DK144095B - PROCEDURE FOR THE PRODUCTION OF CEPHALEXIN OR SALTS THEREOF - Google Patents

PROCEDURE FOR THE PRODUCTION OF CEPHALEXIN OR SALTS THEREOF Download PDF

Info

Publication number
DK144095B
DK144095B DK200577A DK200577A DK144095B DK 144095 B DK144095 B DK 144095B DK 200577 A DK200577 A DK 200577A DK 200577 A DK200577 A DK 200577A DK 144095 B DK144095 B DK 144095B
Authority
DK
Denmark
Prior art keywords
acid
penicillin
alkyl
imino
sulfoxide
Prior art date
Application number
DK200577A
Other languages
Danish (da)
Other versions
DK200577A (en
DK144095C (en
Inventor
J Rubinfeld
R U Lemieux
R Raap
Original Assignee
Bristol Myers Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00143683A external-priority patent/US3843637A/en
Application filed by Bristol Myers Co filed Critical Bristol Myers Co
Priority to DK200577A priority Critical patent/DK144095C/en
Publication of DK200577A publication Critical patent/DK200577A/en
Publication of DK144095B publication Critical patent/DK144095B/en
Application granted granted Critical
Publication of DK144095C publication Critical patent/DK144095C/en

Links

Landscapes

  • Cephalosporin Compounds (AREA)

Description

(19) DANMARK(19) DENMARK

|j| (12) FREMLÆGGELSESSKRIFT od 144095 B| J | (12) PUBLICATION OF 144095 B

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM

(21) Ansøgning nr. 2005/77 (51) |nt.CI.3 C07D501/10 (22) Indleveringsdag 5· maj 1977 (24) Løbedag 4. maj 1972 (41) Aim. tilgængelig 5· maj 1977 (44) Fremlagt 7· dec. 1981 (86) International ansøgning nr.(21) Application No. 2005/77 (51) | nt.CI.3 C07D501 / 10 (22) Filing date 5 · May 1977 (24) Running day 4 May 1972 (41) Aim. available May 5, 1977 (44) Posted May 7, Dec. 1981 (86) International application no.

(86) International indleveringsdag (85) Videreførelsesdag - (62) Stamansøgning nr. 2206/72(86) International filing day (85) Continuation day - (62) Application No. 2206/72

(30) Prioritet 11. maj 1971 i 143683* US(30) Priority 11 May 1971 in 143683 * US

(71) Ansøger BRISTOL-MYERS COMPANY, New York, US.(71) Applicant BRISTOL-MYERS COMPANY, New York, US.

(72) Opfinder Joseph Rubinfeld, US: Raymond Urgel Lemieux, CA: Rin= tje Raap, CA.(72) Inventor Joseph Rubinfeld, US: Raymond Urgel Lemieux, CA: Rin = tje Raap, CA.

(74) Fuldmægtig Th. Ostenfeld Patentbureau A/S.(74) Clerk Th. Ostenfeld Patentbureau A / S.

(54) Fremgangsmåde til fremstilling af cephalexin eller salte deraf.(54) Process for the preparation of cephalexin or its salts.

Den foreliggende opfindelse angår en ny fremgangsmåde til fremstilling af den antibakterielle forbindelse, cephalexin. Den ifølge opfindelsen fremstillede forbindelse er værdifuld som antibakterielt middel, som emæringstilskud til dyrefoder og som terapeutisk middel for fjerkræ, dyr og mennesker i behandlingen af infektionssygdomme forårsaget af Gram-positive og Gram-negative bakterier.The present invention relates to a novel process for the preparation of the antibacterial compound, cephalexin. The compound of the invention is valuable as an antibacterial agent, as a nutritional supplement for animal feed and as a therapeutic agent for poultry, animals and humans in the treatment of infectious diseases caused by Gram-positive and Gram-negative bacteria.

Cephalexin er det generiske navn for 7-(a-aminophenylacetamido)- 0 3-methyl-3-cephem-4-carboxylsyre, som har den strukturelle formel t \ /"CH " C - NH—-p ^ 1 åii2 j— O ^ CH3Cephalexin is the generic name for 7- (α-aminophenylacetamido) - O 3-methyl-3-cephem-4-carboxylic acid, which has the structural formula t / "CH" C - NH - p ^ CH3

t COOHt COOH

3 2 U40953 2 U4095

Cephalexin er f.eks. beskrevet i J. Med. Chem., 12, 310-313 (1969), i british patentskrift nr. 1.174.335, i sydafrikansk patentskrift nr. 67/1260, i beskrivelsen til offentliggjort japansk patentansøgning nr. 16871/66 og i belgisk patentskrift nr. 696.026.Cephalexin is e.g. described in J. Med. Chem., 12, 310-313 (1969), in British Patent No. 1,174,335, in South African Patent No. 67/1260, in the specification for published Japanese Patent Application No. 16871/66 and in Belgian Patent No. 696,026.

Et vigtigt trin i fremgangsmåden ifølge den foreliggende opfindelse er en direkte omlejring af 6-acylamidopenicillansyre-l-oxider til 7-acylamido-3-methylceph-3-em-4-carboxylsyre uden nødvendigheden af først at esterificere penicillinens 3-carboxyl-funktion. Der findes en omfattende tilgængelig litteratur vedrørende omlejringen af penicil-lin-l-oxid estere til de tilsvarende 3-methylceph-3-em-4-carboxylatestere, men overalt fremgår det som en nødvendighed, at penicillinens 3-carboxyl-funktion er i form af en carboxylsyreester, for at der ikke skal ske decarboxylering.An important step in the process of the present invention is a direct rearrangement of 6-acylamidopenicillanic acid 1-oxides to 7-acylamido-3-methylceph-3-em-4-carboxylic acid without the need to first esterify the 3-carboxylic function of the penicillin. There is extensive literature available regarding the rearrangement of penicillin-1-oxide esters to the corresponding 3-methylceph-3-em-4-carboxylate esters, but it is generally recognized that the 3-carboxyl function of penicillin is in form. of a carboxylic acid ester so that decarboxylation does not occur.

Den nærmest beslægtede kendte teknik vedrørende dette vigtige trin er følgende: 1. U.S.A. patentskrift nr. 3.275.626, der omhandler omlejring af 63-aeylamidopenicillansyreester. Det er endvidere i patentskriftet omhandlet, at reaktionen giver et decarboxyleret 3-methyl-3-cephem-omlejringsprodukt (spalte 5, linie 29-36 og spalte 7, linie 24-33), med mindre penicillinsulfoxidet, som anvendes i omlejringen, er i form af en 3-carboxylsyreester.The most well-known prior art of this important step is the following: 1. U.S.A. No. 3,275,626, which discloses the rearrangement of 63-aeylamidopenicillanic acid ester. It is further disclosed in the patent that the reaction produces a decarboxylated 3-methyl-3-cephem rearrangement product (column 5, lines 29-36 and column 7, lines 24-33) unless the penicillin sulfoxide used in the rearrangement is in in the form of a 3-carboxylic acid ester.

2. Britisk patentskrift nr. 1.204.394 omhandler omlejringen af 6-acylamidopenicillansyre-sulfoxidestere i et tertiært sulfonamid-opløsningsmiddelsystem.2. British Patent No. 1,204,394 discloses the rearrangement of 6-acylamidopenicillanic acid sulfoxide esters in a tertiary sulfonamide solvent system.

3. Britisk patentskrift nr. 1.204.972 omhandler omlejringen af 6-acylamidopenicillansyresulfoxidestere i et tertiært carboxamid-eller tertiært urinstof-opløsningsmiddelsystem.British Patent No. 1,204,972 discloses the rearrangement of 6-acylamidopenicillanic acid sulfoxide esters in a tertiary carboxamide or tertiary urea solvent system.

4. U.S.A. patentskrift nr. 3.507.861 omhandler blandt andet decarboxylering af carboxylfunktionen, når den frie syre underkastes "sulfoxidomlejringen".4. U.S.A. U.S. Patent No. 3,507,861 discloses, inter alia, decarboxylation of the carboxyl function when the free acid is subjected to the "sulfoxide rearrangement".

5. Opfinderne til samme U.S.A. patent har nærmere uddybet deres opdagelser i en publikation med benævnelsen "Chemistry of Cephalosporin antibiotics. XV. Transformation of Penicillin Sulfoxide", A Synthesis of Cephalosporin Compound, J. Am. Chem. Soc., 91, 1401 (12. marts 1969). Det er i denne publikation entydigt anført, at "det eneste produkt, som kan isoleres og karakteriseres fra den eddikesyreanhydrid- og syre-katalyserede omlejring af penicillinsulfoxid frie syrer var 3-methyl-7-(2-phenoxyacetamido)-3-cephem." 6. I J, Am. Chem. Soc. 85, 1896 (20. juni 1963) har Morin, Jackson et al. anført, at omlejringen af penicillinsulfoxidsyre resulterer 3 144095 i decarboxylering.5. The Inventors of the Same U.S.A. patent has elaborated on their discoveries in a publication entitled "Chemistry of Cephalosporin Antibiotics. XV. Transformation of Penicillin Sulfoxide", A Synthesis of Cephalosporin Compound, J. Am. Chem. Soc., 91, 1401 (March 12, 1969). It is clearly stated in this publication that "the only product which can be isolated and characterized from the acetic anhydride and acid-catalyzed rearrangement of penicillin sulfoxide free acids was 3-methyl-7- (2-phenoxyacetamido) -3-cephem." 6. I J, Am. Chem. Soc. 85, 1896 (June 20, 1963), Morin, Jackson et al. stated that the rearrangement of penicillin sulfoxic acid results in decarboxylation.

7. I sydafrikansk patentskrift nr. 68/2780 er det klart anført, at "I alle tilfælde skal de (de kendte penicilliner) esterificeres og omdannes til det tilsvarende sulfoxid inden behandling", d.v.s. omlejres til 3-methyl-3-cephem-4-carboxylatderivat.7. In South African Patent No. 68/2780, it is clearly stated that "In all cases, the (known penicillins) must be esterified and converted to the corresponding sulfoxide prior to treatment", i.e. is rearranged into 3-methyl-3-cephem-4-carboxylate derivative.

8. I U.S.A. patentskrift nr. 3.197.466 er omhandlet fremstilling af penicillinsulfoxider.8. In the U.S.A. U.S. Patent No. 3,197,466 discloses the preparation of penicillin sulfoxides.

9. Suddal, Morch og Tybring beskriver fremstillingen af penicillinsulfoxider i en artikel med benævnelsen "Penicillin Oxides, Tetrahedron Letters" 9, side 381 (1962).9. Suddal, Morch and Tybring describe the preparation of penicillin sulfoxides in an article entitled "Penicillin Oxides, Tetrahedron Letters" 9, page 381 (1962).

10. I sydafrikansk patent nr. 68/5889 er beskrevet en fremgangsmåde til fremstilling af penicillinsulfoxidestere.10. In South African Patent No. 68/5889 a process for the preparation of penicillin sulfoxide esters is disclosed.

11. I sydafrikansk patent nr. 70/1627 er beskrevet en omlejring af penicillinsulfoxidestere til 3-methylceph-3-em-4-c^rboxylsyreestere under anvendelse af syre-aminkomplekser ved hjælp af varme. Der findes ikke på dette sted nogen åbenbaring af, at andre forbindelser end penicillinsulfoxidestere kan omlejres uden decarboxylering af carboxyl-gruppen. Alle de viste eksempler og patentkravene er rettet på omlejringen af penicillansyresulfoxidestere til 3-methylceph-3-em-4-carboxy-latestere.11. South African Patent No. 70/1627 discloses a rearrangement of penicillin sulfoxide esters into 3-methylceph-3-em-4-carboxylic acid esters using acid-amine complexes by heat. There is no revelation at this site that compounds other than penicillin sulfoxide esters can be rearranged without decarboxylation of the carboxyl group. All of the examples and claims shown are directed to the rearrangement of penicillanic acid sulfoxide esters to 3-methylceph-3-em-4-carboxylate esters.

12. X dansk patentansøgning nr. 1677/71 er beskrevet en fremgangsmåde til fremstilling af cephalexin, ved hvilken hetacillin nitroseres eller formyleres til dannelse af N-nitrose- eller N-formylhetacillin, som derefter oxideres til dannelse af det tilsvarende sulfoxid; dette blokerede sulfoxid kan derefter på fri syreform omlejres til N-nitroso-eller N-formylhetacephalexin, som endelig kan spaltes til frigørelse af cephalexin.12. Danish Patent Application No. 1677/71 discloses a process for the preparation of cephalexin in which hetacillin is nitrosated or formylated to form N-nitrose or N-formylhetacillin, which is then oxidized to form the corresponding sulfoxide; this blocked sulfoxide can then be redistributed in free acid form to N-nitroso or N-formylhetacephalexin, which can finally be cleaved to release cephalexin.

Den foreliggende opfindelse tilvejebringer en forbedret fremgangsmåde til fremstilling af· cephalexin eller ikke-toxiske salte deraf, ved hvilken omlejringstrinnet til en cephalosporansyreforbindelse foretages i godt udbytte på den frie syreform af et penicillinsulfoxid fremstillet ved oxidation af et ved fermentering fremstillet penicillin. Herved undgår man den etablerede kendte tekniks ulemper ved omlejring på en penicillinsulfoxidester. I forhold til den fremgangsmåde, der som udgangsmateriale anvender hetacillin, opnås dels, at et ved fermentering fremstillet penicillin er et langt lettere tilgængeligt udgangsmateriale, og dels at man undgår et nitroserings- eller fonnyleringstrin og efterfølgende afblokering. Fremgangsmåden ifølge opfindelsen gør i øvrigt brug af i og for sig kendte silyleringstrin.The present invention provides an improved process for the preparation of cephalexin or non-toxic salts thereof, wherein the rearrangement step of a cephalosporanic acid compound is performed in good yield on the free acid form of a penicillin sulfoxide produced by oxidation of a penicillin produced by fermentation. This avoids the disadvantages of the prior art in rearranging a penicillin sulfoxide ester. Compared to the process using hetacillin as a starting material, one obtains that a penicillin produced by fermentation is a much more readily available starting material and partly that one avoids a nitrosation or fonnylation step and subsequent unblocking. The process according to the invention also uses silylation steps known per se.

Nærmere betegnet er fremgangsmåden ifølge opfindelsen af den art, , 144095 4 som omfatter følgende trin: A) Oxidering af e.t ved fermentering fremstillet penicillin eller et salt deraf til fremstilling af et penicillinsulfoxid med formlen ° .0H3 R - C - NH--f jr CH3More particularly, the process according to the invention is of the kind comprising the following steps: A) Oxidation of a penicillin produced by fermentation or a salt thereof to produce a penicillin sulfoxide of the formula: 0H 3 R - C - NH - f CH3

X-N-1—CO-HX-N-1-CO-H

0^ * hvori R er sidekæden af et ved fermentering fremstillet penicillin? B) Omdannelse af penicillinsulfoxidet til en cephalosporansyre-forbindelse med formlen 0 o » R - C - NH-r-fWherein R is the side chain of a penicillin produced by fermentation? B) Conversion of the penicillin sulfoxide to a cephalosporanoic acid compound of the formula 0 o R - C - NH-r-f

C02HC02H

hvori R har den ovenfor anførte betydning? C) Omsætning af cephalosporansyreforbindelsen med en silylforbindelse med formlen R\ ./"Rl ΝΗ/51>ΝΗ X r3wherein R has the meaning given above? C) Reaction of the Cephalosporanoic Acid Compound with a Silyl Compound of Formula R 1 / R 1/51> ΝΗ X r 3

1 ί I 1 \ 2 I1 ί I 1 \ 2 I

I y'B. eller R-Si-XI y'B. or R-Si-X

^\,XV *4 H m 2 3 4 hvori R , R og R betegner hydrogen, halogen, (lavere) alkyl, halogen (lavere)alkyl, phenyl, benzyl, tolyl eller dimethylaminophenyl, idet 2 3 4 mindst en af grupperne R , R og R er forskellig fra halogen eller hydrogen? R^ betegner (lavere)alkyl; m betegner et helt tal 1 eller 2, og X betegner halogen ellerWherein R, R and R are hydrogen, halogen, (lower) alkyl, halogen (lower) alkyl, phenyl, benzyl, tolyl or dimethylaminophenyl, with at least one of the groups R , R and R are different from halogen or hydrogen? R 1 represents (lower) alkyl; m represents an integer 1 or 2, and X represents halogen or

-N-N

\r6 c 144095 5 5 6 hvori R betegner hydrogen eller (lavere)alkyl, og R betegner hydrogen, (lavere)alkyl eller R3 é-Ji— i* 2 3 4 hvori R , R og R har den ovenfor anførte betydning, under vandfri betingelser, i et inert opløsningsmiddel, og i nærværelse af en syre-deaktiverende tertiær amin til dannelse af den tilsvarende silylester af cephalosporansyreforbindelsen; D) Omsætning af silylesteren med overskud af et halogeneringsmiddel under vandfri betingelser, i et inert opløsningsmiddel, og i nærværelse af en syredeaktiverende tertiær amin til dannelse af det tilsvarende iminohalogenid; E) Omsætning af iminohalogenidet med en alkohol udvalgt blandt alifatiske alkoholer med 1-12 carbonatomer og phenylalkylalkoholer med 1-7 alkylcarbonatomer til fremstilling af den tilsvarende iminoether* F) Brydning af iminoetherens iminobinding ved hydrplyse eller alkoho-lyse til fremstilling af 7-aminodeacetoxycephalosporansyre; G) Fremstilling af mono- eller disilylderivatet af 7-amlnodeacetoxy-cephalosporansyre; H) N-acylering af mono- eller disilylderivatet med et phenylglycin-derivatf og I) Spaltning ved hydrolyse eller alkoholyse af alle forekommende silylgrupper til dannelse af cephalexin eller ved efterfølgende omdannelse af et ikke-toxisk, farmaceutisk acceptabelt salt deraf, hvilken fremgangsmåden er ejendommelig ved, at (1) omdannelsestrinnet (B) består i en omlejring ved opvarmning af den frie syreform af penicillin-sulfoxidet i et svagt basisk opløsningsmiddel i nærværelse af en katalysator omfattende en stærk syre, enten alene eller i kombination med en nitrogenbase med en pKb-værdi på ikke mindre end 4; (2) monosilyl-derivatet af 7-aminodeacetoxycephalosporansyre fremstilles ved omsætning af 7-aminodeacetoxycephalosporansyreproduktet fra trin (F) med omtrentlig eller molær mængde af en silylforblndelse som defineret i trin (C), eller ved at udføre hydrolyse- eller alkoholysereaktionen i trin (F) i nærværelse af mindst ca. et molært overskud af en silyl-forbindelse, som defineret i trin (C), eller ved at man i trin (F) underkaster iminoetherens iminobinding alkoholyse og termisk spaltning i nærværelse af mindst ca. et molært overskud af en silylforblndelse som defineret i trin (C); 6 144095 (3) disilylderivatet af 7-aminodeacetoxycephalosporansyre fremstilles ved omsætning af 7-aminodeacetoxycephalosporansyreproduktet fra trin (F) med mindst 2 mol af en silylforbindelse som defineret i trin (C) pr. mol 7-aminodeacetoxycephalosporansyre/ eller ved udførelse af hydrolyse- eller alkoholysereaktionen i trin (f) i nærværelse af mindst ca. et dobbelt molært overskud af en silylforbindelse, som defineret i trin (C), eller ved at man i trin (F) underkaster iminoetherens imino-binding alkoholyse og termisk spaltning i nærværelse af mindst et dobbelt molært overskud af en silylforbindelse, som defineret i trin (C); og (4) at acyleringsreaktionen udføres ved omsætning af mono- eller disilylderivatet med phenylglycylchlorid,hydrochlorid i et inert, ikke-vandigt, organisk opløsningsmiddelsystem.wherein R is hydrogen or (lower) alkyl and R is hydrogen, (lower) alkyl or R3 is E-Ji in which R, R and R are as defined above, under anhydrous conditions, in an inert solvent, and in the presence of an acid deactivating tertiary amine to form the corresponding silyl ester of the cephalosporanoic acid compound; D) Reaction of the silyl ester with excess of a halogenating agent under anhydrous conditions, in an inert solvent, and in the presence of an acid deactivating tertiary amine to form the corresponding imino halide; E) Reaction of the imino halide with an alcohol selected from aliphatic alcohols of 1-12 carbon atoms and phenylalkyl alcohols of 1-7 alkyl carbon atoms to prepare the corresponding imino ether * F) Breaking of the imino ether's imino bond by hydrolysis or alcoholysis to produce 7-aminodeacetoxycephalosephalic acid epoxy G) Preparation of the mono- or disilyl derivative of 7-aminodeacetoxy-cephalosporanoic acid; H) N-acylation of the mono or disilyl derivative with a phenylglycine derivative and I) Cleavage by hydrolysis or alcoholysis of all silyl groups present to form cephalexin or by subsequent conversion of a non-toxic, pharmaceutically acceptable salt thereof, the process being characterized wherein (1) the conversion step (B) consists of a rearrangement by heating the free acid form of the penicillin sulfoxide in a weak basic solvent in the presence of a catalyst comprising a strong acid, either alone or in combination with a nitrogen base with a pKb value of not less than 4; (2) the monosilyl derivative of 7-aminodeacetoxycephalosporanoic acid is prepared by reacting the 7-aminodeacetoxycephalosporanic acid product of step (F) with approximate or molar amount of a silyl compound as defined in step (C), or by performing hydrolysis or alcoholysis reaction ( ) in the presence of at least approx. a molar excess of a silyl compound as defined in step (C) or by subjecting in step (F) the iminoether imino bond of alcoholysis and thermal decomposition in the presence of at least about a molar excess of a silyl compound as defined in step (C); (3) the disilyl derivative of 7-aminodeacetoxycephalosporanoic acid is prepared by reacting the 7-aminodeacetoxycephalosporanoic acid product of step (F) with at least 2 moles of a silyl compound as defined in step (C) per day. mole of 7-aminodeacetoxycephalosporanoic acid / or by carrying out the hydrolysis or alcoholysis reaction of step (f) in the presence of at least ca. a double molar excess of a silyl compound, as defined in step (C), or subjecting in step (F) the imino-bond of the imino ether to alcoholysis and thermal decomposition in the presence of at least a double molar excess of a silyl compound, as defined in step (C) (C); and (4) performing the acylation reaction by reacting the mono- or disilyl derivative with phenylglycyl chloride, hydrochloride in an inert, non-aqueous organic solvent system.

De ikke-toxiske, farmaceutisk acceptable salte omfatter f.eks.The non-toxic, pharmaceutically acceptable salts include e.g.

(1) ikke-toxiske, farmaceutisk acceptable salte af den sure carboxyl-syregruppe, såsom natrium-, kalium-, calcium-, aluminium- og ammoniumsaltene, og ikke-toxiske substituerede ammoniumsalte med aminer, såsom tri(lavere)alkylaminer, procain, dibenzylamin, N-benzyl-ft-phenethyl-amin, 1-ephenamin, Ν,Ν'-dibenzylethylendiamin, dehydroabietylamin, N,N'-bis-dehydroabietylethylendiamin, N-(lavere)alkylpiperidiner, såsom N-ethyl-piperidin og andre aminer, som har været anvendt til at danne salte af benzylpenicillin; og (2) ikke-toxiske, farmaceutisk acceptable syreadditionssalte (d.v.s. salte af det basiske nitrogenatom), såsom (a) .mineralsyreadditionssaltene, såsom hydrochloridet, hydrobromidet, hydroiodidet, sulfatet, sulfamatet, sulfonatet, phosphatet, etc., og (b) de organiske syreadditionssalte# såsom maleatet, acetatet, citratet, tartratet, oxalatet, succinatet, benzoatet, fumaratet, malatet, mandelatet, ascorbatet, β-naphthalensulfonatet, p-toluensulfonatet og lignende. Cephalexin kan også eksistere som den "frie syre", der naturligvis eksisterer som en zwitter-ion.(1) non-toxic, pharmaceutically acceptable salts of the acidic carboxylic acid group such as the sodium, potassium, calcium, aluminum and ammonium salts, and non-toxic substituted ammonium salts with amines such as tri (lower) alkyl amines, procaine, dibenzylamine, N-benzyl-ft-phenethylamine, 1-ephenamine, Ν, Ν'-dibenzylethylenediamine, dehydroabietylamine, N, N'-bis-dehydroabietylethylenediamine, N- (lower) alkylpiperidines such as N-ethylpiperidine and other amines , which has been used to form salts of benzylpenicillin; and (2) nontoxic, pharmaceutically acceptable acid addition salts (i.e., salts of the basic nitrogen atom) such as (a) the mineral acid addition salts such as the hydrochloride, hydrobromide, hydroiodide, sulfate, sulfamate, sulfonate, phosphate, etc., and (b) the organic acid addition salts such as the maleate, acetate, citrate, tartrate, oxalate, succinate, benzoate, fumarate, malate, mandelate, ascorbate, β-naphthalenesulfonate, p-toluenesulfonate and the like. Cephalexin can also exist as the "free acid" which naturally exists as a zwitter ion.

Det i trin (B) anvendte penicillansyresulfoxid er afledt af en ved fermentering fremstillet penicillin.The penicillanic acid sulfoxide used in step (B) is derived from a fermentation penicillin.

Udtrykket "ved fermentering fremstillet penicillin" skal i denne forbindelse medtage alle de penicilliner, som det er kendt fremstilles ved. en fermenteringsproces ifølge Behren's regel [Medicinal Chemistry, 3. udgave, p. 382, A. Burger, Wiley-Interscience (pub.)], og det omfatter især penicilliner med formlen " H ^X"CH3 R - C - N—-r j^-ch3The term "penicillin produced by fermentation" shall include in this connection all the penicillins by which it is known to be produced. a fermentation process according to Behren's rule [Medicinal Chemistry, 3rd ed., p. 382, A. Burger, Wiley-Interscience (pub.)], and in particular it includes penicillins of the formula "H ^ X" CH3 R - C - N—- rj ^ -CH3

0 =±-N-— C02HO = ± -N- CO 2 H

7 144095 hvori R betegner phenyl, benzyl, phenoxymethyl, phenylmercaptomethyl, sådant phenyl, benzyl, phenoxymethyl og phenylmercaptomethyl substitueret med chlor, methyl, methoxy eller nitrogrupper, samt heptyl og thiophen-2-methyl. Penicilliner med disse representative R-grupper fremstilles mest økonomisk eller lettest ved fermenteringsmetoder.Wherein R represents phenyl, benzyl, phenoxymethyl, phenylmercaptomethyl, such phenyl, benzyl, phenoxymethyl and phenylmercaptomethyl substituted with chloro, methyl, methoxy or nitro groups, as well as heptyl and thiophen-2-methyl. Penicillins with these representative R groups are produced most economically or most easily by fermentation methods.

De foretrukne penicilliner er 6-phenyl-acetamidopenicillansyre (penicillin G) og 6-phenoxyacetamidopenicillansyre (penicillin V):The preferred penicillins are 6-phenylacetamidopenicillanic acid (penicillin G) and 6-phenoxyacetamidopenicillanic acid (penicillin V):

Oxidationstrinnet (A) kan udføres efter de retningslinier, der er beskrevet af Chow, Hall og Hoover (J. Org. Chem. 1962, 27, 1381), bortset fra at det foretrækkes at oxidere den frie penicillinsyre (eller saltet deraf) direkte i stedet for først at esterificere car-boxylgruppen som omhandlet i det nævnte litteratursted. Direkte oxidation af en fri penicillinsyre eller et salt er beskrevet af Essery et al. i J. Org. Chem. 30, 1965, 4388. Penicillinen blandes med oxidationsmidlet i en sådan mængde, at der er mindst et atom aktiv oxygen til stede pr. atom thiazolidinsvovl. Egnede oxidatipnsmidler omfatter hydro-genperoxid, pereddikesyre, metaperiodsyre, monoperphthalsyre, m-chlor-perbenzoesyre og t-butylhypochlorit, idet den sidstnævnte fortrinsvis anvendes i blanding med en svag base, f.eks. pyridfn- Ef overskud af oxidationsmiddel kan føre til dannelse af 1,1-dioxid, 1-oxidet kan opnås på R- og/eller S-form.The oxidation step (A) can be carried out according to the guidelines described by Chow, Hall and Hoover (J. Org. Chem. 1962, 27, 1381), except it is preferred to oxidize the free penicillic acid (or salt thereof) directly in instead of first esterifying the carboxyl group as referred to in said literature site. Direct oxidation of a free penicillic acid or salt is described by Essery et al. in J. Org. Chem. 30, 1965, 4388. The penicillin is mixed with the oxidizing agent in an amount such that at least one atom of active oxygen is present per day. atomic thiazolidine sulfur. Suitable oxidation agents include hydrogen peroxide, peracetic acid, metaperiodic acid, monoperphthalic acid, m-chloro-perbenzoic acid and t-butyl hypochlorite, the latter being preferably used in admixture with a weak base, e.g. pyridine - Excess oxidant can lead to the formation of 1,1-dioxide, the 1-oxide can be obtained in R and / or S form.

Acylgruppen i 6-aminostiliingen for penicillansyresulfoxidet kan være en vilkårlig fra fermentering hidrørende acylgruppe, men bør fortrinsvis være rimeligt stabil under omlejringsbetingelserne. På grund af den særligt lette tilgængelighed af penicillin G og V foretrækkes det ifølge opfindelsen, at R i sulfoxidet betegner benzyl eller phenoxymethyl .The acyl group in the 6-amino position of the penicillanic acid sulfoxide may be any acyl group derived from fermentation, but should preferably be reasonably stable under the rearrangement conditions. Due to the particularly easy availability of penicillin G and V, it is preferred according to the invention that R in the sulfoxide represents benzyl or phenoxymethyl.

Omlejringstrinnet (B) foretages under katalytiske sure betingelser ved fortrinsvis at anvende polybasiske syrer, såsom ortho-phosphorsyre, der er partielt neutraliseret med basiske opløsningsmidler og mest hensigtsmæssig ved tilsætning af små mængder af et svagt basisk stof, såsom pyridin eller quinolin. Af bekvemmeligheds grunde er disse katalysatorer her beskrevet som komplekser eller salte, selv om det skal være underforstået, at udtrykket "kompleks" kan ombyttes 8 144095 med "salte". Endvidere skal det bemærkes, at saltet eller komplekset under reaktionsbetingelserne kan eksistere på en dissocieret form.The rearrangement step (B) is carried out under catalytic acidic conditions, preferably using polybasic acids, such as ortho-phosphoric acid, which is partially neutralized with basic solvents and most conveniently by adding small amounts of a weak basic substance such as pyridine or quinoline. For convenience, these catalysts are herein described as complexes or salts, although it should be understood that the term "complex" may be substituted for "salts". Furthermore, it should be noted that under the reaction conditions, the salt or complex may exist in a dissociated form.

Ifølge et udførelseseksempel tilvejebringes der således en fremgangsmåde til fremstilling af 7-acylamido-3-methylceph-3-em-4-carboxylsyrer, som omfatter omlejring af et 6-acylamidopenicillan-syre-l-oxid i et svagt basisk organisk opløsningsmiddel, såsom dioxan eller diglyme i nærværelse af en katalysator omfattende en stærk syre alene eller i kombination med en nitrogenbase med en pKb-værdi på ikke mindre end 4. Katalysatoren er fortrinsvis afledt af en nitrogenbase og en syre, der danner salte eller komplekser, hvilket salt kan være dannet in situ i reaktionsblandingen. Syren bør fortrinsvis være en polybasisk syre, såsom en phosphorholdig syre.Thus, according to one embodiment, there is provided a process for the preparation of 7-acylamido-3-methylceph-3-em-4-carboxylic acids, which comprises rearranging a 6-acylamidopenicillanic acid 1-oxide in a weak basic organic solvent such as dioxane or diglyme in the presence of a catalyst comprising a strong acid alone or in combination with a nitrogen base having a pKb value of not less than 4. The catalyst is preferably derived from a nitrogen base and an acid which forms salts or complexes, which salt may be formed in situ in the reaction mixture. The acid should preferably be a polybasic acid, such as a phosphorus-containing acid.

Som phosphorholdig syre kan anvendes orthophosphorsyre, polyphos-phorsyre, pyrophosphorsyre eller phosphorsyrling eller en phosphonsyre. Phosphonsyren kan være en alifatisk, aralifatisk eller arylphosphon-syre; den alifatiske gruppe, aralifatiske gruppe eller arylgruppen for en sådan phosphonsyre kan være en carbonhydridgruppe (f.eks. en lavere alkyl-, phenyl lavere alkyl- eller phenylgruppe) eller en carbonhydridgruppe, der er substitueret med f.eks. et halogenatom eller en nitrogruppe. Eksempler på alifatiske phosphonsyrer omfatter de lavere alkyl-phosphonsyrer og substituerede (f.eks. halogen) lavere alkylphosphon-syrer, såsom methanphosphonsyre, ethanphosphonsyre, dichlormethanphos-phonsyre, trichlormethanphosphonsyre og iodmethanphosphonsyre. Eksempler på arylphosphonsyrer omfatter benzenphosphonsyrer og substituerede (f.eks. halogen eller nitro) benzenphosphonsyrer, f.eks. brombenzen-phosphonsyrer og nitro-benzenphosphonsyrer. Til udtrykket "en phosphorholdig syre" skal også medregnes anhydriderne af de ovenfor anførte syrer, f.eks. ^2^5·As phosphorous acid may be used orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid or phosphoric acid or a phosphonic acid. The phosphonic acid may be an aliphatic, araliphatic or aryl phosphonic acid; the aliphatic group, araliphatic group or aryl group for such a phosphonic acid may be a hydrocarbon group (e.g., a lower alkyl, phenyl lower alkyl or phenyl group) or a hydrocarbon group substituted by e.g. a halogen atom or a nitro group. Examples of aliphatic phosphonic acids include the lower alkyl phosphonic acids and substituted (e.g. halogen) lower alkyl phosphonic acids such as methane phosphonic acid, ethane phosphonic acid, dichloromethane phosphonic acid, trichloromethane phosphonic acid and iodomethane phosphonic acid. Examples of arylphosphonic acids include benzene phosphonic acids and substituted (e.g. halogen or nitro) benzene phosphonic acids, e.g. bromobenzene phosphonic acids and nitrobenzenephosphonic acids. The term "a phosphorus-containing acid" also includes the anhydrides of the acids listed above, e.g. ^ 2 ^ 5 ·

Udtrykket "nitrogenbase" anvendes her som et bekvemt udtryk for et basisk stof, som indeholder nitrogen, selv om det kan indeholde andre heteroatomer, f.eks. oxygen. Det foretrækkes dog at anvende svagt basiske og organiske aminer. Baser, som kan anvendes, har en pKb-værdi for protonisering på ikke mindre end 4 (d.v.s. ved måling i vand ved 25°C). Basen kan være en polyfunktionel base med en nitrogenfunktion med en sådan pKb-værdi for det første protoniseringstrin.The term "nitrogen base" is used herein as a convenient term for a basic substance containing nitrogen, although it may contain other heteroatoms, e.g. oxygen. However, it is preferred to use weakly basic and organic amines. Bases which can be used have a pKb value for protonization of not less than 4 (i.e., when measured in water at 25 ° C). The base may be a polyfunctional base having a nitrogen function having such pKb value for the first protonation step.

Den organiske base kan være primær, sekundær eller tertiær; dog foretrækkes det at anvende svage tertiære organiske baser. Eksempler på sådanne tertiære organiske baser er de umættede heterocykliske baser, såsom pyridin, quinolin, isoquinolin, benzimidazol og homologe deraf, f.eks. de alkylsubstituerede pyridiner og quinoliner, såsom 9 144095 α-, β- og γ-picoliner og 2- og 4-methylquinoIiner. Andre substituerede heterocykliske baser, der kan anvendes, omfatter de med halogen (f.eks. chlor eller brom), acyl (f.eks. formyl eller acetyl), acylamido (f.eks. acetamido), cyano, carboxy, aldoximino og lignende substituerede.The organic base may be primary, secondary or tertiary; however, it is preferred to use weak tertiary organic bases. Examples of such tertiary organic bases are the unsaturated heterocyclic bases such as pyridine, quinoline, isoquinoline, benzimidazole and homologues thereof, e.g. the alkyl-substituted pyridines and quinolines such as α-, β- and γ-picolines and 2- and 4-methylquinolines. Other substituted heterocyclic bases which may be used include those with halogen (e.g., chlorine or bromine), acyl (e.g., formyl or acetyl), acylamido (e.g., acetamido), cyano, carboxy, aldoximino, and the like. substituted.

Andre organiske baser, der kan anvendes omfatter anilin og kernesubstituerede aniliner, såsom halogenaniliner (f.eks, o-chloranilin, m-chloranilin og p-chloranilin); aniliner (f.eks. o-methylanilin og m-methylanilin); hydroxy- og (lavere)alkoxyaniliner (f.eks. o-methoxy-anilin og m-hydroxyanilin); nitroaniliner (f.eks, m-nitroanilin) og carboxyaniliner (f.eks. m-carboxyanilin), samt N-(lavere)alkylaniliner (f.eks. N-methylanilin) og N,N-di(lavere)alkylaniliner.Other organic bases which may be used include aniline and nucleus substituted anilines such as halo anilines (e.g., o-chloroaniline, m-chloroaniline and p-chloroaniline); anilines (eg o-methylaniline and m-methylaniline); hydroxy and (lower) alkoxyanilines (eg o-methoxy-aniline and m-hydroxyaniline); nitroanilines (e.g., m-nitroaniline) and carboxyanilines (e.g., m-carboxyaniline), as well as N- (lower) alkylanilines (e.g., N-methylaniline) and N, N-di (lower) alkylanilines.

Foretrukne grupper af katalytiske systemer er sådanne, der opnås ved omsætning af en phosphorholdig syre med en nitrogenbase. Fordelagtige resultater er blevet opnået med fremgangsmåden ifølge opfindelsen, når der som katalysatorer er blevet anvendt salte af orthophosphorsyre. Ligeså fordelagtige resultater er dog blevet opnået, når katalysatoren er dannet in situ. Katalysatorsystemer opnås ved omsætning af praktisk taget molære ækvivalenter af en syre og en aromatisk heterocyklisk tertiær organisk nitrogenbase i et svagt basisk opløsningsmiddelsystem. Fordelagtige resultater er blevet opnået med fremgangsmåden ifølge opfindelsen, når der som katalysatorer er blevet anvendt komplekser af pyridin, quinolin, isoquinolin eller derivater deraf substitueret med lavere alkyl, halogen, acyl, acylamido, cyano, carboxy eller aldoximino.Preferred groups of catalytic systems are those obtained by reacting a phosphorus-containing acid with a nitrogen base. Advantageous results have been obtained with the process of the invention when salts of orthophosphoric acid have been used as catalysts. Equally advantageous results, however, have been obtained when the catalyst is formed in situ. Catalyst systems are obtained by converting practically molar equivalents of an acid and an aromatic heterocyclic tertiary organic nitrogen base into a weak basic solvent system. Advantageous results have been obtained with the process of the invention when complexes of pyridine, quinoline, isoquinoline or derivatives thereof substituted with lower alkyl, halogen, acyl, acylamido, cyano, carboxy or aldoximino have been used as catalysts.

Særligt foretrukne komplekser af nitrogenbaser er sådanne, der opnås ved omsætning af en phosphorholdig syre med en aromatisk heterocyklisk, tertiær organisk nitrogenbase. Fordelagtige resultater er blevet opnået med fremgangsmåden ifølge opfindelsen, når der anvendes salte af orthophosphorsyre eller en phosphonsyre med pyridin, quinolin, isoquinolin eller sådanne baser substitueret f.eks. med lavere alkyl, halogen, acyl, acylamido, cyanp, carboxy eller aldoximino. Værdifulde katalysatorer omfatter således pyridin; 2-methyl- og 4-methyl-pyridin; quinolin og isoquinolinsalte af orthophosphor-, methanphosphon-, ethan-phosphon-, iodmethanphosphon-, dichlormethanphosphon-, trichlormethan-phosphon-, brombenzenphosphon- og nitrobenzenphosphonsyrer.Particularly preferred complexes of nitrogen bases are those obtained by reaction of a phosphorus-containing acid with an aromatic heterocyclic tertiary organic nitrogen base. Advantageous results have been obtained with the process of the invention when using salts of orthophosphoric acid or a phosphonic acid with pyridine, quinoline, isoquinoline or such bases substituted e.g. lower alkyl, halogen, acyl, acylamido, cyano, carboxy or aldoxymino. Valuable catalysts thus include pyridine; 2-methyl- and 4-methyl-pyridine; quinoline and isoquinoline salts of orthophosphorus, methane phosphone, ethane phosphone, iodomethane phosphone, dichloromethane phosphone, trichloromethane phosphone, bromobenzene phosphone and nitrobenzen phosphonic acids.

Især foretrækkes det ifølge opfindelsen, at katalysatoren omfatter et kompleks dannet af phosphorsyre eller P2°5 °9 en nitrogenbase udvalgt fra pyridin eller quinolin.In particular, it is preferred that the catalyst comprises a complex formed of phosphoric acid or P2 ° 5 ° 9 a nitrogen base selected from pyridine or quinoline.

Det ved fremgangsmåden ifølge opfindelsen anvendte katalytiske system kan udformes ud fra sådanne mængder af syren og basen, at en ίο U4G95 eller flere af de sure funktioner partielt neutraliseres ved hjælp af basen og/eller opløsningsmidlet. I almindelighed anvendes mindre end den molære mængde nitrogenbase, således at katalysatoren foruden saltet også omfatter noget fri syre.The catalytic system used in the process of the invention can be designed from such amounts of the acid and the base that a portion of U4G95 or more of the acidic functions is partially neutralized by the base and / or the solvent. Generally, less than the molar amount of nitrogen base is used so that the catalyst, in addition to the salt, also contains some free acid.

Det optimale forhold mellem syre og base i det katalytiske system afhænger af forskellige faktorer, herunder naturen af syren og basen, samt naturen af penicillansyresulfoxidet. Det optimale forhold kan bestemmes ved forudgående forsøg.The optimal ratio of acid to base in the catalytic system depends on various factors, including the nature of the acid and the base, as well as the nature of the penicillanic acid sulfoxide. The optimum ratio can be determined by prior experiments.

Et foretrukket katalytisk system til anvendelse ved fremgangsmåden ifølge den foreliggende opfindelse er det, der er opnået ved omsætning af 1 mol pyridin og 2 mol orthophosphorsyre i dioxan.A preferred catalytic system for use in the process of the present invention is that obtained by reacting 1 mole of pyridine and 2 moles of orthophosphoric acid in dioxane.

Et andet foretrukket katalytisk system til anvendelse ved fremgangsmåden ifølge opfindelsen fås ud fra quinolin og orthophosphorsyre i et svagt basisk opløsningsmiddel (d.v.s. dioxan). Det sker ved omsætning af praktisk taget et molækvivalent quinolin og to molækvivalenter orthophosphorsyre.Another preferred catalytic system for use in the process of the invention is obtained from quinoline and orthophosphoric acid in a weak basic solvent (i.e., dioxane). It occurs by reacting practically one mole equivalent of quinoline and two mole equivalent of orthophosphoric acid.

Et andet foretrukket katalytisk system, der kan anvendes til trin (B) , er det, som fås ved kombinationen af °9 PY^idin i et svagt basisk opløsningsmiddel, f.eks. dioxan.Another preferred catalytic system that can be used for step (B) is that obtained by the combination of ° 9 PY 2 idin in a weakly basic solvent, e.g. dioxane.

En særlig foretrukket katalysator omfatter ifølge opfindelsen et pyridin-di(phosphorsyre)-kompleks, som er til stede i et molært forhold på ca. 0,05 til ca. 0,5 mol pr. mol penicillinsulfoxid.A particularly preferred catalyst according to the invention comprises a pyridine-di (phosphoric acid) complex which is present in a molar ratio of approx. 0.05 to approx. 0.5 moles per mole of penicillin sulfoxide.

Trin (B) gennemføres i et svagt basisk organisk opløsningsmiddel for regulering af surhed, homogenitet og temperatur.Step (B) is carried out in a weak basic organic solvent to control acidity, homogeneity and temperature.

Sædvanligvis vil penicillansyresulfoxidet være i opløsning i det organiske opløsningsmiddel. Opløsningsmidlet bør være i det væsentlige inert overfor det ved fremgangsmåden anvendte penicillansyresulfoxid og overfor den ved fremgangsmåden fremstillede 3-methylceph-3-em-4-carboxylsyre.Usually, the penicillanic acid sulfoxide will be dissolved in the organic solvent. The solvent should be substantially inert to the penicillanic acid sulfoxide used in the process and to the 3-methylceph-3-em-4-carboxylic acid produced by the process.

Opløsningsmidler, som kan anvendes, omfatter sådanne, der er beskrevet i U.S.A. patentskrift nr. 3.275.626 og andre publikationer med beskrivelser af omlejringsreaktionen. Særligt egnede opløsningsmidler omfatter dog ketoner, der koger fra 75-120°C (f.eks. 100-120°C), estere, der koger fra 75-140°C (f.eks. 100-130°C), dioxan og diethylenglycol-dimethylether (diglym). Illustrative eksempler på de ketoner og estere, som kan anvendes ved fremgangsmåden ifølge den foreliggende opfindelse, er alifatiske ketoner og estere med passende kogepunkter, herunder ethylmethylketon, isobutylmethylketon, methyl-n-propylketon, n-propyl-acetat, n-butylacetat, isobutylacetat, sek.-butylacetat og diethyl- 11 144095 carbonat. Disse opløsningsmidler er i stand til at protoniseres af en stærk syre og betragtes som sådan som "svagt basiske organiske opløsningsmidler". Det mest foretrukne opløsningsmiddel er dioxan.Solvents which may be used include those disclosed in U.S.A. No. 3,275,626 and other publications with descriptions of the rearrangement reaction. Particularly suitable solvents, however, include ketones boiling from 75-120 ° C (e.g. 100-120 ° C), esters boiling from 75-140 ° C (e.g. 100-130 ° C), dioxane and diethylene glycol dimethyl ether (diglyme). Illustrative examples of the ketones and esters which can be used in the process of the present invention are aliphatic ketones and esters with appropriate boiling points, including ethyl methyl ketone, isobutyl methyl ketone, methyl n-propyl ketone, n-propyl acetate, n-butyl acetate, isobutyl acetate, sec-butyl acetate and diethyl carbonate. These solvents are capable of being protonated by a strong acid and are considered as such "weakly basic organic solvents". The most preferred solvent is dioxane.

Tiden for opnåelse af optimale udbytter ved fremgangsmåden ifølge opfindelsen varierer efter hvilket opløsningsmiddel og hvilken temperatur, der anvendes. Omlejringerne gennemføres hensigtsmæssigt ved det valgte opløsningsmiddels kogepunkt, og for de opløsningsmidlers vedkommende, som koger i den nedre del af de ovenfor anførte intervaller, kan der kræves tilsvarende længere reaktionstider, f.eks. indtil 48 timer, end for de opløsningsmidler, der koger ved højere temperaturer. F.eks. kræver omlejringer i dioxan i almindelighed tider fra 7 til 15 timer for opnåelse af optimale resultater, hvorimod de der udføres i methylisobutylketon i almindelighed kræver tider fra 1 til 8 timer. Udbytterne ved omlejringerne afhænger, men i mindre grad, af koncentrationen af katalysator i opløsningsmidlet, og tilsvarende længere reaktionstider kræves ved lavere katalysatorkoncentrationer.The time for obtaining optimum yields in the process of the invention varies according to the solvent and temperature used. The rearrangements are conveniently carried out at the boiling point of the selected solvent, and for the solvents boiling in the lower part of the intervals listed above, correspondingly longer reaction times may be required, e.g. up to 48 hours, than for the solvents boiling at higher temperatures. Eg. dioxane rearrangements generally require times from 7 to 15 hours to obtain optimal results, whereas those performed in methyl isobutyl ketone generally require times from 1 to 8 hours. The yields of the rearrangements depend, but to a lesser extent, on the concentration of catalyst in the solvent and correspondingly longer reaction times are required at lower catalyst concentrations.

Det foretrækkes især at anvende dioxan som orgabisk opløsningsmiddel, fordi penicillansyresulfoxider kan opløses i dette opløsningsmiddel i høj koncentration, og der er i almindelighed ikke noget fald i udbyttet ved forøgelse af koncentrationen indtil størrelsesordenen 35%.It is particularly preferred to use dioxane as an organic solvent because penicillanic acid sulfoxides can be dissolved in this solvent in high concentration and there is generally no decrease in the yield by increasing the concentration to the order of 35%.

Mængden af stærk syre, som anvendes ved omlejringen, bør i almindelighed ikke overstige 1,0 mol pr. mol penicillansyresulfoxid; i almindelighed foretrækkes det dog at anvende den i mængder på fra 0,05 til 0,5 mol pr. mol penicillansyresulfoxid.The amount of strong acid used in the rearrangement should generally not exceed 1.0 mole per day. moles of penicillanic acid sulfoxide; however, it is generally preferred to use it in amounts of 0.05 to 0.5 moles per day. mole of penicillanic acid sulfoxide.

Mængden af nitrogenholdig base, som anvendes ved omlejringen, bør i almindelighed ikke overstige 1,0 mol pr. mol penicillansyresulfoxid; det foretrækkes dog i almindelighed at anvende den i mængder på fra 0,025 til 0,25 mol pr. mol penicillansyresulfoxid.The amount of nitrogenous base used in the rearrangement should generally not exceed 1.0 mole per moles of penicillanic acid sulfoxide; however, it is generally preferred to use it in amounts of from 0.025 to 0.25 mol per liter. mole of penicillanic acid sulfoxide.

Den egnede varighed for en given reaktion kan bestemmes ved undersøgelse af reaktionsopløsningen ved hjælp af en eller flere blandt følgende metoder: 1. Tyndtlagskromatografi, f.eks. på silicagel, udvikling med 3:1:1 n-butanol-eddikesyre-vand og syneliggørelse af pletterne ved behandling med en svovlsyre-spray.The appropriate duration of a given reaction can be determined by examining the reaction solution by one or more of the following methods: 1. Thin layer chromatography, e.g. on silica gel, development with 3: 1: 1 n-butanol-acetic acid-water and visualization of the spots by treatment with a sulfuric acid spray.

2. Bestemmelse af rotationen efter passende fortynding af reaktionsblandingen med f.eks. chloroform.2. Determination of the rotation after appropriate dilution of the reaction mixture with e.g. chloroform.

3. Bestemmelse af det ultraviolette spektrum for en prøve af reaktionsblandingen, der er passende fortyndet med ethylalkohol. Denne bestemmelse kan ikke tages i brug, når der som reaktionsmedier anvendes ketoniske opløsningsmidler.3. Determination of the ultraviolet spectrum of a sample of the reaction mixture suitably diluted with ethyl alcohol. This determination cannot be applied when ketonic solvents are used as reaction media.

12 144095 4. NMR (kernemagnetisk resonans).12 NMR (nuclear magnetic resonance).

Selv om tilfredsstillende udbytter kan opnås ved at gennemføre reaktionen under normal tilbagesvaling, kan det være muligt at forbedre udbytterne ved indføring af et tørringsmiddel (f.eks. aluminium-oxid, calciumoxid, natriumhydroxid eller molekylsigter), der er inert i forhold til opløsningsmidlet i tilbagesvalingens returlinie for fjernelse af vand, som dannes under reaktionen. Alternativt kan vand dannet under reaktionen fjernes ved anvendelse af en fraktioneringskolonne, idet det dannede vand fjernes ved fraktioneret destillation.Although satisfactory yields can be obtained by carrying out the reaction under normal reflux, it may be possible to improve the yields by introducing a desiccant (e.g., alumina, calcium oxide, sodium hydroxide or molecular sieves) which is inert to the solvent in the reflux return line for removal of water formed during the reaction. Alternatively, water formed during the reaction can be removed using a fractionation column, the water formed being removed by fractional distillation.

Det skal endvidere bemærkes, at den omhandlede fremgangsmåde kan gennemføres ved forhøjede tryk. Herved kan lavere kogende opløsningsmidler anvendes ved temperaturer over deres kogepunktet. Hvis f.eks. omsætningen udføres i en lukket beholder, kan fremgangsmåden under anvendelse af tetrahydrofuran udføres ved 150°C, hvis dette ønskes, uanset at denne temperatur er over tetrahydrofurans tilbagesvalingstemperatur ved atmosfærisk tryk. Indenfor opfindelsens rammer falder således også de nævnte reaktionsbetingelser under anvendelse af forhøjede tryk.It should also be noted that the process in question can be carried out at elevated pressures. Hereby, lower boiling solvents can be used at temperatures above their boiling point. For example, If the reaction is carried out in a sealed container, the process using tetrahydrofuran can be carried out at 150 ° C if desired, even if this temperature is above the reflux temperature of the tetrahydrofuran at atmospheric pressure. Thus, within the scope of the invention, the said reaction conditions also fall using elevated pressures.

Efter gennemførelse af reaktionen kan saltet fjernes enten før eller efter koncentrering af reaktionsblandingen. Såfremt reaktions-opløsningsmidlet er ublandbart med vand, kan komplekset fjernes ved en simpel udvaskning. Hvis reaktionsmediet derimod er blandbart med vand, er det med rensning for øje hensigtsmæssigt at fjerne reaktions-opløsningsmidlet (dette kan ske ved destillation under reduceret tryk), og dernæst rense remanensen ved en passende metode, f.eks. kromatogra-fering på silicagel, etc., eller udfældning ved saltdannelse, fraktioneret krystallisation, etc.After carrying out the reaction, the salt can be removed either before or after concentrating the reaction mixture. If the reaction solvent is immiscible with water, the complex can be removed by a simple washout. If, on the other hand, the reaction medium is miscible with water, it is appropriate for purification purposes to remove the reaction solvent (this can be done by distillation under reduced pressure) and then purify the residue by an appropriate method, e.g. chromatography on silica gel, etc., or precipitation by salt formation, fractional crystallization, etc.

Det har vist sig, at den grad af omdannelse, som opnås ved fremgangsmåden ifølge opfindelsen, kan være en sådan, at komplicerede rensningsmetoder kan undgås, og remanensen kan koncentreres til en opløsning og anvendes direkte i reaktionens næste trin uden isolering eller rensning, eller den kan isoleres og renses ved hjælp af de ovenfor fremhævede metoder.It has been found that the degree of conversion achieved by the process of the invention may be such that complicated purification methods can be avoided and the residue can be concentrated to a solution and used directly in the next step of the reaction without isolation or purification, or the can be isolated and purified using the methods highlighted above.

Produktet kan ekstraheres over i et opløsningsmiddel og anvendes direkte til det følgende trin, eller kan om ønsket renses ved omkrystallisation fra et passende opløsningsmiddel.The product can be extracted into a solvent and used directly for the following step or, if desired, purified by recrystallization from a suitable solvent.

Det har således overraskende vist sig, at det, uanset den kendte lære, er muligt og praktisk gennemførligt at omlejre penicillansyre-sulfoxidet til 3-methylceph-3-em-4-carboxylsyrer med minimal forekomst af decarboxylering. Denne opdagelse frembyder et utal af fordele frem for fremgangsmåden til omlejring af penicillansulfoxidestere, idet 13 144095 man undgår nødvendigheden af først at esterificere penicillansyren eller penicillansyresulfoxidet og efter omlejringen at deesterificere 3- methylceph-3-em-4-carboxylatesteren.Thus, it has surprisingly been found that, notwithstanding the known teachings, it is possible and practically feasible to rearrange the penicillanic acid sulfoxide to 3-methylceph-3-em-4-carboxylic acids with minimal decarboxylation. This discovery presents a myriad of advantages over the process of rearranging penicillan sulfoxide esters, avoiding the need to first esterify the penicillanic acid or penicillanic acid sulfoxide and, after the rearrangement, to deesterify the 3-methylceph-3-em-4-carboxylate ester.

Efter omlejringen kan den i trin (B) dannede 7-acylamidoforbin-delse N-deacyleres til dannelse af en tilsvarende 7-aminoforbindelse og den sidstnævnte kan dernæst silyleres som beskrevet nedenfor og acyle-res med et passende acyleringsmiddel.After the rearrangement, the 7-acylamido compound formed in step (B) can be N-deacylated to form a corresponding 7-amino compound and the latter can then be silylated as described below and acylated with an appropriate acylating agent.

Metoder til N-deacylering af cephalosporinderivater med 7-acyl-amidogrupper er kendte, og en egnet fremgangsmåde omfatter behandling af en 7-acylamidoceph-3-em-4-carboxylsyresilylester med en imidhaloge-nid-dannende komponent, omdannelse af det således opnåede imidhaloge-nid til iminoetheren og dekomponering af den sidstnævnte. Estergruppen kan dernæst fraspaltes ved hydrolyse eller alkoholyse til dannelse af 4- carboxylsyren. Denne N-deacyleringsmetode er beskrevet mere detaljeret i belgisk patentskrift nr. 719.712 og i U.S.A. patentskrifter nr. 3.499.909 og 3.575.970. Britisk patentskrift nr. 1.227.014 omhandler en N-deacyleringsmetode, der ligner den i de ovennævnte litteratursteder omhandlede, bortset fra at andre 4-carboxylsyreestere, d.v.s. andet end silylestere, anvendes i 7-acylamidodesacetoxycephalosporin-udgangsmaterialet.Methods for N-deacylation of cephalosporin derivatives with 7-acyl amido groups are known, and a suitable method comprises treating a 7-acylamidoceph-3-em-4-carboxylic acid silyl ester with an imidhalogenide-forming component, conversion of the imide halogen thus obtained. -nid to the imino ether and decomposition of the latter. The ester group can then be cleaved by hydrolysis or alcoholysis to form the 4-carboxylic acid. This N-deacylation method is described in more detail in Belgian Patent No. 719,712 and in U.S.A. U.S. Patent Nos. 3,499,909 and 3,575,970. British Patent Specification No. 1,227,014 discloses an N-deacylation method similar to that described in the aforementioned literature sites, except that other 4-carboxylic acid esters, i.e. other than silyl esters, is used in the 7-acylamidodesacetoxycephalosporin starting material.

Dannelsen af silylesteren i trin (C) sker ved under vandfri betingelser at omsætte en silylforbindelse som defineret i trin (C) med 7-acylamidoforbindelsen eller et salt heraf, i et inert organisk opløsningsmiddel i nærværelse af en syredeaktivørende tertiær amin.The formation of the silyl ester in step (C) occurs by reacting, under anhydrous conditions, a silyl compound as defined in step (C) with the 7-acylamido compound or a salt thereof, in an inert organic solvent in the presence of an acid deactivating tertiary amine.

Egnede inerte opløsningsmidler omfatter bl.a. methylenchlorid, dichlormethan, chloroform, tetrachlorethan, nitromethan, benzen og diethylether.Suitable inert solvents include methylene chloride, dichloromethane, chloroform, tetrachloroethane, nitromethane, benzene and diethyl ether.

Egnede syredeaktiverende tertiære aminer omfatter bl.a. triethyl-amin, dimethylamin, quinolin, lutidin, pyridin, etc.. Mængden af syredeaktiverende amin, som anvendes, er fortrinsvis ækvivalent med ca.Suitable acid deactivating tertiary amines include triethylamine, dimethylamine, quinoline, lutidine, pyridine, etc .. The amount of acid deactivating amine used is preferably equivalent to approx.

75% af den totale syre, som udvikles under processen.75% of the total acid that is developed during the process.

Eksempler på nogle egnede silylforbindelser til trin (C) er: trimethylchlorsilan, hexamethyldisilazan, triethylchlorsilan, methyl-trichlorsilan, dimethyldichlorsilan, triethylbromsilan, tri-n-propyl-chlorsilan, brommethyldimethylchlorsilan, tri-n-butylchlorsilan, methyl-diethylchlorsilan, dimethylethylchlorsilan, phenyldlmethylbromsilan, benzylmethylethylchlorsilan, phenylethylmethylchlørsilan, triphenyl-chlorsilan, triphenylfluorsilan, tri-o-tolyl-qhlorsilan, tri-p-dimethyl-aminophenylchlorsilan, N-ethyltriethylsilylamin, hexaethyldisilazan, triphenylsilylamin, tri-n-propylsilylamin, tetraethyldimethyldisilazan.Examples of some suitable silyl compounds for step (C) are: trimethylchlorosilane, hexamethyldisilazane, triethylchlorosilane, methyltrichlorosilane, dimethyldichlorosilane, triethylbromosilane, tri-n-propylchlorosilane, bromomethyl dimethylchlorosilane, tri benzylmethylethylchlorosilane, phenylethylmethylchlorosilane, triphenylchlorosilane, triphenylfluorosilane, tri-o-tolyl-chlorosilane, tri-p-dimethylaminophenylchlorosilane, N-ethyltriethylsilylamine, hexaethyldisilazane, triphenylsilane

144095 14 tetramethyldiethyldisilazan, tetramethyldiphenyldisilazan, hexaphenyl-disilazan, hexa-p-tolyl-disilazan, etc.. Den samme virkning frembringes af hexa-alkylcyclotrisilazaner eller octa-alkylcyclotetrasilazaner.Tetramethyldiethyldisilazane, tetramethyldiphenyldisilazane, hexaphenyl-disilazane, hexa-p-tolyl-disilazane, etc. The same effect is produced by hexa-alkylcyclotrisilazanes or octa-alkylcyclotetrasilazanes.

Andre egnede silyleringsmidler er silylamider og silylureider, såsom trialkylsilylacetamid og et bis-trialkylsilylacetamid. De mest foretrukne silylforbindelser er trimethylchlorsilan og dimethyldichlor-silan.Other suitable silylating agents are silylamides and silylurides such as trialkylsilylacetamide and a bis-trialkylsilylacetamide. The most preferred silyl compounds are trimethylchlorosilane and dimethyldichlorosilane.

Det i trin (D) fremstillede iminohalogenid er fortrinsvis et imino-chlorid eller -bromid/ der kan fremstilles ved omsætning af silyleste-ren for trin (C) med et overskud, f.eks. 2 eller flere mol pr. mol silylester, af et halogeneringsmiddel, såsom phosphorpentachlorid, phosphorpentabromid, phosphortribromid, phosphortrichlorid, oxalyl-chlorid, p-toluensulfonsyrehalogenid, phosphoroxychlorid, phosgen, etc. under vandfrie betingelser i et inert organisk opløsningsmiddel i nærværelse af en syredeaktiverende tertiær amin ved temperaturer, der fortrinsvis er under 0°C og mest foretrukket ca. -20°C til ca. -60°C.The imino halide produced in step (D) is preferably an imino chloride or bromide / which can be prepared by reacting the silyl ester of step (C) with an excess, e.g. 2 or more moles per moles of silyl ester, of a halogenating agent such as phosphorus pentachloride, phosphorus pentabromide, phosphorus tribromide, phosphorus trichloride, oxalyl chloride, p-toluenesulfonic acid halide, phosphorus oxychloride, phosgene, etc. under anhydrous conditions in an inert organic solvent in the presence of an acid reactant, is below 0 ° C and most preferably approx. -20 ° C to approx. -60 ° C.

Iminoetheren i trin (E) dannes ved omsætning af iminohalogenidet, fortrinsvis under vandfrie betingelser, med en primær eller sekundær alkohol, fortrinsvis ved temperaturer under 0°C og mest foretrukket mellem -10°C og -70°C.The imino ether in step (E) is formed by reacting the imino halide, preferably under anhydrous conditions, with a primary or secondary alcohol, preferably at temperatures below 0 ° C and most preferably between -10 ° C and -70 ° C.

Eksempler på egnede alkoholer til dannelse af iminoethrene er 7 7 primære og sekundære alkoholer med den almene formel R OH, hvori R er udvalgt fra gruppen bestående af (A) (lavere)alkyl med 1-12 carbon-atomer, fortrinsvis med 1-3 carbonatomer, såsom methanol, ethanol, propanol, isopropanol, n-butanol, amylalkohol, decanol, etc.? (B) phenylalkyl med 1-7 alkylcarbonatomer, såsom benzylalkohol, 2-phenyl-ethanol-1, etc.; (C) cycloalkyl, såsom cyclohexylalkohol, etc; (D) hydroxyalkyl med 2-12 carbonatomer, fortrinsvis mindst 3 carbonatomer, såsom 1,6-hexandiol, etc.; (E) alkoxyalkyl med 3-12 carbonatomer, såsom 2-methoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, etc.; (F) aryloxyalkyl med 3-7 carbonatomer i den alifatiske kæde, såsom 2-p-chlorphenoxyethanol, etc.; (G) aralkoxyalkyl med 3-7 carbonatomer i den alifatiske kæde, såsom 2-(p-methoxybenzyloxy)-ethanol, etc.; (H) hydroxyalkoxyalkyl med 4-7 carbonatomer, såsom diglycol. Også blandinger af disse alkoholer er egnede til dannelse af iminoethrene.Examples of suitable alcohols to form the imino ethers are 7 7 primary and secondary alcohols of the general formula R OH, wherein R is selected from the group consisting of (A) (lower) alkyl of 1-12 carbon atoms, preferably 1-3 carbon atoms such as methanol, ethanol, propanol, isopropanol, n-butanol, amyl alcohol, decanol, etc.? (B) phenylalkyl of 1-7 alkyl carbon atoms, such as benzyl alcohol, 2-phenyl-ethanol-1, etc .; (C) cycloalkyl, such as cyclohexyl alcohol, etc; (D) hydroxyalkyl of 2-12 carbon atoms, preferably at least 3 carbon atoms such as 1,6-hexanediol, etc .; (E) alkoxyalkyl of 3-12 carbon atoms such as 2-methoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, etc .; (F) aryloxyalkyl of 3-7 carbon atoms in the aliphatic chain such as 2-p-chlorophenoxyethanol, etc .; (G) aralkoxyalkyl of 3-7 carbon atoms in the aliphatic chain such as 2- (p-methoxybenzyloxy) ethanol, etc .; (H) hydroxyalkoxyalkyl of 4-7 carbon atoms such as diglycol. Mixtures of these alcohols are also suitable for forming the imino ethers.

Efter dannelse af iminoethrene skal iminobindingen brydes til dannelse af 7-aminodeacetoxycephalosporansyre (7-ADCA) eller som forklaret nedenfor et silyIderivat deraf. Denne proces udføres ved mild hydrolyse eller alkoholyse. Brugen af silylestrene simplificerer processen, da silylesteren hydrolyserer samtidig med spaltningen af iminobindingen, således at man undgår nødvendigheden af et separat trin til spaltning af 4-carboxylestrene.After formation of the imino ethers, the imino bond must be broken to form 7-aminodeacetoxycephalosporanoic acid (7-ADCA) or, as explained below, a silyl derivative thereof. This process is carried out by mild hydrolysis or alcoholysis. The use of the silyl esters simplifies the process as the silyl ester hydrolyses simultaneously with the cleavage of the imino bond, thus avoiding the necessity of a separate step for cleavage of the 4-carboxy esters.

15 U409515 U4095

Dannelsen af 7-ADCA ved hjælp af fremgangsmåden Ifølge opfindelsen er belyst i det følgende eksempel: 2,23 g af N-ethylpiperidinsaltet af N-phenacetyl~3-'-desacetoxy- 7-aminocephalosporansyre suspenderedes i 18 ml methylenchlorid, og efter tilsætning af 1,3 ml dimethylanilin tilsattes 1 ml trimethyl-chlorsilan til dannelse af den tilsvarende trimethylsilylester. Efter 1 times forløb afkøledes blandingen til -50°C, pg 1/1 g PCl^ tilsattes.The formation of 7-ADCA by the process of the invention is illustrated in the following example: 2.23 g of the N-ethylpiperidine salt of N-phenacetyl ~ 3 -'-desacetoxy-7-aminocephalosporanoic acid was suspended in 18 ml of methylene chloride and after addition of 1.3 ml of dimethylaniline was added to 1 ml of trimethylchlorosilane to give the corresponding trimethylsilyl ester. After 1 hour, the mixture was cooled to -50 ° C, and 1/1 g of PCI 2 was added.

I 2 1/4 time holdtes temperaturen på -40°C og sænkedes dernæst til -65°C. En opløsning af 0,3 ml dimethylanilin og 12 ml butanol sattes til den afkølede blanding, og dernæst holdtes temperaturen i 2 1/4 time på -40°C. Reaktionsblandingen hældtes på en blanding af 35 ml vand og 17 ml methanol og bragtes på én gang til en pH-værdi på 3,5 ved hjælp af ammoniumbicarbonat. Efter ca. 20 timers henstand ved 5°C frafiltre-redes bundfaldet, udvaskedes med me th an o Isvand (1:1)/ metjiylenchlorid og acetone, samt tørredes til opnåelse af 0,936 g (92% udbytte) af desacetoxy-7-aminocephalosporansyre.For 2 1/4 hours the temperature was kept at -40 ° C and then lowered to -65 ° C. A solution of 0.3 ml of dimethylaniline and 12 ml of butanol was added to the cooled mixture and then the temperature was maintained at -40 ° C for 2 1/4 hour. The reaction mixture was poured onto a mixture of 35 ml of water and 17 ml of methanol and brought to pH 3.5 at one time by means of ammonium bicarbonate. After approx. The precipitate was filtered off for 20 hours at 5 ° C, washed with ice water (1: 1) / methylene chloride and acetone, and dried to give 0.936 g (92% yield) of desacetoxy-7-aminocephalosporanoic acid.

MonosilyIderivatet af 7-ADCA kan fremstilles ved omsætning af det under trin (F) dannede 7-ADCA med ca. et mol af en silylforbindel-se som defineret i trin (C) pr. mol 7-ADCA. Som eksempel kan 7-ADCA omsættes med ca. en ækvimolær mængde trimethylchlorsilan i et passende, vandfrit, inert, organisk opløsningsmiddel, i nærværelse af triethyl-amin til dannelse af det monosilylerede derivat med formlen H2N—I-fS") /-CH3 COOSi (CH3)3The monosilyl derivative of 7-ADCA can be prepared by reacting the 7-ADCA formed in step (F) with ca. one mole of a silyl compound as defined in step (C) per mole 7-ADCA. As an example, 7-ADCA can be reacted with approx. an equimolar amount of trimethyl chlorosilane in a suitable anhydrous, inert organic solvent, in the presence of triethylamine to form the monosilylated derivative of formula H2N-I-fS ") / -CH3 COOSi (CH3) 3

Alternativt kan denne monosilylerede 7-ADCA fremstilles ved at gennemføre iminospaltningsreaktionen i trin (F) i nærværelse af i det mindste ca. ét molært overskud af en silylforbindelse som defineret i trin (C). Ved denne fremgangsmåde kan det ønskede monosilylderivat fremstilles uden nødvendigheden af først at isolere 7-ADCA.Alternatively, this monosilylated 7-ADCA can be prepared by carrying out the imine cleavage reaction in step (F) in the presence of at least about one molar excess of a silyl compound as defined in step (C). In this process, the desired monosilyl derivative can be prepared without the need to first isolate 7-ADCA.

Endnu en fremgangsmåde til fremstilling af monosilyleret 7-ADCA indebærer, at iminoetherderivatet i trin (F) underkastes alkoholysen og termisk spaltning i nærværelse af mindst ca. ét molært overskud 144095 16 af en silylforbindelse, som defineret i trin (C). Denne metode tillader også, at monosily1derivatet kan dannes uden først at fremstille og isolere 7-ADCA.Yet another process for preparing monosilylated 7-ADCA involves subjecting the imino ether derivative in step (F) to the alcoholysis and thermal decomposition in the presence of at least ca. one molar excess of a silyl compound as defined in step (C). This method also allows the monosilyl derivative to be formed without first preparing and isolating 7-ADCA.

Disilylderivatet af 7-ADCA kan fremstilles analogt med de ovenfor diskuterede metoder til fremstilling af monosilyleret 7-ADCA. Den under trin (F) dannede 7-ADCA kan således omsættes med mindst ca. ét dobbelt molært overskud af en silylforbindelse som defineret i trin (C) under de samme reaktionsbetingelser som omhandlet ovenfor i forbindelse med trin (C) og i forbindelse med fremstilling af monosilyleret 7-ADCA, d.v.s. i et i det væsentlige vandfrit inert organisk opløsningsmiddel og i nærværelse af en syredeaktiverende tertiær amin. Som eksempel kan 7-ADCA omsættes med trimethylchlorsilan i methylen-chlorid i nærværelse af triethylamin og i et forhold på ca. to mol trimethylchlorsilan pr, mol 7-ADCA til dannelse af den disilylerede 7-ADCA med formlenThe disilyl derivative of 7-ADCA can be prepared analogously to the methods discussed above for the preparation of monosilylated 7-ADCA. Thus, the 7-ADCA formed in step (F) can be reacted with at least about one double molar excess of a silyl compound as defined in step (C) under the same reaction conditions as described above for step (C) and in the preparation of monosilylated 7-ADCA, i.e. in an essentially anhydrous inert organic solvent and in the presence of an acid deactivating tertiary amine. By way of example, 7-ADCA may be reacted with trimethylchlorosilane in methylene chloride in the presence of triethylamine and in a ratio of approx. two moles of trimethylchlorosilane per mole of 7-ADCA to form the disilylated 7-ADCA of the formula

Si (CH,) , 3 3 η-n———r >-—ch3Si (CH,), 3 3 η-n ——— r> -— ch 3

0 T0 T

COOSi (CH3)3COOSi (CH3) 3

Alternativt kan iminospaltningsreaktionstrinnet (F) gennemføres i nærværelse af mindst ca. dobbelt molært overskud af en silylforbindelse som defineret i trin (C) til dannelse af det disilylerede 7-ADCA-derivat. Denne metode tillader dannelse af det ønskede disilyl-derivat uden nødvendigheden af først at danne og isolere 7-ADCA.Alternatively, the imine cleavage reaction step (F) may be carried out in the presence of at least ca. double molar excess of a silyl compound as defined in step (C) to form the disilylated 7-ADCA derivative. This method allows formation of the desired disilyl derivative without the need to first form and isolate 7-ADCA.

Endnu en metode til fremstilling af disilyleret 7-ADCA medfører, at iminoetherderivatet i trin (F) underkastes alkoholyse og termisk spaltning i nærværelse af mindst ca. et dobbelt molært overskud af en silylforbindelse, som defineret i trin (C). Denne metode tillader også fremstilling af det ønskede disilylderivat uden nødvendigheden af først at isolere 7-ADCA.Yet another method of preparing disilylated 7-ADCA causes the imino ether derivative in step (F) to be subjected to alcoholysis and thermal decomposition in the presence of at least ca. a double molar excess of a silyl compound, as defined in step (C). This method also allows preparation of the desired disilyl derivative without the need to first isolate 7-ADCA.

Enten den mono- eller disilylerede 7-ADCA eller et N-beskyttet derivat deraf kan dernæst N-acyleres med phenylglycylchlorid,hydro-chlorid til dannelse af silyleret cephalexin. Alle silylgrupper, det er til stede efter acyleringsreaktionen, fjernes dernæst på konventionel måde, f.eks. ved hydrolyse eller alkoholyse til dannelse af det ønskede cephalexinslutprodukt.Either the mono- or disilylated 7-ADCA or an N-protected derivative thereof can then be N-acylated with phenylglycyl chloride, hydrochloride to form silylated cephalexin. All silyl groups present after the acylation reaction are then removed in a conventional manner, e.g. by hydrolysis or alcoholysis to form the desired cephalexin end product.

Belgisk patentskrift nr. 737.761 omhandler N-acylering med konven- 17 U4095 tionelle acyleringsmidler af mono- eller disilyleret 7-ADCA, som er blevet fremstillet ved en anden og mere kompliceret metode. Ingen af de her omhandlede, hidtil ukendte fremgangsmåder til fremstilling af monosilyleret eller disilyleret 7-ADCA er åbenbaret i dette patentskrift, og der er heller ikke omhandlet det nye og værdifulde chlorid, hydrochlorid-acyleringstrin. Britisk patentskrift nr. 1.227.014 beskriver N-acylering af 7-ADCA-estere, men kun 2,2,2-trichlorethyl-, benzyloxymethyl-, t-butyl-, p-methoxy-, 3,5-dimethoxybenzyl- og p-methoxybenzylestrene anvendes ved denne fremgangsmåde.Belgian Patent No. 737,761 discloses N-acylation with conventional acylating agents of mono- or disilylated 7-ADCA, which have been prepared by a different and more complicated method. None of the aforementioned novel processes for preparing monosilylated or disilylated 7-ADCA are disclosed in this patent, nor is the novel and valuable chloride, hydrochloride-acylation step disclosed. British Patent No. 1,227,014 discloses N-acylation of 7-ADCA esters, but only 2,2,2-trichloroethyl, benzyloxymethyl, t-butyl, p-methoxy, 3,5-dimethoxybenzyl and p The methoxybenzyl esters are used in this process.

Selv om et hvilket som helst af de phenylglycinderivater, som sædvanligvis anvendes til acylering af 6-APA eller 7-ACA eller derivater deraf, kan anvendes til acylering af den omhandlede mono- eller disi-lylerede 7-ADCA, anvendes her phenylglycylchlorid,hydrochlorid som acyleringsmiddel. Acyleringstrinnet (H) i fremgangsmåden ifølge den foreliggende opfindelse er et hidtil ukendt trin, eftersom der ikke findes kendt teknik, der åbenbarer acylering af sllyleret 7-ADCA med syrehalogenid, hydrohalogenid-acyleringsmidler. Anvendelsen af den her omhandlede særlige acyleringsproces fører til højere udbytter end anvendelsen af konventionelle acyleringsmidler.Although any of the phenylglycine derivatives commonly used for acylation of 6-APA or 7-ACA or derivatives thereof can be used to acylate the subject mono- or disylated 7-ADCA, phenylglycyl chloride, hydrochloride as used herein is used. acylating. The acylation step (H) of the process of the present invention is a novel step, since no prior art discloses the acylation of acylated 7-ADCA with acid halide, hydrohalide acylating agents. The use of the particular acylation process in question leads to higher yields than the use of conventional acylating agents.

De til acyleringsreaktionen anvendelige opløsningsmidler er velkendte for fagmanden og omfatter inerte, ikke-vandige, organiske opløsningsmidler, såsom tetrahydrofuran, dimethylformamid, methylenchlorid, ethylenchlorid og acetonitril.The solvents useful for the acylation reaction are well known to those skilled in the art and include inert, non-aqueous organic solvents such as tetrahydrofuran, dimethylformamide, methylene chloride, ethylene chloride and acetonitrile.

Det foretrukne temperaturinterval for acyleringstrinnet er fra ca. -20°C til ca. +70°C. Temperaturen er dog ikke kritisk, og temperaturer, som er højere eller lavere end de, der ligger indenfor de foretrukne grænser, kan anvendes.The preferred temperature range for the acylation step is from approx. -20 ° C to approx. + 70 ° C. However, the temperature is not critical and temperatures higher or lower than those within the preferred limits can be used.

Selv om en vis omsætning vil finde sted, uanset hvilket molært forhold der anvendes mellem reaktanterne, foretrækkes det for opnåelse af de største udbytter at anvende et molært overskud af acyleringsmidler.Although some reaction will take place, regardless of the molar ratio used between the reactants, it is preferable to use a molar excess of acylating agents to obtain the greatest yields.

Den i trin (H) dannede cephalexinsilylester kan behandles ved hydrolyse eller alkoholyse til fraspaltning af de funktionelle sily-grupper og til dannelse af det ønskede cephalexinslutprodukt. En foretrukket silylspaltningsmetode består i at behandle produktet fra trin (H) med methanol eller en blanding af methanol og vand.The cephalexinsilyl ester formed in step (H) can be treated by hydrolysis or alcoholysis to decompose the functional sily groups and to form the desired cephalexin end product. A preferred silyl cleavage method consists of treating the product of step (H) with methanol or a mixture of methanol and water.

Cephalexin fremstillet i overensstemmelse med den foreliggende opfindelse kan om ønsket omdannes på i og for sig kendt måde til et ikke-toxisk, farmaceutisk acceptabelt salt deraf.Cephalexin prepared in accordance with the present invention may, if desired, be converted in a manner known per se to a non-toxic, pharmaceutically acceptable salt thereof.

18 14409518 144095

Eksempel 1Example 1

Fremstilling af 7-(phenoxyacetamido)desacetoxycephalosporansyre (2) ved omlejring af penicillin V syresulfoxid (1).Preparation of 7- (phenoxyacetamido) desacetoxycephalosporanoic acid (2) by rearrangement of penicillin V acid sulfoxide (1).

Pyridin-di(phosphorsyre)-komplekset (PDPA) fremstilledes på følgende måde: Pyridin (7,9 g, 0,10 mol) sattes portionsvis til en omrørt og isafkølet opløsning af 85% orthophosphorsyre (23,0 g, 0,20 mol) i 100 ml tetrahydrofuran. Det hvide, faste bundfald opsamledes ved filtrering, udvaskedes med THF og ether og tørredes i vakuum over ^2^5' udbytte: 25,4 g (92%).The pyridine-di (phosphoric acid) complex (PDPA) was prepared as follows: Pyridine (7.9 g, 0.10 mol) was added portionwise to a stirred and ice-cooled solution of 85% orthophosphoric acid (23.0 g, 0.20 mol) ) in 100 ml of tetrahydrofuran. The white solid precipitate was collected by filtration, washed with THF and ether, and dried in vacuo over 25 ° C yield: 25.4 g (92%).

En blanding af penicillin V sulfoxid (18,3 g, 0,050 mol), PDPA (1,38 g, 0,005 mol) og vandfri dioxan (300 ml) opvarmedes under tilbagesvaling (oliebad) i 8 timer. Den tilbagesvalende dioxan førtes igennem Linde 4A molekylsigter (^100 g) i et Soxhlet-apparat, før den returneredes til kolben. Opløsningsmidlet fjernedes under reduceret tryk, og remanensen behandledes med en blanding af ethylacetat (200 ml) og vand (50 ml). Ethylacetatlaget ekstraheredes med IN vandig natriumbi-carbonat (60 ml). Bicarbonatekstrakten afkøledes og gjordes sur med fortyndet saltsyre. Det halvfaste bundfald ekstraheredes over i ethylacetat (125 ml). Denne opløsning tørredes (MgSO^) og koncentreredes til tørhed, hvilket gav 14,0 g af et gult fast skum. Ved n.m.r.-spektroskop! under anvendelse af o-toluinsyre som international standard, skønnedes mængden af det ønskede produkt til 6,30 g (36%). Til en kold opløsning af det rå produkt i 25 ml methanol sattes dibenzylamin (7,9 g, 0,040 mol). Efter tilsætning af nogle podekrystaller, udkrystalliserede dibenzylaminsaltet af 2 let. Efter afkøling natten over ved -15°, opsamledes det faste stof ved filtrering og udvaskedes successivt med kold methanol og ether. Der opnåedes 7,5 g (28%) af et hvidt, luftigt, fast stof, smeltepunkt 135-136° (dek.). Det infrarøde spektrum for dette salt faldt sammen med det for dibenzylaminsaltet af autentisk 2 (smeltepunkt 141-142° (dek.) efter omkrystallisation fra methanol).A mixture of penicillin V sulfoxide (18.3 g, 0.050 mol), PDPA (1.38 g, 0.005 mol) and anhydrous dioxane (300 ml) was heated under reflux (oil bath) for 8 hours. The refluxing dioxane was passed through Linde 4A molecular sieves (^ 100 g) in a Soxhlet apparatus before being returned to the flask. The solvent was removed under reduced pressure and the residue was treated with a mixture of ethyl acetate (200 ml) and water (50 ml). The ethyl acetate layer was extracted with 1N aqueous sodium bicarbonate (60 ml). The bicarbonate extract was cooled and acidified with dilute hydrochloric acid. The semi-solid precipitate was extracted into ethyl acetate (125 ml). This solution was dried (MgSO4) and concentrated to dryness to give 14.0 g of a yellow solid foam. By nm spectroscope! using o-toluic acid as an international standard, the amount of the desired product was estimated to be 6.30 g (36%). To a cold solution of the crude product in 25 ml of methanol was added dibenzylamine (7.9 g, 0.040 mol). After the addition of some seed crystals, the dibenzylamine salt of 2 crystallized slightly. After cooling overnight at -15 °, the solid was collected by filtration and washed successively with cold methanol and ether. 7.5 g (28%) of a white, airy solid, mp 135-136 ° (dec) were obtained. The infrared spectrum of this salt coincided with that of the authentic 2 dibenzylamine salt (mp 141-142 ° (dec) after recrystallization from methanol).

Dibenzylaminsaltet rystedes kort med 75 ml ethylacetat og 30 ml 1 N saltsyre. Dibenzylamin,hydrochlorid udkrystalliserede fra denne blanding og opsamledes ved filtrering og tørredes (2,5 g, 78%). Ethylacetatlaget tørredes (MgSO^) og koncentreredes til et volumen på ca.The dibenzylamine salt was briefly shaken with 75 ml of ethyl acetate and 30 ml of 1 N hydrochloric acid. Dibenzylamine hydrochloride crystallized from this mixture and collected by filtration and dried (2.5 g, 78%). The ethyl acetate layer was dried (MgSO 4) and concentrated to a volume of ca.

20 ml. Et hvidt fast stof udkrystalliserede let og opsamledes ved filtrering efter afkøling, udbytte 4,1 g (24%), smeltepunkt 173-175° (dek.), Nujol 3450 (NH)f 1760 (β-lactamcarbonyl), 1730 (amidcarbonyl) og H13.X -j 1670 cm (carbonyl). Det infrarøde spektrum og n.m.r.-spektret faldt sammen med de tilsvarende spektre for en autentisk prøve af 2, smelte- 19 1-44096 punkt 177-178° (dek.) fremstillet ud fra phenoxyacetylchlorid og 7-aminodesacetoxycephalosporansyre.20 ml. A white solid crystallized easily and collected by filtration after cooling, yield 4.1 g (24%), mp 173-175 ° (dec), Nujol 3450 (NH) f 1760 (β-lactam carbonyl), 1730 (amide carbonyl) and H13.X-j 1670 cm (carbonyl). The infrared spectrum and the nm spectrum coincided with the corresponding spectra for an authentic sample of 2, melting point 197-178 ° (dec.) Prepared from phenoxyacetyl chloride and 7-aminodesacetoxycephalosporanoic acid.

Eksempel 2Example 2

Omlejring af penicillin V syresulfoxid (1) til 7-(phenoxyacetamido)-desacetoxycephalosporansyre (2) under forskellige betingelser.Rearrangement of penicillin V acid sulfoxide (1) to 7- (phenoxyacetamido) -desacetoxycephalosporanoic acid (2) under different conditions.

Det væsentlige af eksempel 1 gentoges under anvendelse af varierende betingelser, såsom 1) forskellige mængdeforhold mellem sulfoxid og sur katalysator; 2) forskellige opløsningsmidler; 3) forskellige reaktionstider; 4) med eller uden et tørringsmiddel; og 5) forskellige reaktionstemperaturer til opnåelse af de nedenfor gengivne resultater: 144095 20The substance of Example 1 was repeated using varying conditions, such as 1) different sulfur oxide to acid catalyst ratio; 2) various solvents; 3) different reaction times; 4) with or without a desiccant; and 5) different reaction temperatures to obtain the results presented below:

<U<U

p c <U (U -—- P P ·p c <U (U -—- P P ·

dl Pdl P

η B w ^ r~ r~η B w ^ r ~ r ~

O O > Η »H rHO O> Η »H rH

ω tn Pω tn P

h ~ a: g in B3h ~ a: g in B3

cm 2 Pcm 2 P

4j on in in <u id * td p in <n incø<7irHinr--r^r'~tn^dlcoiHfn ci n h tn to en O) οι H i—li—li—I i—I CM i—ii—i i—li—i CM r* dP <—I Π3 Ό og •h <u in 'S.4j on in in <u id * td p in <n incø <7irHinr - r ^ r '~ tn ^ dlcoiHfn ci nh tn to a O) οι H i — li — li — I i — I CM i — ii— ii — li — i CM r * dP <—I Π3 Ό and • h <u in 'S.

X PHX PH

o p Ή > O ^ o>p? in D -h S 1/1 r j p7j % ·> d) ^ .Henint'-cocM^PrHrH'd'cMincn mmm r» o mo p Ή> O ^ o> p? in D -h S 1/1 r j p7j% ·> d) ^ .Henint'-cocM ^ PrHrH'd'cMincn mmm r »o m

,¾ id i—! CM iHrHrHCMiHCMCMCMCMrHiH H CM H CM, ¾ id i—! CM iHrHrHCMiHCMCMCMCMrHiH H CM H CM

G P PG P P

•Η -Η P• Η -Η P

-H > ^-H> ^

rH •HrH • H

O IO I

«Η W«Η W

c c Φ o „c c Φ o „

Qj ·γΗ (U Φ Φ 4j ro roiHCNin^inro^fomLnfOin n ro co «1 'S TiQj · γΗ (U Φ Φ 4j ro roiHCNin ^ inro ^ fomLnfOin n ro co «1 'S Ti

Φ -HΦ -H

tJi (¾ -PtJi (¾ -P

cc

•H• H

p I Pp I P

-1-1 in G-1-1 in G

d) C P 1 ι-H O ιβ ffl bl B -H P tn G \ o pomp ____—-----p X Dt Λ r-H Ό id E ri id d) d) d) -h > > (¾ P P in ω p i >i w tn σι C cd) CP 1 ι-HO ιβ ffl bl B -HP tn G \ o pump ____—----- p X Dt Λ rH Ό id E ri id d) d) d) -h>> (¾ PP in ω pi> iw tn σι C c

Id -HId -H

P S H 0 SSP S H 0 SS

o tn <b co m , id o, -sndx w κ w x in ΗΌΟ raoao o ft -ri -H g -jj y dj r—I OSo = = = = = = = = gO = SO = = = = = =o tn <b co m, id o, -sndx w κ w x in ΗΌΟ raoao o ft -ri -H g -jj y dj r — I OSo = = = = = = = = gO = SO = = = = = =

IdId

CC

ft Ift I

d) Wd) W

O O'ISLAND ISLAND'

>i C H> in C H

X -ri ω O P Ό · .X -ri ω O P Ό ·.

P P Ό r-t _\ d) ·& -H O _________"— 7P P Ό r-t _ \ d) · & -H O _________ „- 7

O H B SO H B S

id in d) P _ O o <-* + o mp =? p>tn — ^ b o — O ^id in d) P _ O o <- * + o mp =? p> tn - ^ b o - O ^

O Id *H O CM»—Ir—IrPr-IrHt—Ir—Ir—IrHr—IrHr-1r—ICMi—Ir—lOPOl·—ICMl-IO Id * H O CM »—Ir — IrPr-IrHt — Ir — Ir — IrHr — IrHr-1r — ICMi — Ir — IOPOl · —ICMl-I

d3 m > - —·- - in ** m * in ** •h o oooooooooooooo ooE-ioæoæo B rH ftj “ ~r ididr—i O····d3 m> - - · - - in ** m * in ** • h o oooooooooooooo ooE-ioæoæo B rH ftj “~ r ididr — i O ····

p P O ft A A S A P P P Pp P O ft A A S A P P P P

d) idBQ 9 Q E-ι Q >i >i >i >i O « ~ Q = = = = = = = = = g= = = S S ft ft ft ft id 5? hd) idBQ 9 Q E-ι Q> i> i> i> i O «~ Q = = = = = = = = = g = = = S S ft ft ft ft id 5? H

o O rH o O O O O Oo O rH o O O O O O

CJ S Η rrrrsssLDrrHrsrs ΙΠ «Η 2 «Η - <D M-! B g <d ft T i ,·CJ S Η rrrrsssLDrrHrsrs ΙΠ «Η 2« Η - <D M-! B g <d ft T i, ·

r~ -HPr ~ -HP

p α ω ft p r—i cM<nrrinvoi>cDcTiOrHCMcn^),in co r* oo en op α ω ft p r — i cM <nrrinvoi> cDcTiOrHCMcn ^), in co r * oo and o

(/) (d rH r—I i—I rH rH »—I rH rH rH rH CM(/) (d rH r — I i — I rH rH »—I rH rH rH rH CM

X d)X d)

H SH S

144095 21 0) •u c <D Φ U H · •S g S, S , i S , i s144095 21 0) • u c <D Φ U H · • S g S, S, i S, i s

WWW W — XWWW W - X

BB

— o- o

Jj N II ϊ S iw 4J ZCVH in in in in in in in in t! "*2—.wmroæcNl l οσι^σΐ’ηΐΓ'ίοιτι^οΓ'-ιηίΝ^'.-ιιη O <#> CU CM S ” CN HHCNHNCNCN.-l.-lcNrWnl-l-t^^Jj N II ϊ S iw 4J ZCVH in in in in in in in in in t! "* 2 — .wmroæcNl l οσι ^ σΐ'ηΐΓ'ίοιτι ^ οΓ'-ιηίΝ ^ '.- ιιη O <#> CU CM S" CN HHCNHNCNCN.-l.-lcNrWnl-l-t ^^

ιμ r-} Xιμ r-} X

— 0) O U- 0) O U

4J WOt T3 JJ H ^ •H >i κ h O *Ό 4J *-n ϋ3 3 ·? S «η “1 “1 2 3« 3 S 3 S ° °4J WOt T3 JJ H ^ • H> i κ h O * Ό 4J * -n ϋ3 3 ·? S «η« 1 «1 2 3« 3 S 3 S ° °

> W M> W M

-W Μ-l C > —-W Μ-l C> -

•H• H

«—I"-IN

r-1 Ir-1 I

-w w .2 § “i S +j co cd oo cd u· Γ" cN^æifiDroco.-HrHiNiN.Hr-i.-irH.-i a -¾ _ <o το iw w -w-w w .2 § “i S + j co cd oo cd u · Γ" cN ^ æifiDroco.-HrHiNiN.Hr-i.-irH.-i a -¾ _ <o το iw w -w

nj K -Pnj K -P

tn i c i w (d •w w D >tn i c i w (d • w w D>

-n 0«S « tn 000°°° O-n 0 «S« tn 000 °°° O

9 -2 2» Did ininomooooo S u ω m ^ « -5 77777777 7, o Ϊ & 3 c 3 ΐ ooinominininin 2 8 3-5 -n > " " O ^ «Ό (¾ Jj 4J ri Jj (I) : = S = = S r-lr-li-ir-ir-t'-t'-lr-if-l9 -2 2 »Did ininomooooo S u ω m ^« -5 77777777 7, o Ϊ & 3 c 3 ΐ ooinominininin 2 8 3-5 -n> "" O ^ «Ό (¾ Jj 4J ri Jj (I): = S = = S r-lr-li-ir-ir-t'-t'-lr-if-l

<D<D

> (1) U) u tn> (1) U) u tn

>, C U>, C U

W *H e d c -w c d b id w tu <d k* w ·& Ό x * O H H O o 21W * H e d c -w c d b id w tu <d k * w · & Ό x * O H H O o 21

OISLAND

rHrh

id iid i

c W Ic W I

0, Di i-HQ0, Tue i-HQ

u .5 ω £ <u c C c d^d r, 2¾. αιοοοοωοοαιοοωοαι v WO-H , ri tu DirMfMCVCVDlCNrMDinl fVDl rMDi o Si o —-^ o-w DuuuuduudODdudu .5 ω £ <u c C c d ^ d r, 2¾. αιοοοοωοοαιοοωοαι v WO-H, ri tu DirMfMCVCVDlCNrMDinl fVDl rMDi o Si o —- ^ o-w DuuuuduudODdud

2 H S S E W = -W 1¾ ft < < -H < < -H < O, -H < -H2 H S S E W = -W 1¾ ft <<-H <<-H <O, -H <-H

O)ISLAND)

UU

id P —. —.id P -. -.

w ID +j > —1 —1 - t) Id ·Η - ' o — w > o o w o o >1* '-i-' w .w ID + j> —1 —1 - t) Id · Η - 'o - w> o o w o o> 1 *' -i- 'w.

Ό i—i m ir d d id •h « h < < O m <u ω < a jJOOjftftODiDiOi S idØQQfntMdda ....Ό i — i m ir d d id • h «h <<O m <u ω <a jJOOjftftODiDiOi S idØQQfntMdda ....

4-> ftftWAi-w-wA = = = = = = = = = = -- -- - <U .4-> ftftWAi-w-wA = = = = = = = = = = = - - - <U.

u r^ >, o-ioooofMoo ooooogogo ogoooo 5^ g —i in —i m m -i —iin—i in in -Η —i .—i ·—t m .—i i .—i .—i .—i 0 ΊΊ d S <d <u .d a i · ^ -w w 1 u d ^ q. jj H tN m ir m io t- οοσιΟ-πηιηττιηωΓ'ωσιΟ^Γ.ι w d oa in cm r\i cn m cn cNCNrnmmfnmmrommmu'U'H' X 0)ur ^>, o-ioooofMoo ooooogogo ogoooo 5 ^ g —i in —imm -i —iin — i in -Η —i. — i · —tm. — ii. — i. — i. — i 0 ΊΊ d S <d <u .dai · ^ -ww 1 ud ^ q. jj H tN m ir m io t- οοσιΟ-πηιηττιηωΓ'ωσιΟ ^ Γ.ι w d oa in cm r \ i cn m cn cNCNrnmmfnmmrommmu'U'H 'X 0)

W SW S

144095 22 o -Μ 3 ω αι — μ μ · m144095 22 o -Μ 3 ω αι - μ μ · m

αι +Jαι + J

-i Β αι <χ> Ο ο >ι (/1 W Η η ^ λ; JJ β Λ Ο 01 Ν II) ΪΠ +j a Μ Ή 4-> CN4-> m ^ iS Λ S —' 'id men ro r-ι ιη <ο ο m ro ο --) οι cm θ' —- βΡ ® CM01 CM ι—I —) “· Ή Μ ό αι ο ο -.-) -Ρ 0) Ό.-i Β αι <χ> Ο ο> ι (/ 1 W Η η ^ λ; JJ β Λ Ο 01 Ν II) ΪΠ + yes Μ Ή 4-> CN4-> m ^ iS Λ S - '' id men ro r-ι ιη <ο ο m ro ο -) οι cm θ '—- βΡ ® CM01 CM ι — I -) “· Ή Μ ι αι ο ο -.-) -Ρ 0) Ό.

X -U Η -SX -U Η -S

ο > ή h --) cg +J — 3 D DI g ,- 01 ·Η S “i ΐ“Η *Ζ * j> Q) η ο lo cm m cm ocoio vd lo cm cm ^ (tf CM H i—l H r-1 Η Γ-Ι c u uο> ή h -) cg + J - 3 D DI g, - 01 · Η S “i ΐ“ Η * Ζ * j> Q) η ο lo cm m cm ocoio vd lo cm cm ^ (tf CM H i —L H r-1 Η Γ-Ι cuu

•H -H M-J• H -H M-J

f—l £> ^f-l £> ^

HH

•r4• r4

o Io I

-ri <n C C Ό οι o m cm +1 omio-^ ra -o- n cm 10-3--0--3-0 oomoco-ri <n C C ο οι o m cm +1 omio- ^ ra -o- n cm 10-3--0--3-0 oomoco

iw x h h Hiw x h h H

id n) >0 (U -rlid n)> 0 (U -rl

td cd -Ptd cd -P

33

•H• H

P I PP I P

•η 01 P• η 01 P

® C -P I I® C -P I I

r—i oidofflCo Ottitn 5 -ri ί m O' c o O' 3r — i oidofflCo Ottitn 5 -ri ί m O 'c o O' 3

0 3J Ο) -3- Id -P iH(d-H0 3J Ο) -3- Id -P iH (d-H

a: a i Λ h i -9 d -d id g ο H id inHid a) 1) 0 d1 ρ > Ο -P > > PS .p --) B 01 r s = = sHBuisssss sss m p i >1 « 01 tn c 3 id -pa: ai Λ hi -9 d -d id g ο H id inHid a) 1) 0 d1 ρ> Ο -P>> PS .p -) B 01 rs = = sHBuisssss sss mpi> 1 «01 tn c 3 id -p

P 3 H S 3 GP 3 H S 3 G

o oi ai >1 id ,, rao oi ai> 1 id ,, ra

a ·& Ό --) X MXa · & Ό -) X MX

«1 i-lfl (S' Q 6jtiMO«1 i-lfl (S 'Q 6jtiMO

O a -P -P *P -¾ dS Pj id r—| Ο ε Ό Ό = = = = = a Em 2 Ό = = = rsr idO a -P -P * P -¾ dS Pj id r— | Ο ε Ό Ό = = = = = a Em 2 Ό = = = rsr id

Jd a i a) in i i i i i, O O' -P -P -P -P --1,Jd a i a) into i i i i i i, O O '-P -P -P -P - P,

>1 3--1 >, Ρ >i P >i p >i Ρ __ >1 H> 1 3--1>, Ρ> i P> i p> i Ρ __> 1 H

5? - -P 0) £<D3Ail>A!ll).£mC3 3 C ^ m i « ο p-dOtD-Paiai-Pai-pai-Paiaiai αι ο ο ο αι .ρ 4J p -d (MPtUtJlHD'-HBli-Itl' dl O & O' W O W -P O' ai ·& -p o o -p 3 o -p o -p o -p 3 3 3 G*? co d o -p u B B tf g tn -ri Sin Sin Sin -ρ ·ρ -h -hScbuSoisss id m u -—, Π3 -3- -d O - n I CM as J* ° *- +J>0 -p O <o - O a 35? - -P 0) £ <D3Ail> A! Ll). £ mC3 3 C ^ mi «ο p-dOtD-Paiai-Pai-pai-Paiaiai αι ο ο ο αι .ρ 4J p -d (MPtUtJlHD'-HBli- Itl 'dl O & O' WOW -PO 'ai · & -poo -p 3 o -po -po -p 3 3 3 G *? Co do -pu BB tf g tn -ri Sin Sin Sin -ρ · ρ - h -hScbuSoisss id mu -—, Π3 -3- -d O - n I CM if J * ° * - + J> 0 -p O <o - O a 3

o id -p a id O Oo id -p and id O O

-d οι > to X o w ^ 01-d οι> to X o w ^ 01

H >,y B O CM'S. too « to Q OH>, y B O CM'S. too «to Q O

s Hfflld -3- CN aiOCN DdPLltN'UPLi 3 id r-i < . O O · ρ -Z ϊ <( < < < < 4 ϋ imjmZ^t) pi 4J p O a P a H P >, Ρ I Z a a a a a a ^ EC ΪΒ pate ® idSQ>i to cm >, ol >ι O I Q Q QQQQZcoZP i im 0 K- o, ρ, b k a a a a a a a a a ό. ό,ηγμ id 6 Ή Ο Ο--) c ε 01 Ή ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο £ί g id i—) i—i in -—! r—I Η HH--I *—I ·—ί »—) -—I -—I --Ί--ΙΗ 3 I I · -H S-l P 3 a+jn-a- in m c- cd ctioh cn n ^ in vo r^moi wd'd’-d* TT'd’ ^ ^min ininininm in in in x. ai ρα ε 23 144096 <u "3 u c 'ris Hfflld -3- CN aiOCN DdPLltN'UPLi 3 id r-i <. OO · ρ -Z ϊ <(<<<<4 ϋ imjmZ ^ t) pi 4J p O a P a HP>, Ρ IZ aaaaaa ^ EC ΪΒ pate ® idSQ> i to cm>, ol> ι OIQQ QQQQZcoZP i im 0 K- o, ρ, bkaaaaaaaaa ό. ό, ηγμ id 6 Ή Ο--) c ε 01 Ή id id id id id id i i id id id id id id! r — I Η HH - I * —I · —ί »-) -—I -—I --Ί - ΙΗ 3 II · -H Sl P 3 a + jn-a- in m c- cd ctioh cn n ^ in vo r ^ moi wd'd'-d * TT'd '^^ min ininininm in in in x. ai ρα ε 23 144096 <u "3 u c 'ri

(DO)-' S(DO) - 'S

MM. _ SMM. _ S

0J +J O CO S0J + J O CO S

ή E in « ^ ϋ ,, 3 S S & I s s H ' **i G *2ή E in «^ ϋ ,, 3 S S & I s s H '** i G * 2

<D 1-1 S<D 1-1 S

^~s ε 3^ ~ s ε 3

jj e -^4 S-l *—Ijj e - ^ 4 S-l * —I

<d O ^ j{ ** S N “I ο,ίσάβ H tw JJ cn intn W-Mqjaj<d O ^ j {** S N “I ο, ίσάβ H tw JJ cn intn W-Mqjaj

Π (ti φ 4J - ·* ^EO'CΠ (ti φ 4J - · * ^ EO'C

IW M — rM^ O’ 00 n *· o <umc CIW M - rM ^ O '00 n * · o <umc C

^ 3 B^S ^ ^ ^ æ 21¾ & 3 JS 8¾ H M § * rf Ij H S Id M i I Φ g r M « λ h ιΰ jo -M 4J m^ 3 B ^ S ^ ^ ^ æ 21¾ & 3 JS 8¾ H M § * rf Ij H S Id M i I Φ g r M «λ h ιΰ jo -M 4J m

H S u ^ C 4JH S u ^ C 4J

'ΐΐ'ϋΓτίΟί yi ω O o'ΐΐ'ϋΓτίΟί yi ω O o

• -| “. S S S3 . S• - | ". S S S3. S

» i. a s s ss ! ?! s s»I. A s s ss! ?! s s

•S -Η ϋ > AU O B• S -Η ϋ> AU O B

β > ~ 5 5m .β> ~ 5 5m.

.j id o.j id o

π I M ~ CM Bπ I M ~ CM B

-Η ώ o Ό <U ^ h 3 d JJ -ri rJ O «c-Η ώ o Ό <U ^ h 3 d JJ -ri rJ O «c

So id x <u -πSo id x <u -π

g, 3 in o Ό M Jg, 3 in o Ό M J

+j in oo oo rococo >. ή, [d _ n, T, ri Η Μ ϊ> (ti 73 το Id β Id m S3 +i n > g ^+ j in oo oo rococo>. ή, [d _ n, T, ri Η Μ ϊ> (ti 73 το Id β Id m S3 + i n> g ^

tr B 4J id Otr B 4J id O

2 a; r-j ~ in jj 5 O μ ω2 a; r-j ~ in jj 5 O µ ω

U I M JJ Ε Φ ' MU I M JJ Ε Φ 'M

r-, m3 c g jj in φ <U CJJICn 3 H O Id 0) G i ,· 5 ,, "i S -rj M 01 -M 5 S "3 ti ’m o jj « uh >Q,iSS;ii A3 & Λ ^ S h. H S 3 Ό ldSrH> ω φ Φ -h in ·* > -r* Όr-, m3 cg jj in φ <U CJJICn 3 HO Id 0) G i, · 5 ,, "i S -rj M 01 -M 5 S" 3 ti 'mo jj «uh> Q, iSS; ii A3 & Λ ^ S h. HS 3 Ό ldSrH> ω φ Φ -h in · *> -r * Ό

> « jj ft s s 5 = = ft) t\i A< M> «Jj ft s s 5 = = ft) t \ i A <M

P Λ-HC-. i—I N ft) φ ΦP Λ-HC-. i — I N ft) φ Φ

a, O < -I Q< Ma, O <-I Q <M

Hl a ·* O Μ A! ί; οι < b a ·η w σι H rr φ 3d * « Μ — 3 -H O 0) ~ -d 3 β M β rJ C Po? O ·* C M M-l 5¾ οιΌ,ισχ » ·η ti c Rc in i—i no o Aijr-jJJid , Q æ o &·η·μ φ'-^τΙφχ ti ® 3 O S Ό r r rH-HUlO id inHl a · * O Μ A! ί; οι <b a · η w σι H rr φ 3d * «Μ - 3 -H O 0) ~ -d 3 β M β rJ C Po? O · * C M M-l 5¾ οιΌ, ισχ »· η ti c Rc in i — i no o Aijr-jJJid, Q æ o & · η · μ φ '- ^ τΙφχ ti ® 3 O S Ό r r rH-HUlO id in

td UbU- - - ftMBJJ-M β JJ Htd UbU- - - ftMBJJ-M β JJ H

2 ΕΦίηΜΌ 0<d ο,ι 0 -Μ O’ O Λ C ' ω In i i j< o> e Λ « o< o oi O O’ r-l Μ Η M 1 ‘H T1 ti Son1 S. β r-| >, φ >, Φ ~ 0) M - ^ O O. 0.2 ΕΦίηΜΌ 0 <d ο, ι 0 -Μ O 'O Λ C' ω In i i j <o> e Λ «o <o oi O O 'r-l Μ Η M 1' H T1 ti Son1 S. β r- | >, φ>, Φ ~ 0) M - ^ O O. 0.

X ·Η Φ Ai JJ JJ β C φ >—I H tn c .β tn ,X · Η Φ Ai JJ JJ β C φ> —I H tn c .β tn,

o Μ Ό Φ θ’ Φ O' O Φ O 2, it π η ?> > Δ 3t ? 4Jo Μ Ό Φ θ 'Φ O' O Φ O 2, it π η?>> Δ 3t? 4J

JJ Μ Ό r-J -r| r-J -ri « θ’« O’ >, Μ V U > V Γ1 -g Μ φ Ό -η ο ω ο w ο βο β ιη α> ^ £ 2 g Η Β a 2 C ·Η < -Μ ο *0 Μ Φ ^ g ~ 5 >. § 2 - £ΕΌ>·ΜΜφφ£Ί-ιJJ Μ Ό r-J -r | rJ -ri «θ '« O'>, Μ VU> V Γ1 -g Μ φ Ό -η ο ω ο w ο βο β ιη α> ^ £ 2 g Η Β a 2 C · Η <-Μ ο * 0 Μ Φ ^ g ~ 5>. § 2 - £ ΕΌ> · ΜΜφφ £ Ί-ι

S Μ ~ β aCCCOMpJJHS Μ ~ β aCCCOMpJJH

.§ Ο·' ·Η ΐηΌ«ιΰφ.Μ-Ι>,ΜφΟ 3 ϋ>α ν - ^,-) οφ Br-iotnOEm π β.Η.Η d C β Ο Γ|ΗΦΜ·ΗΦχ;ΜηΗΜβ.§ Ο · '· Η ΐηΌ «ιΰφ.Μ-Ι>, ΜφΟ 3 ϋ> α ν - ^, -) οφ Br-iotnOEm π β.Η.Η d C β Ο Γ | ΗΦΜ · ΗΦχ; ΜηΗΜβ

|§ »> ri dir! d'ri d'rl <f Di OOMOSoidOO| § »> ri you! ri d'rl <f Di OOMOSoidOO

•rJ >,A!OOr-lOrJOr-lO-rJO Ο’φΌΜίΗ'Τί 3, S H| OH Od Oft OA 3Pi _ dF'TCQ,a3fri{no s ajrH -Η π c n c m c nn*ro< TdHjJ.riinSrHM^o o• rJ>, A! Or-lOrJOr-lO-rJO Ο'φΌΜίΗ'Τί 3, S H | OH Od Oft OA 3Pi _ dF'TCQ, a3fri {no s ajrH -Η π c n c m c nn * ro <TdHjJ.riinSrHM ^ o o

JJ JOOttæ-rlB-rlB-MBOXOi I φ|0βΑ:ΐη>ιΟΒνΗ JJJJ JOOttæ-rlB-rlB-MBOXOi I φ | 0βΑ: ΐη> ιΟΒνΗ JJ

Φ idSi<NDMD«d«lfllNQ 11 3¾ I pΦ idSi <NDMD «d« lfllNQ 11 3¾ I p

0 ώ σ σ' θ' Pi -Μ β Id s cj-iqi-heoiK0 ώ σ σ 'θ' Pi -Μ β Id s cj-iqi-heoiK

2 *.ni u u τοφοι^φ-ηφ — β3ι>ι 2 -H B Oj Dl JJ M B -ri ·Μ ·Η B ft g1 ^1 μ .ri U ? υ n rj d τι β 3 — 8 g- &«i'. -SSiitiTJeee 5 8¾ S S 3 S 3 § .. s , d ,1 ί & ΐ d 5 % - g^-§3dSo-dBS'd-d 1 I · Q *H ·* Φ Ci S >1 0 **4 >i2 * .ni u u τοφοι ^ φ-ηφ - β3ι> ι 2 -H B Oj Dl JJ M B -ri · Μ · Η B ft g1 ^ 1 μ .ri U? υ n rj d τι β 3 - 8 g- & «i '. -SSiitiTJeee 5 8¾ SS 3 S 3 § .. s, d, 1 ί & ΐ d 5% - g ^ -§3dSo-dBS'd-d 1 I · Q * H · * Φ Ci S> 1 0 ** 4> i

fi. CUHCnoQHEnftSQOitWfi. CUHCnoQHEnftSQOitW

u c 0u c 0

Qj4JO H CN ro ^ · · · · , ' i? β VO <D vD vD vD vD ίΟΧί ϋΌΐ)^ Μ Φ w a 144095 24Qj4JO H CN ro ^ · · · ·, 'i? β VO <D vD vD vD vD ίΟΧί ϋΌΐ) ^ Μ Φ w a 144095 24

Eksempel 3Example 3

Omlejring af (1) til dibenzylaminsalt af (2)Conversion of (1) to dibenzylamine salt of (2)

En blanding af penicillin V sulfoxid (18,3 g, 0,05 mol) og (2,84 g, 0,02 mol) omrørtes med dioxan (300 ml) og opvarmedes på oliebad under tilbagesvaling i 8 timer. Reaktionsblandingen filtreredes dernæst, og det faste stof udvaskedes med dioxan. De forenede filtrater koncentreredes, og remanensen opsamledes i ethylacetat (100 ml) og udvaskedes med vand (2 x 50 ml). Efter tørring over MgSO^ fjernedes opløsningsmidlet, og der opnåedes 15,3 g af et gullig-brunt skum. En prøve blandet med o-toluensyre analyseredes ved n.m.r.-spektroskop! og antydede et udbytte på 22% af 2. Det rå 2 omdannedes dernæst til det rene dibenzylaminsalt af 2 på følgende måde. Skummet (14,8 g) opløstes i methanol (35 ml), og dibenzylamin (7,9 g, 0,04 mol) tilsattes. Efter afkøling natten over ved -10°C frafiltreredes det resulterende bundfald, udvaskedes med en smule kold methanol og tørredes til et udbytte på 5,8 g (22%) af et lysfarvet fast stof, smeltepunkt 135-136°C (dek.). Det faste stof identificeredes som dibenzyl-aminsaltet af 7-(phenoxyacetamido)desacetoxycephalosporansyre.A mixture of penicillin V sulfoxide (18.3 g, 0.05 mol) and (2.84 g, 0.02 mol) was stirred with dioxane (300 ml) and heated at reflux for 8 hours. The reaction mixture was then filtered and the solid washed out with dioxane. The combined filtrates were concentrated and the residue was collected in ethyl acetate (100 ml) and washed with water (2 x 50 ml). After drying over MgSO 4, the solvent was removed and 15.3 g of a yellowish-brown foam was obtained. A sample mixed with o-toluic acid was analyzed by NMR spectroscope! and indicated a yield of 22% of 2. The crude 2 was then converted to the pure dibenzylamine salt of 2 as follows. The foam (14.8 g) was dissolved in methanol (35 ml) and dibenzylamine (7.9 g, 0.04 mol) was added. After cooling overnight at -10 ° C, the resulting precipitate was filtered off, washed with a little cold methanol and dried to yield 5.8 g (22%) of a light colored solid, mp 135-136 ° C (dec). . The solid was identified as the dibenzylamine salt of 7- (phenoxyacetamido) desacetoxycephalosporanoic acid.

Eksempel 4Example 4

Omlejring af (1) til (2)Rearranging (1) to (2)

En blanding af penicillin V sulfoxid (18,3 g, 0,050 mol), PDPA (1,38 g, 0,005 mol) og bis(2-methoxyethyl)ether (diglym; 300 ml) omrørtes ved 110-115° i 2 timer. Reaktionsblandingen oparbejdedes som i eksperiment 3 til opnåelse af 4,75 g (17%) af dibenzylaminsaltet, smeltepunkt 130-134° (dek.), hvorfra 1,75 g (10%) 7-(phenoxyacetamido)-desacetoxycephalosporansyre, smeltepunkt 168-170° (dek.), isoleredes.A mixture of penicillin V sulfoxide (18.3 g, 0.050 mol), PDPA (1.38 g, 0.005 mol) and bis (2-methoxyethyl) ether (diglyme; 300 ml) was stirred at 110-115 ° for 2 hours. The reaction mixture was worked up as in Experiment 3 to give 4.75 g (17%) of the dibenzylamine salt, mp 130-134 ° (dec), from which 1.75 g (10%) of 7- (phenoxyacetamido) -desacetoxycephalosporanoic acid, m.p. 170 ° (dec.), Isolated.

Eksempel 5Example 5

Omlejring af (1) til (2)Rearranging (1) to (2)

En blanding af penicillin V sulfoxid (18,3 g, 0,050 mol) 85% orthophosphorsyre (0,49 g, 0,0043 mol) og dioxan (300 ml) opvarmedes under tilbagesvaling i 16 timer. Reaktionsblandingen oparbejdedes som i eksperiment 3 til opnåelse af 4,0 g (15%) af dibenzylaminsaltet, smeltepunkt 130-132° (dek.), hvorfra 1,13 g (6,5%) 7-(phenoxyacetamido) -desacetoxycephalosporansyre, smeltepunkt 172-173° (dek.) isoleredes .A mixture of penicillin V sulfoxide (18.3 g, 0.050 mol) 85% orthophosphoric acid (0.49 g, 0.0043 mol) and dioxane (300 ml) was heated at reflux for 16 hours. The reaction mixture was worked up as in Experiment 3 to obtain 4.0 g (15%) of the dibenzylamine salt, m.p. 130-132 ° (dec), from which 1.13 g (6.5%) of 7- (phenoxyacetamido) -desacetoxycephalosporanoic acid, m.p. 172-173 ° (dec.) Was isolated.

25 1U09525 1U095

Eksempel 6Example 6

Omlejring af (1) til (2)Rearranging (1) to (2)

En blanding af penicillin V sulfoxid (18,3 g, 0,050 mol), quino-lin (0,65 g, 0,0050 mol), 85% orthophosphorsyre (0,98 g, 0,0085 mol) og dioxan (300 ml) opvarmedes under tilbagesvaling i 8 timer. Reaktionsblandingen oparbejdedes som i eksperiment 3 til dannelse af 6,3 g (23%) af dibenzylaminsaltet, smeltepunkt 135-136° (dek.), hvorfra 3,5 g (20%) 7-(phenoxyacetamido)desacetoxycephalosporansyre, smeltepunkt 174-175° (dek.) isoleredes.A mixture of penicillin V sulfoxide (18.3 g, 0.050 mol), quinoline (0.65 g, 0.0050 mol), 85% orthophosphoric acid (0.98 g, 0.0085 mol) and dioxane (300 ml ) was heated at reflux for 8 hours. The reaction mixture was worked up as in Experiment 3 to give 6.3 g (23%) of the dibenzylamine salt, mp 135-136 ° (dec), from which 3.5 g (20%) of 7- (phenoxyacetamido) desacetoxycephalosporanoic acid, mp 174-175 ° (dec.) Was isolated.

Eksempel 7Example 7

Omle.jring af penicillin V syresulfoxid til 7-(phenoxyacetamido)desacetoxycephalosporansyre P205 (123,0 g, 0,866 mol) sættes til 5,0 liter tør dioxan og dernæst tilsættes 47,0 ml (2,60 mol) deioniseret vand og 27,4 ml pyri-din. Opslæmningen omrøres og bringes til tilbagesvaling. Til den til-bagesvalende opslæmning sættes en dioxanopløsning af 1000 g (2,60 mol) penicillin V sulfoxidmonohydrat i 10 liter dioxan, kontinuert ved konstant hastighed, så det tager 8 timer. Da reaktionen er afsluttet (ved T.L.C.), afkøles opslæmningen til 30-50° og filtreres dernæst og udvaskes med dioxan til at fuldstændiggøre overføringen af materialer. Filtratet of vaskevæskerne forenes, og rumfanget reduceres under vakuum til fjernelse af det meste af dioxanen. 10,0 liter methylen-chlorid (MeCl2) sættes til olien, og opløsningen omrøres. 15 liter deioniseret vand sættes til MeCl2~opløsningen, og faserne omrøres grundigt. pH-værdien bør indstilles på 1,8 med HC1. Faserne skilles, og vandfasen kastes bort. Den MeCl2_rige fase omrøres, og 15,0 liter deioniseret vand tilsættes. 460 g (5,5 mol) NaHC03 sættes til den omrørte blanding. pH-værdien indstilles på 8,3-8,4 med 10% NaOH, og faserne omrøres i 15-20 minutter (20°C), og MeCl2-fasen kastes bort.Reduction of penicillin V acid sulfoxide to 7- (phenoxyacetamido) desacetoxycephalosporanoic acid P205 (123.0 g, 0.866 mol) was added to 5.0 liters of dry dioxane and then 47.0 ml (2.60 mol) of deionized water and 27 4 ml of pyridine. The slurry is stirred and refluxed. To the reflux slurry is added a dioxane solution of 1000 g (2.60 mole) of penicillin V sulfoxide monohydrate in 10 liters of dioxane, continuously at constant speed, to take 8 hours. When the reaction is complete (by T.L.C.), the slurry is cooled to 30-50 ° and then filtered and washed with dioxane to complete the transfer of materials. The filtrate of the washings is combined and the volume reduced in vacuo to remove most of the dioxane. Add 10.0 liters of methylene chloride (MeCl2) to the oil and stir the solution. 15 liters of deionized water are added to the MeCl2 solution and the phases are thoroughly stirred. The pH should be set to 1.8 with HCl. The phases are separated and the aqueous phase is discarded. The MeCl2-rich phase is stirred and 15.0 liters of deionized water are added. 460 g (5.5 moles) of NaHCO 3 is added to the stirred mixture. The pH is adjusted to 8.3-8.4 with 10% NaOH and the phases are stirred for 15-20 minutes (20 ° C) and the MeCl2 phase discarded.

Den vandige fase omrøres, og 10,0 liter ny MeCl2 tilsættes, og pH-vær-dien indstilles på 1,8 med 6N HC1. Faserne omrøres i 15 minutter, og det MeCl2-rige lag fraskilles og opbevares. En anden ekstraktion på den vandige fase udføres med 5 liter MeCl2· De forenede, afvandede MeCl2-faser tørres. MeCl2-opløsningen befries for MeCl2 ved vakuumdestillation over i et glas. Udbyttet er 400 g af en forbindelse analyseret ved IR, NMR og iodometrisk undersøgelse som ren 7-(phenoxyacetamido) desacetoxycephalosporansyre.The aqueous phase is stirred and 10.0 liters of new MeCl2 is added and the pH is adjusted to 1.8 with 6N HCl. The phases are stirred for 15 minutes and the MeCl2-rich layer is separated and stored. Another extraction on the aqueous phase is carried out with 5 liters of MeCl2 · The combined dewatered MeCl2 phases are dried. The MeCl2 solution is frozen for MeCl2 by vacuum distillation into a glass. The yield is 400 g of a compound analyzed by IR, NMR and iodometric examination as pure 7- (phenoxyacetamido) desacetoxycephalosporanoic acid.

144095 26144095 26

Eksempel 8Example 8

Omlejring af penicillin V syresulfoxid til 7-(phenoxyacetamido)-desacetoxycephalosporansyre/ dibenzylaminsaltPenicillin V acid sulfoxide rearrangement to 7- (phenoxyacetamido) -desacetoxycephalosporanoic acid / dibenzylamine salt

Penicillin V sulfoxid (18,3 g, 0,05 mol), pyridin (0,40 g, 0,005 mol) og orthophosphorsyre (3 g af en 85% opløsning, 0,026 mol) i vandfri dioxan (300 ml) omrørtes og opvarmedes under tilbagesvaling i 6 timer på oliebad ved ca. 135°. Dernæst fjernedes opløsningsmidlet, ethylacetat (100 ml) sattes til remanensen, og opløsningen udvaskedes med vand (2 x 50 ml). Det organiske lag tørredes over MgSO^, og opløsningsmidlet fjernedes, hvorved 17 g af et gullig-brunt skum opnåedes. Skummet opløstes i methanol (35 ml) og dibenzylamin (7,9 g, 0,040 mol) tilsattes, og den resulterende blanding afkøledes 1 time ved -10 til -15°. Det resulterende bundfald frafiltreredes, udvaskedes med kold methanol og tørredes, hvorved der opnåedes 7,6 g (28,2%) af et lyst tanfarvet fast stof, smeltepunkt 133-135° dek..Penicillin V sulfoxide (18.3 g, 0.05 mole), pyridine (0.40 g, 0.005 mole) and orthophosphoric acid (3 g of an 85% solution, 0.026 mole) in anhydrous dioxane (300 ml) were stirred and heated under reflux for 6 hours on oil bath at approx. 135 °. Next, the solvent was removed, ethyl acetate (100 ml) was added to the residue and the solution was washed with water (2 x 50 ml). The organic layer was dried over MgSO 4 and the solvent removed to give 17 g of a yellowish-brown foam. The foam was dissolved in methanol (35 ml) and dibenzylamine (7.9 g, 0.040 mol) was added and the resulting mixture was cooled for 1 hour at -10 to -15 °. The resulting precipitate was filtered off, washed with cold methanol and dried to give 7.6 g (28.2%) of a light tan solid, mp 133-135 ° dec.

Eksempel 9Example 9

Fremstilling af 7-aminodeacetoxycephalosporansyre (7-amino-3-methyl-ceph-3-em-4-carboxylsyre) (3) ud fra 7-(phenoxyacetamido)-desacetoxy-cephalosporansyre (7-phenoxyacetamido)-3-methylceph-3-em-4-carboxyl-syre) (2)Preparation of 7-Aminodeacetoxycephalosporanoic acid (7-amino-3-methyl-ceph-3-em-4-carboxylic acid) (3) from 7- (phenoxyacetamido) -desacetoxy-cephalosporanoic acid (7-phenoxyacetamido) -3-methylceph-3 em-4-carboxylic acid) (2)

En opløsning af trimethylchlorsilan (0,65 g, 6,0 mmol) i 5 ml CH2CI2 sattes dråbevis i løbet af 3,5 minutter til en omrørt blanding af 2 (1,74 g, 5,0 mmol), trimethylamin (0,50 g, 5,0 mmol) og N,N-dimethylanilin (1,2 g, 10,0 mmol) i 30 ml CI^C^ ved stuetemperatur under omrøring. Blandingen omrørtes yderligere 30 minutter, og dernæst afkøledes til -55°C. Phosphorpentachlorid (1,15 g, 5,5 mmol) tilsattes, og temperaturen holdtes på -40° under omrøring i 2 timer, hvorefter der igen afkøledes til 60°C, og 15 ml methylalkohol og 0,3 g dimethyl-anilin tilsattes hurtigt på 3 minutter (temperaturen steg til -50°C). Den resulterende blanding omrørtes ved -40° ± 4°C i 2 timer og hældtes på en iskold blanding af vand (25 ml) og methanol (12 ml) under omrøring. Den omrørte blandings pH-værdi indstilledes på 3,5 (fra starten 1) med ammoniumcarbonat. Blandingen afkøledes i køleskab i 18 timer, og det faste bundfald opsamledes ved filtrering. Det faste stof udvaskedes med - 15 ml portioner isvand (2 gange), methanol (2 gange) og ether.A solution of trimethyl chlorosilane (0.65 g, 6.0 mmol) in 5 mL of CH 2 Cl 2 was added dropwise over 3.5 minutes to a stirred mixture of 2 (1.74 g, 5.0 mmol), trimethylamine ( 50 g, 5.0 mmol) and N, N-dimethylaniline (1.2 g, 10.0 mmol) in 30 ml of C ^C C at room temperature with stirring. The mixture was stirred a further 30 minutes and then cooled to -55 ° C. Phosphorus pentachloride (1.15 g, 5.5 mmol) was added and the temperature maintained at -40 ° with stirring for 2 hours, then cooled again to 60 ° C and 15 ml of methyl alcohol and 0.3 g of dimethyl-aniline were quickly added. in 3 minutes (the temperature rose to -50 ° C). The resulting mixture was stirred at -40 ° ± 4 ° C for 2 hours and poured onto an ice-cold mixture of water (25 ml) and methanol (12 ml) with stirring. The pH of the stirred mixture was adjusted to 3.5 (from start 1) with ammonium carbonate. The mixture was cooled in the refrigerator for 18 hours and the solid precipitate collected by filtration. The solid was washed with - 15 ml portions of ice water (2 times), methanol (2 times) and ether.

Det faste stof tørredes i vakuum over P2°5 u^bytte på 0,83 g (78%) af et hvidt krystallinsk stof, der bestemtes at være identisk med autentisk 3.The solid was dried in vacuo over P 2 5 exchange of 0.83 g (78%) of a white crystalline substance determined to be identical to authentic 3.

27 14409527 144095

Eksempel 10Example 10

Acylering af disllyleret 7-ADCA til fremstilling af cephalexinAcylation of disllylated 7-ADCA to produce cephalexin

Trimethylchlorsilan (2,28 g, 0,021 mol) i methylenchlorid (5 ml) sættes til en omrørt, kold blanding af 7-ADCA (2,14 g, 0,01 mol), tri-ethylamin (2,02 g, 0,02 mol) og N,N-dimethylanilin (1,34 g, 0,011 mol) i methylenchlorid (25 ml) således, at reaktionens temperatur holder sig under 10°C. Efter 2 timer ved 5-10°C afkøles blandingen til 0°C og phenylglycylchlorid, HC1 (2,16 g, 0,0105 mol) tilsættes portionsvis. Omrøring ved 0 - 5°C fortsættes 2 timer, methanol (1,6 g, 0,05 mol) tilsættes dråbevis, og efter 15 minutters forløb koncentreres blandingen til tørhed. Det resulterende hvide stof (9,3 g) omrørtes med koldt vand (20 ml). Opløsningens pH-værdi indstilles på 4,5 med koncentreret ammoniak, og blandingen henstår ved 0° i 3 timer og filtreres. Det faste stof udvaskes med isvand, acetone og ether og tørres i vakuum over P2°5" ^ægt 2,3 g (66%), smeltepunkt 165-167° dek., [a]^ + 128,8° (c, 1,56 i AcOH); [a]jJ5 + 118,2° (c, 1,54 i 1N-HC1). IR og NMR bekræfter, at forbindelsen er i det væsentlige ren cephalexin.Trimethylchlorosilane (2.28 g, 0.021 mol) in methylene chloride (5 ml) is added to a stirred cold mixture of 7-ADCA (2.14 g, 0.01 mol), triethylamine (2.02 g, 0 2 mol) and N, N-dimethylaniline (1.34 g, 0.011 mol) in methylene chloride (25 ml) such that the reaction temperature remains below 10 ° C. After 2 hours at 5-10 ° C, the mixture is cooled to 0 ° C and phenylglycyl chloride, HCl (2.16 g, 0.0105 mol) is added portionwise. Stirring at 0 - 5 ° C is continued for 2 hours, methanol (1.6 g, 0.05 mol) is added dropwise and after 15 minutes the mixture is concentrated to dryness. The resulting white substance (9.3 g) was stirred with cold water (20 ml). The pH of the solution is adjusted to 4.5 with concentrated ammonia and the mixture is left at 0 ° for 3 hours and filtered. The solid is washed with ice water, acetone and ether and dried in vacuo over P 2 ° 5 + weight 2.3 g (66%), m.p. 165-167 ° dec., [Α] D + 128.8 ° (c, 1.56 in AcOH); [α] D 25 + 118.2 ° (c, 1.54 in 1N-HCl) IR and NMR confirm that the compound is essentially pure cephalexin.

Eksempel 11Example 11

Fremstilling af di(trimethylsilyl)-7-aminodeacetoxycephalosporansyrePreparation of di (trimethylsilyl) -7-aminodeacetoxycephalosporanoic acid

Trimethylchlorsilan (2,5 g, 0,022 mol) i tør methylenchlorid (5 ml) sattes langsomt til en omrørt, kold (idbad) blanding af 7-ADCA (2,14 g, 0,01 mol) og triethylamin (2,22 g, 0,022 mol) i tør methylenchlorid (25 ml) med en sådan hastighed, at reaktionsblandingens temperatur holdtes under 10°C. Da tilsætningen er ovre, opretholdes omrøringen ved 5 - 10°C i 2 timer yderligere, og reaktionsblandingen koncentreres under vakuum. n-Hexan (30 ml) sattes til remanensen, og blandingen omrørtes og filtreredes. Filtratet koncentreredes under reduceret tryk og gav 3,1 g (88%) af en olie, der størknede ved skrabning. Det faste stof opløstes i den mindst mulige mængde hexan og afkøledes, hvorved der dannedes silkeagtige, hvide krystaller. En del centrifugeredes, og det faste stof viste sig at have et smeltepunkt på 64-80°C. IR-spektret og NMR-spektret (benzen) for forbindelsen er i overensstemmelse med den formodede struktur. Forbindelsen er temmelig opløselig i benzen og n-hexan.Trimethyl chlorosilane (2.5 g, 0.022 mol) in dry methylene chloride (5 ml) was slowly added to a stirred, cold (id bath) mixture of 7-ADCA (2.14 g, 0.01 mol) and triethylamine (2.22 g (0.022 mol) in dry methylene chloride (25 ml) at such a rate that the temperature of the reaction mixture was kept below 10 ° C. When the addition is over, stirring is maintained at 5 - 10 ° C for a further 2 hours and the reaction mixture is concentrated under vacuum. n-Hexane (30 ml) was added to the residue and the mixture was stirred and filtered. The filtrate was concentrated under reduced pressure to give 3.1 g (88%) of an oil which solidified by scraping. The solid was dissolved in the least amount of hexane and cooled to form silky white crystals. Part was centrifuged and the solid was found to have a melting point of 64-80 ° C. The IR spectrum and the NMR spectrum (benzene) of the compound are consistent with the putative structure. The compound is fairly soluble in benzene and n-hexane.

28 14409528 144095

Eksempel 12Example 12

Fremstilling af 7-(D-a-aminophenylacetamido)-3-methylceph-3-em-4-carboxylsyrePreparation of 7- (D-α-aminophenylacetamido) -3-methylceph-3-em-4-carboxylic acid

A. "In situ" fremstilling af monosilylderivat af 7-ADCAA. "In Situ" Preparation of Monosilyl Derivative of 7-ADCA

1000 g (4,67 mol) 7-ADCA sættes til 20 liter tør methylenchlorid (MeCl2) K.F. H20 (mindre end eller lig 0,01%). Opslæmningen omrøres.1000 g (4.67 mol) of 7-ADCA are added to 20 liters of dry methylene chloride (MeCl2) K.F. H2 O (less than or equal to 0.01%). The slurry is stirred.

425 g (2,67 mol) hexamethyldisilazan tilsættes, og nitrogengas bobles gennem opslæmningen ved neddypning af kapillarrør. Opslæmningen opvarmes til tilbagesvaling. Komplet opløsning opnås efter ca. 4 timers reaktion.425 g (2.67 mol) of hexamethyldisilazane are added and nitrogen gas is bubbled through the slurry by immersing capillary tubes. The slurry is heated to reflux. Complete solution is obtained after approx. 4 hours reaction.

B. Fremstilling af cephalexin ud fra monosilyleret 7-ADCAB. Preparation of Cephalexin from Monosilylated 7-ADCA

Den ovennævnte opløsning afkøles til 10°C og 782 ml DMA, HC1 (30% i MeCl2) sættes til reakti'onsblandingen efterfulgt af 627 ml (4,95 mol) DMA. Opløsningen afkøles til 0°C og 1020 g (4,95 mol) phenylglycylchlorid, hydrochlorid tilsættes. Opslæmningen omrøres ved 0°C i 1 time. Temperaturen bringes dernæst på 24 - 25°C og holdes der i ca. 2 timer. Reaktionsblandingen afkøles til 0°C, og 282 ml (7,0 mol) tør methanol tilsættes. Reaktionsblandingen opvarmes til 20°C og en olieagtig fase begynder at udskille. 30,0 liter koldt vand tilsættes blandingen, og faserne omrøres, indtil olien opløser i vandfasen. pH-værdien indstilles på 2,3 - 2,6 med TEA. Methylenchlorid-fasen aftrækkes, og den vandige fase ekstraheres tre gange med 30 liter MeCl2 hver gang. Methylenchloridet anbringes under vakuumkoncentration, og koncentreres til et volumen på 10 liter. Opløsningen omrøres, og 10 liter acetonitril tilsættes, og opløsningen opvarmes til 40°C. pH-værdien indstilles med TEA til 4,5. Opslæmningen filtreres, og kagen tørres dernæst ved 50°C. En vægt på 1300-1400 g (80-86% udbytte) af cephalexin opnås.The above solution is cooled to 10 ° C and 782 ml of DMA, HCl (30% in MeCl2) is added to the reaction mixture followed by 627 ml (4.95 mol) of DMA. The solution is cooled to 0 ° C and 1020 g (4.95 mol) of phenylglycyl chloride hydrochloride is added. The slurry is stirred at 0 ° C for 1 hour. The temperature is then brought to 24 - 25 ° C and kept for approx. 2 hours. The reaction mixture is cooled to 0 ° C and 282 ml (7.0 moles) of dry methanol are added. The reaction mixture is heated to 20 ° C and an oily phase begins to separate. 30.0 liters of cold water are added to the mixture and the phases are stirred until the oil dissolves in the aqueous phase. Adjust the pH to 2.3 - 2.6 with TEA. The methylene chloride phase is extracted and the aqueous phase is extracted three times with 30 liters of MeCl2 each time. The methylene chloride is placed under vacuum and concentrated to a volume of 10 liters. The solution is stirred and 10 liters of acetonitrile are added and the solution is heated to 40 ° C. The pH is adjusted with TEA to 4.5. The slurry is filtered and the cake is then dried at 50 ° C. A weight of 1300-1400 g (80-86% yield) of cephalexin is obtained.

Eksempel 13Example 13

Fremstilling af mono- og disilylerede 7-ADCA-derivater 3 4,2 g phenoxyacetamidodesacetoxycephalosporin omrørtes i 90 cm 3 methylenchlorid, og 2,1 cm triethylamin tilsattes efterfulgt af 7,0 cm"^ DMA. Opløsningen afkøledes til 10°C, og 3,1 cm^ trimethylchlor-silan tilsattes ved en temperatur under 25°C. Reaktionsblandingen afkøledes til -40°C, og 4,9 g PCl^ tilsattes. Reaktionsblandingen holdtes på -40°C i 2 timer, og afkøledes dernæst til -70°C. 125 cm^ methanol tilsattes, og temperaturen fik lov at stige til 38°C i løbet af 4 timer.Preparation of Mono- and Disilylated 7-ADCA Derivatives 3 4.2 g of phenoxyacetamidodesacetoxycephalosporin was stirred in 90 cm 3 of methylene chloride and 2.1 cm of triethylamine was added followed by 7.0 cm 3 of DMA. The solution was cooled to 10 ° C and 3 Trimethylchlorosilane was added at a temperature below 25 ° C. The reaction mixture was cooled to -40 ° C and 4.9 g of PCl 2 were added. 125 cc of methanol was added and the temperature was allowed to rise to 38 ° C over 4 hours.

29 14409529 144095

Opløsningsmidlerne fjernedes ved vakuumdestillation ved 20°C, og rema-nensen genopløstes i 30 cm methylenchlorid. Dernæst tilsattes 3,33 g triethylamin ved 0-10°C efterfulgt af 3,6 g trimethylchlorsilan ved 5-10°C. Omrøring fortsattes i 2 timer ved 10-15°C. Dernæst tilsattes 30 cm^ n-hexan, og blandingen filtreredes. Filtratet koncentreredes til en remanens under reduceret tryk og gav efter skrabning og tritu-rering med hexan et udbytte på 3,1 g af et fast stof; smeltepunkt 64-80°C. NMR og IR var i overensstemmelse med den formodede struktur for di(trimethylsilyl)-7-ADCA. En lille smule af det faste stof destilleredes også ved 140°/0,1 mm til opnåelse af en viskos gummi, der størknede ved skrabning, og hvis IR og NMR var i overensstemmelse med den formodede struktur. Forbindelsen var meget opløselig i benzen, CH2C12 og hexan. Hvis det monosilylerede derivat ønskes, tilsættes dernæst 1,45 g dimethyldichlorsilan i stedet for 3,6 g TMS, og produktet oparbejdes på lignende måde, bortset fra at når filtratet koncentreres til en remanens, anvendes remanensen direkte i det næste acyleringstrin og isoleres ikke som et fast stof eller en destillerbar gummi. De mono- eller disilylerede derivater er værdifulde forbindelser, der kan anvendes direkte i efterfølgende acyleringsreaktioner.The solvents were removed by vacuum distillation at 20 ° C and the residue redissolved in 30 cm of methylene chloride. Next, 3.33 g of triethylamine were added at 0-10 ° C, followed by 3.6 g of trimethylchlorosilane at 5-10 ° C. Stirring was continued for 2 hours at 10-15 ° C. Next, 30 cc of n-hexane was added and the mixture was filtered. The filtrate was concentrated to a residue under reduced pressure and, after scraping and triturating with hexane, yielded 3.1 g of a solid; mp 64-80 ° C. NMR and IR were consistent with the putative structure of di (trimethylsilyl) -7-ADCA. A small portion of the solid was also distilled at 140 ° / 0.1 mm to give a viscous rubber which solidified by scraping and whose IR and NMR were consistent with the putative structure. The compound was very soluble in benzene, CH 2 Cl 2 and hexane. Then, if the monosilylated derivative is desired, then 1.45 g of dimethyldichlorosilane is added instead of 3.6 g of TMS, and the product is similarly worked up except that when the filtrate is concentrated to a residue, the residue is used directly in the next acylation step and is not isolated as a solid or a distillable rubber. The mono- or disilylated derivatives are valuable compounds which can be used directly in subsequent acylation reactions.

Claims (2)

30 14409530 144095 1. Fremgangsmåde til fremstilling af cephalexin ellpr ikke-toxiske, farmaceutisk acceptable salte deraf, som omfatter følgende trin: A) Oxidering af en ved fermentering fremstillet penicillin eller salt deraf til fremstilling af et penicillinsulfoxid med formlen O n T CH ° /s\/ R - c - NH—-r —CH3 i-N-CO-H O ^ hvori R betegner sidekæden af en ved fermentering fremstillet penicillin, B) omdannelse af penicillinsulfoxidet til en cephalosporansyre-forbindelse med formlen 0 «5 R - C - NH—i-^ ^ J—ch3 co2H hvori R har den ovenfor anførte betydning, C) omsætning af cephalosporansyreforbindelsen med en silylforbin-delse med formlen E\ /r1 ^/Si R ™ eller R2--li-X Rl"si *4 2 3 4 hvori R , R og R betegner hydrogen, halogen, (lavere)alkyl, halogen- (lavere)alkyl, phenyl, benzyl, tolyl eller dimethylaminophenyl, idet „ 2 3 4 mindst en af grupperne R , R og R er forskellig fra halogen eller hydrogen, R^ betegner (lavere)alkyl, m betegner et helt tal 1 eller 2, og X betegner halogen eller ^ R5 -N 31 144096 5 6 hvori R betegner hydrogen eller (lavere)alkyl, og R betegner hydrogen, (lavere)alkyl eller R3 R2-Si·- i4 2 3 4 hvori R , R og R har den ovenfor anførte betydning, under vandfrie betingelser, i et inert opløsningsmiddel, og i nærværelse af en syre-deaktiverende tertiær amin, tildannelse af den tilsvarende silylester af cephalosporansyreforbindelsen, D) omsætning af silylesteren med et overskud af et halogenerirtgs-middel under vandfrie betingelser, i et inert opløsningsmiddel, og i nærværelse af en syredeaktiverende tertiær amin, til dannelse af det tilsvarende iminohalogenid, E) omsætning af iminohalogenidetmed en alkohol udvalgt fra alifatiske alkoholer med 1-12 carbonatomer, og phenylalkylalkoholer med 1-7 alkylcarbonatomer, til fremstilling af den tilsvarende iminoether, F) brydning af iminoetherens iminobinding ved hydrolyse eller alko-holyse til fremstilling af 7-aminodeacetoxycephalosporansyref G) fremstilling af mono- eller disilylderivatet af 7-aminodeacetoxy-cephalosporansyre, H) N-acylering af mono- eller disilylderivatet med et phenylglycin-derivat, samt I) fraspaltning ved hydrolyse eller alkoholyse af alle silylgrupper til dannelse af cephalexin eller ved efterfølgende omdannelse fremstilling af et ikke-toxisk, farmaceutisk acceptabelt salt deraf; kendetegnet ved, at (1) omdannelsestrinnet (B) består i en omlejring ved opvarmning af den frie syreform af penicillinsulfoxidet i et svagt basisk opløsningsmiddel i nærværelse af en katalysator omfattende en stærk syre enten alene eller i kombination med en nitrogenbase med en pKb-værdi på ikke mindre end 4, (2) monosilylderivatet af 7-aminode-acetoxycephalosporansyre fremstilles enten ved omsætning af 7-aminodeace-toxycephalosporansyre-produktet fra trin (F) med ca. en molær mængde af en silylforbindelse, som defineret i trin (C), eller ved udførelse af hydrolyse- eller alkoholysereaktionen i trin (F) i nærværelse af mindst ca. et molært overskud af en silylforbindelse som defineret i trin (C), eller ved at iminoetherens iminobinding i trin (F) underkastes alkoholyse og termisk spaltning i nærværelse af mindst ca. et molært overskud af en silylforbindelse som defineret i trin (C), (3) disilyl-A process for the preparation of cephalexin or non-toxic, pharmaceutically acceptable salts thereof, comprising the steps of: A) Oxidation of a penicillin or salt thereof prepared by fermentation to produce a penicillin sulfoxide of the formula O n T CH Wherein R represents the side chain of a penicillin produced by fermentation; B) converting the penicillin sulfoxide to a cephalosporanoic acid compound of the formula 0 5 R - C - NH Wherein R is as defined above, C) reacting the cephalosporanoic acid compound with a silyl compound of the formula E \ / r1 ^ / Si R ™ or R2 - li-X R1 'si * 4 2 3 4 wherein R, R and R are hydrogen, halogen, (lower) alkyl, halogen (lower) alkyl, phenyl, benzyl, tolyl or dimethylaminophenyl, with at least one of the groups R, R and R being different from halogen or hydrogen, R 1 represents (lower) alkyl, m represents an integer of 1 or 2, and X represents halo gene or R 5 -N 31 wherein R represents hydrogen or (lower) alkyl, and R represents hydrogen, (lower) alkyl or R 3 R 2 -Si · - wherein R, R and R have the above significance, under anhydrous conditions, in an inert solvent, and in the presence of an acid-deactivating tertiary amine, formation of the corresponding cilyl ester of the cephalosporanoic acid compound, D) reacting the cilyl ester with an excess of a halogen energy agent under anhydrous conditions, solvent, and in the presence of an acid deactivating tertiary amine, to form the corresponding imino halide, E) reacting the imino halide with an alcohol selected from aliphatic alcohols of 1-12 carbon atoms, and phenylalkyl alcohols of 1-7 alkyl carbon atoms, to produce the corresponding imino ether, F) breaking the imino ether bond imino bond by hydrolysis or alcoholysis to produce 7-aminoacetoxycephalosporanoic acid G) mono- or disilyld preparation the derivative of 7-aminodeacetoxy-cephalosporanoic acid, H) N-acylation of the mono- or disilyl derivative with a phenylglycine derivative, and I) cleavage by hydrolysis or alcoholysis of all silyl groups to form cephalexin or by subsequent conversion to produce a non-toxic, pharmaceutically acceptable salt thereof; characterized in that (1) the conversion step (B) consists of a rearrangement by heating the free acid form of the penicillin sulfoxide in a weak basic solvent in the presence of a catalyst comprising a strong acid either alone or in combination with a nitrogen base having a pKb value of not less than 4, (2) the monosilyl derivative of 7-aminode-acetoxycephalosporanoic acid is prepared either by reacting the 7-aminodeace toxycephalosporanoic acid product of step (F) with ca. a molar amount of a silyl compound, as defined in step (C), or by performing the hydrolysis or alcoholysis reaction of step (F) in the presence of at least ca. a molar excess of a silyl compound as defined in step (C), or by subjecting the imino ether imino bond in step (F) to alcoholysis and thermal decomposition in the presence of at least ca. a molar excess of a silyl compound as defined in step (C), (3) disilyl
DK200577A 1971-05-11 1977-05-05 PROCEDURE FOR THE PRODUCTION OF CEPHALEXIN OR SALTS THEREOF DK144095C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK200577A DK144095C (en) 1971-05-11 1977-05-05 PROCEDURE FOR THE PRODUCTION OF CEPHALEXIN OR SALTS THEREOF

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US14368371 1971-05-11
US00143683A US3843637A (en) 1971-05-11 1971-05-11 Process for rearranging 6-acylamidopenicillanic acid-1-oxides to 7-acyla mido-3-methyl-ceph-3-em-4-carboxylic acids
DK220672AA DK140845B (en) 1971-05-11 1972-05-04 Process for rearranging a 6-acylamidopenicillanic acid sulfoxide to a 7-acylamido-3-methylceph-3-em-4-carboxylic acid.
DK220672 1972-05-04
DK200577A DK144095C (en) 1971-05-11 1977-05-05 PROCEDURE FOR THE PRODUCTION OF CEPHALEXIN OR SALTS THEREOF
DK200577 1977-05-05

Publications (3)

Publication Number Publication Date
DK200577A DK200577A (en) 1977-05-05
DK144095B true DK144095B (en) 1981-12-07
DK144095C DK144095C (en) 1982-05-17

Family

ID=27221464

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200577A DK144095C (en) 1971-05-11 1977-05-05 PROCEDURE FOR THE PRODUCTION OF CEPHALEXIN OR SALTS THEREOF

Country Status (1)

Country Link
DK (1) DK144095C (en)

Also Published As

Publication number Publication date
DK200577A (en) 1977-05-05
DK144095C (en) 1982-05-17

Similar Documents

Publication Publication Date Title
EP0001133A1 (en) Process for the preparation of 6- D-alpha-amino-(p-hydroxyphenyl)-acetamido penicillanic acid
JPS5857387A (en) Cephalosporin quinolinium betains
NL8003003A (en) INTERMEDIATES TO BE USED IN THE PREPARATION OF CEPHALOSPORIN ANTIBIOTICS.
US3741959A (en) Acylation of 7-aminocephalosporin or 6-aminopenicillin
NO146203B (en) PROCEDURE FOR THE PREPARATION OF CEPHALEXIN OR SALTS THEREOF
JPS60105685A (en) 3-(bicyclic pyridinium methyl)cephalosporins
US4148817A (en) Process and intermediates for preparing cephalosporin antibiotics
JP4535366B2 (en) Method for producing cephem agent
DK144095B (en) PROCEDURE FOR THE PRODUCTION OF CEPHALEXIN OR SALTS THEREOF
FI66186B (en) FOERFARANDE FOER FRAMSTAELLNING AV PENICILLANSYRA- OCH CEFALOSPORANSYRADERIVAT
SE458608B (en) PROCEDURES FOR THE PREPARATION OF CONVENTIONAL CEPHALOSPORINES USING TRIMETHYLSILYL ESTERS OR OTHER LOW-HYDROOLYZERABLE ESTERS OF 7-TRIMETHYLYLOXICARBONYLAMINOCEPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSPHALOSPOROSY
EP0169144B1 (en) Process for the preparation of 7-amino and 7-substituted amino-desacetoxycephalosporins from the corresponding 6-substituted amino penicillin sulphoxides
JPH10507773A (en) Silylation method
DK144096B (en) METHOD OF PREPARING HETACEPHALEXIN OR SALTS THEREOF
FI73437C (en) FOERFARANDE FOER FRAMSTAELLNING AV 3-KARBAMOYLOXIMETYLKEFALOSPORINFOERENINGAR.
JP3068143B2 (en) Acylation method
US4223134A (en) Process for preparing cephalosporin antibiotics
US4351766A (en) Production of penicillins
EP0096496B1 (en) Preparation of penicillin and cephalosporin compounds and novel intermediates useful therein
CA1039709A (en) Process for producing cephalosporins
WO2005118596A1 (en) 3-alkenylcephem compounds and process for production thereof
US4240960A (en) Trimethylsilyl substituted penicillins
US4301072A (en) Process for preparing aminopenicillins
US4091214A (en) De-esterification process for cephalosporins
US4231954A (en) Dane salt and process for preparing aminopenicillins therefrom