phthalimide-S- (0.0-dimethyl = phosphorodithioate), melting point 72 ° C, can be encapsulated by first dissolving the solid in a suitable solvent, such as a heavy aromatic naphtha solvent. Claims. 1. Fremgangsmåde til indkapsling af en hydrofob væske, eller opløsning, i en omhylning af polyurinstof, kendetegnet ved, at a) der i en vandig fase tilberedes en opløsning, som indeholder vand og eventuelt et overfladeaktivt stof, fortrinsvis 0,01-3,0 vægt%, beregnet på den vandige fase,A method of encapsulating a hydrophobic liquid, or solution, in a polyurea enclosure, characterized in that a) in an aqueous phase a solution containing water and optionally a surfactant, preferably 0.01-3, is prepared; 0% by weight, based on the aqueous phase,
DK139873A 1972-03-15 1973-03-15 encapsulation DK144784C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US23479372A 1972-03-15 1972-03-15
US23479372 1972-03-15
US32317173A 1973-01-12 1973-01-12
US32317173 1973-01-12

Publications (2)

Publication Number Publication Date
DK144784B true DK144784B (en) 1982-06-07
DK144784C DK144784C (en) 1982-10-25

Family

ID=26928288

Family Applications (1)

Application Number Title Priority Date Filing Date
DK139873A DK144784C (en) 1972-03-15 1973-03-15 encapsulation

Country Status (15)

Country Link
JP (1) JPS585697B2 (en)
AT (1) AT339257B (en)
BE (1) BE796746A (en)
CA (1) CA1104882A (en)
CH (1) CH589478A5 (en)
DK (1) DK144784C (en)
FR (1) FR2176071B1 (en)
GB (1) GB1371179A (en)
HU (1) HU166773B (en)
IL (1) IL41773A (en)
IT (1) IT988133B (en)
MX (1) MX147152A (en)
NL (1) NL180985C (en)
RO (4) RO68788A (en)
YU (2) YU67473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK156989B (en) * 1977-05-31 1989-10-30 Stauffer Chemical Co PROCEDURE FOR THE WRAPPING OF WATER INSULABLE MATERIAL IN SEPARATE SHELLS OF POLYURINE

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1044134A (en) * 1975-04-09 1978-12-12 Minnesota Mining And Manufacturing Company Microcapsule insecticide composition
US4223070A (en) * 1978-05-04 1980-09-16 Stauffer Chemical Company Impregnated porous granules with slow release pore membranes and process therefor
DK253779A (en) * 1978-08-03 1980-02-04 Du Pont INSECTICID AGENT AND PROCEDURE FOR PREPARING THEREOF
JPS5579867U (en) * 1978-11-29 1980-06-02
US4280833A (en) * 1979-03-26 1981-07-28 Monsanto Company Encapsulation by interfacial polycondensation, and aqueous herbicidal composition containing microcapsules produced thereby
JPS5615836A (en) * 1979-07-19 1981-02-16 Mitsubishi Paper Mills Ltd Micro capsule
DE2930409A1 (en) * 1979-07-26 1981-02-12 Bayer Ag SPRAY DRYING OF MICROCAPSEL DISPERSIONS
JPS56115635A (en) * 1980-02-18 1981-09-10 Kanzaki Paper Mfg Co Ltd Production of microcapsule
US4384975A (en) * 1980-06-13 1983-05-24 Sandoz, Inc. Process for preparation of microspheres
US4439581A (en) * 1981-09-03 1984-03-27 Kanzaki Paper Manufacturing Co., Ltd. Method for the production of microcapsules
JPS5880992U (en) * 1981-11-24 1983-06-01 日立化成工業株式会社 bathroom unit
JPS59166966A (en) * 1983-03-14 1984-09-20 Fuji Photo Film Co Ltd Production of capsule toner
AR240875A1 (en) * 1984-01-09 1991-03-27 Stauffer Chemical Co PROCEDURE FOR PRODUCING MULTIPLE SIZE POLYUREA CAPSULES CONTAINING A WATER IMMISCIBLE MATERIAL INSIDE IT AND THE RESULTING CAPSULES
US4681806A (en) * 1986-02-13 1987-07-21 Minnesota Mining And Manufacturing Company Particles containing releasable fill material and method of making same
JPH0818937B2 (en) * 1987-07-06 1996-02-28 住友化学工業株式会社 Organophosphorus insecticidal composition for agricultural and horticultural use
GB8827029D0 (en) * 1988-11-18 1988-12-21 Ici Plc Insecticidal compositions
US5461027A (en) 1989-01-24 1995-10-24 Griffin Corporation Microencapsulated pendimethalin and method of making and using same
US5160530A (en) * 1989-01-24 1992-11-03 Griffin Corporation Microencapsulated polymorphic agriculturally active material
US5335449A (en) * 1991-08-15 1994-08-09 Net/Tech International, Inc. Delivery system for an agriculturally active chemical
US5526607A (en) * 1991-08-15 1996-06-18 Net/Tech International Water dispersible delivery system for an agriculturally active chemical
KR100313589B1 (en) * 1993-02-09 2002-11-29 노바티스 아게 Process for the preparation of microcapsules
US5866153A (en) * 1993-02-09 1999-02-02 Novartis Corporation Process for the preparation of microcapsules
IL108835A (en) * 1994-03-03 1997-08-14 Ben Researchiversity Of The Ne Microencapsulated composition containing chlorpyrifos or endosulfan
US6080418A (en) * 1997-04-07 2000-06-27 3M Innovative Properties Company Suspensions of microcapsules containing biologically active ingredients and adhesive microspheres
US6248364B1 (en) 1997-04-07 2001-06-19 3M Innovative Properties Company Encapsulation process and encapsulated products
US6540991B2 (en) 2001-04-06 2003-04-01 3M Innovative Properties Company Stabilized active materials
BRPI0410210A (en) * 2003-05-11 2006-05-09 Univ Ben Gurion processes for preparing essential oil microcapsules and for forming essential oil microcapsules
UA123892C2 (en) 2012-07-27 2021-06-23 Фмк Корпорейшн Formulations of clomazone
ES2746271T3 (en) 2014-11-07 2020-03-05 Basf Se Process for the preparation of microcapsules that have a polyurea coating and a lipophilic core material
EP3215231B2 (en) 2014-11-07 2024-07-31 Givaudan S.A. Capsule composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH453305A (en) * 1963-10-21 1968-06-14 Pilot Pen Co Ltd Process for encapsulating fine droplets of dispersed liquids
US3577515A (en) * 1963-12-13 1971-05-04 Pennwalt Corp Encapsulation by interfacial polycondensation
US3464926A (en) * 1965-04-26 1969-09-02 Pennwalt Corp Process for encapsulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK156989B (en) * 1977-05-31 1989-10-30 Stauffer Chemical Co PROCEDURE FOR THE WRAPPING OF WATER INSULABLE MATERIAL IN SEPARATE SHELLS OF POLYURINE

Also Published As

Publication number Publication date
RO68788A (en) 1980-01-15
DK144784C (en) 1982-10-25
FR2176071B1 (en) 1977-04-22
HU166773B (en) 1975-05-28
MX147152A (en) 1982-10-19
NL180985B (en) 1987-01-02
RO68786A (en) 1980-10-30
YU67473A (en) 1982-02-28
CH589478A5 (en) 1977-07-15
YU39646B (en) 1985-03-20
IL41773A0 (en) 1973-05-31
JPS585697B2 (en) 1983-02-01
NL7303636A (en) 1973-09-18
RO63946A (en) 1978-09-15
RO68787A (en) 1980-01-15
GB1371179A (en) 1974-10-23
ATA233373A (en) 1977-02-15
AT339257B (en) 1977-10-10
IL41773A (en) 1975-11-25
CA1104882A (en) 1981-07-14
BE796746A (en) 1973-09-14
JPS492779A (en) 1974-01-11
FR2176071A1 (en) 1973-10-26
IT988133B (en) 1975-04-10
NL180985C (en) 1987-06-01

Similar Documents

Publication Publication Date Title
DK144784B (en) encapsulation
US4285720A (en) Encapsulation process and capsules produced thereby
US4140516A (en) Encapsulation process employing phase transfer catalysts
US4643764A (en) Multiple types of microcapsules and their production
US4309213A (en) Process of encapsulation by interfacial polycondensation
JP3848676B2 (en) Microcapsules containing suspensions of biologically active compounds
NO148703B (en) PROCEDURE FOR PREPARING POLYUREA MICROCAPLES
NO328776B1 (en) Microcapsules comprising an encapsulated material enclosed in a solid permeable shell of a polymeric resin and a method of encapsulating dispersed material within a solid permeable shell of a polymeric resin, reaction product and method for modifying the soil mobility of an agrochemical
JPS60156545A (en) Method of encapsulizing water-soluble substance and composition containing micro-capsule
EP2950646B1 (en) Agrochemical composition, method for its preparation and use thereof
AU672465B2 (en) Microcapsule formulations of agricultural chemicals
CA1245917A (en) Process for producing multiple types of microcapsules
KR20000069843A (en) Novel water-in-oil microencapsulayion process and microcapsules produced rhereby
DE2312059C2 (en) Process for encapsulating a water-immiscible organic material in a polyurea capsule
KR810001880B1 (en) Process for preparing capsule empoying phase transfer catalysts
PL101769B1 (en) A METHOD OF MAKING CAPSULES FOR SUBSTANCES NON MISCIBLE WITH WATER
KR810001459B1 (en) Process of encapsulation by interfacial poly condensation