DK143988B - FLUIDIZED CATALYTIC CRACKING PROCESS - Google Patents

FLUIDIZED CATALYTIC CRACKING PROCESS Download PDF

Info

Publication number
DK143988B
DK143988B DK218172AA DK218172A DK143988B DK 143988 B DK143988 B DK 143988B DK 218172A A DK218172A A DK 218172AA DK 218172 A DK218172 A DK 218172A DK 143988 B DK143988 B DK 143988B
Authority
DK
Denmark
Prior art keywords
catalyst
zone
riser
approx
mixture
Prior art date
Application number
DK218172AA
Other languages
Danish (da)
Other versions
DK143988C (en
Inventor
C G Gerhold
Original Assignee
Universal Oil Prod Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Oil Prod Co filed Critical Universal Oil Prod Co
Publication of DK143988B publication Critical patent/DK143988B/en
Application granted granted Critical
Publication of DK143988C publication Critical patent/DK143988C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/321Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

(19) DANMARK \W(19) DENMARK \ W

|p (12) FREMLÆGGELSESSKRIFT «1) 143988 B| p (12) SUBMISSION WRITING «1) 143988 B

DIREKTORATET FOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE OF THE PATENT AND TRADEMARKET SYSTEM

(21) Ansøgning nr. 2181/72 (51) IntCI.8 C 10 0 11/18 (22) Indieveringsdag 2. maj 1972 (24) Løbedag 2. maj 1972 (41) Aim. tilgængelig 4. nov. 1972 (44) Fremlagt 9· nov. 1981 (86) International ansøgning nr. - (86) International Indleveringsdag - (85) Videreførelsesdag - (62) Stamansøgning nr. -(21) Application No. 2181/72 (51) IntCI.8 C 10 0 11/18 (22) Filing Day 2 May 1972 (24) Running Day 2 May 1972 (41) Aim. available Nov. 4 1972 (44) Posted 9 Nov. 1981 (86) International Application No. - (86) International Filing Day - (85) Continuation Day - (62) Master Application No. -

(30) Prioritet J>. maj 1971, 159^53, US(30) Priority J>. May 1971, 159 ^ 53 US

(71) Ansøger UNIVERSAL OIL PRODUCTS COMPANY, Des Plaines, US.(71) Applicant UNIVERSAL OIL PRODUCTS COMPANY, Des Plaines, US.

(72) Opfinder Clarence George Gerhold, US.(72) Invented Clarence George Gerhold, US.

(74) Fuldmægtig Ingeniørfirmaet Budde, Schou & Co.(74) Associate Engineering Company Budde, Schou & Co.

(54) Fluidis er et katalytisk kraknings= proces.(54) Fluidis is a catalytic cracking process.

Den foreliggende opfindelse angår en fluidiseret katalytisk krakningsproces, hvor aktiviteten af en katalysator^ blanding, som kommer i kontakt med en carbonhydridfødeblanding, kan reguleres til frembringelse af en ønsket produktudbytte-struktur.The present invention relates to a fluidized catalytic cracking process wherein the activity of a catalyst mixture which comes into contact with a hydrocarbon feed mixture can be regulated to produce a desired product yield structure.

I tilfælde, hvor der finder fluidiseret drift sted, an-In cases where fluidized operation occurs,

OQOQ

vendes et vertikalt stigrør til reducering af for stor tilbage- 30 blanding af reaktionsprodukter med uomsat og delvis omsat føde- ^ blanding. På denne måde gennemføres reaktionen i yderligere af- stand fra ligevægt, således at katalyserede reaktioner finder ^ sted hurtigere og med større effektivitet.a vertical riser is turned to reduce excessive mixing of reaction products with unreacted and partially reacted feed mixture. In this way, the reaction is conducted at a further distance from equilibrium, so that catalyzed reactions occur faster and with greater efficiency.

* 3 2 1A3988* 3 2 1A3988

Denne type drift i et konventionelt system resulterer i en høj hastighed for katalysatoroverførsel mellem reaktoren og regeneratoren, især hvis reaktionen skal gennemføres under betingelser med høje forhold mellem katalysator og olie. En høj katalysatorcirkulering mellem reaktoren og regeneratoren er uønskelig, fordi store mængder af oxygen i form af oxideret katalysator kommer ind i reaktoren, idet de fortynder reaktionsprodukter med carbonhydridoxidationsprodukter. Man har nu fundet frem til en måde, hvorpå denne indbyrdes forbindelse mellem katalysatortrafikken mellem reaktoren og regeneratoren og forholdet mellem katalysator og olie i reaktoren kan brydes. Løsningen består i, at en del af den katalysator, der er adskilt fra reaktionsprodukterne, returneres direkte til reaktortilgangen, medens resten af den katalysator, der er fjernet fra reaktionszonen, sendes den sædvanlige vej til regeneratoren.This type of operation in a conventional system results in a high rate of catalyst transfer between the reactor and the regenerator, especially if the reaction is to be carried out under high catalyst-oil conditions. A high catalyst circulation between the reactor and the regenerator is undesirable because large amounts of oxygen in the form of oxidized catalyst enter the reactor, diluting reaction products with hydrocarbon oxidation products. We have now found a way in which this interconnection between the catalyst traffic between the reactor and the regenerator and the ratio of catalyst to oil in the reactor can be broken. The solution consists in returning part of the catalyst separated from the reaction products directly to the reactor feed, while the rest of the catalyst removed from the reaction zone is sent the usual route to the regenerator.

I overensstemmelse hermed angår den foreliggende opfindelse en fluidiseret katalytisk krakningsproces af den ovenfor omtalte type, hvilken krakningsproces er ejendommelig ved det i den kendetegnende del af krav 1 anførte.Accordingly, the present invention relates to a fluidized catalytic cracking process of the above-mentioned type, which cracking process is characterized by the feature of claim 1.

Den her omhandlede proces kan anvendes af jordolieindustrien til kontinuerlig fluidiseret katalytisk krakning eller katalytisk dehydrogenering eller en hvilken som helst anden type fluidiseret katalytisk proces.The present process can be used by the petroleum industry for continuous fluidized catalytic cracking or catalytic dehydrogenation or any other type of fluidized catalytic process.

Tegningen illustrerer de essentielle træk ved processen ifølge den foreliggende opfindelse, og den indbefatter en stigrørs-reaktionszone 6, en regenereringszone 9 og en ledning 18 til regenereret katalysator, hvilken ledning forbinder regeneratoren 9 med stigrørsreaktionszonen 6. En katalysatorrecirkuleringsledning eller en tilbageløbsledning 5 forbinder en beholder 8 med den nedre del af stigrøret 6. Stigrøret 6 er direkte forbundet med beholderen 8, der er en cylindrisk konstruktion indeholdende en fluidiseret masse 16 af en katalysator og et adskillelsesorgan 12, der skiller carbonhydrider fra medrevet katalysator. Praktisk taget katalysatorfrie carbonhydrider ledes ud af beholderen 8 via en ledning 10. Adskillelsesorganet 12 kan være en cyclon med en tilbageløbsledning 14, der returnerer medrevet katalysator, der er adskilt fra carbonhydrid, til den fluidiserede masse 16.The drawing illustrates the essential features of the process of the present invention and includes a riser reaction zone 6, a regeneration zone 9, and a regenerated catalyst conduit 18, which conduit connects regenerator 9 to the riser reaction zone 6. A catalyst recycle line or reflux line 5 connects to a container 8 with the lower portion of the riser 6. The riser 6 is directly connected to the container 8, which is a cylindrical structure containing a fluidized mass 16 of a catalyst and a separator 12 separating hydrocarbons from the entrained catalyst. Practically catalyst-free hydrocarbons are discharged from the container 8 via a conduit 10. The separator 12 may be a cyclone with a reflux line 14 which returns entrained catalyst separated from hydrocarbon to the fluidized mass 16.

3 1439883 143988

Recirkuleringsledningen 5 indeholder en skydeventil 2, der regulerer strømningen af recirkuleringskatalysator ind i stigrøret 6 fra den tætte masse 16. På recirkuleringsledningen 5 er der vist en valgfri afdrivningsledning 20, igennem hvilken en afdrivningsstrøm om ønsket kan ledes i opadgående retning til fjernelse af adsorberede carbonhydrider fra recirkuleringskatalysatoren, før denne passerer ind i stigrøret 6.Recycle line 5 contains a sliding valve 2 which controls the flow of recycle catalyst into riser 6 from the dense mass 16. On recycle line 5 is shown an optional stripping line 20 through which, if desired, a stripping stream can be directed upwardly to remove adsorbed hydrocarbons from the recycle catalyst before passing into the riser 6.

En ledning 7 forbinder beholderen 8 og regeneratoren 9.A conduit 7 connects the container 8 and the regenerator 9.

Denne ledning kan indeholde en skydeventil 4 til regulering af strømningen af katalysator fra den tætte masse 16 ind i beholderen 8 til regeneratoren 9· En ledning 19 giver om nødvendigt en afdrivningsstrøm adgang til ledningen 7 til praktisk taget desorption af adsorberede carbonhydrider fra katalysatoren forud for regenerering i zonen 9·This conduit may contain a sliding valve 4 for controlling the flow of catalyst from the dense mass 16 into the container 8 of the regenerator 9. in zone 9 ·

Regenereringszonen 9 indeholder et cyclonadskillelsesorgan 13, der adskiller medrevet katalysator fra røggas, der fjernes fra regeneratoren via en afgangsledning 11. Eventuel katalysator, der er adskilt fra røggas, recirkuleres til en tæt masse 17 i regeneratoren 9 via en tilbageløbsledning 15. Den oxygentilgangsstrøm, der gør det muligt for en oxygenholdig gas at afbrænde koks på katalysatoren, er ikke vist på regeneratoren. Ledningen 18 for regenereret katalysator indeholder en skydeventil 3 til regulering af strømningen af regenereret katalysator til stigrørsreaktionszonen 6.The regeneration zone 9 contains a cyclone separation means 13 which separates entrained flue gas catalyst which is removed from the regenerator via a discharge line 11. Any catalyst separated from flue gas is recycled to a dense mass 17 in the regenerator 9 via a reflux line 15. The oxygen supply stream therein enabling an oxygen-containing gas to burn coke on the catalyst is not shown on the regenerator. The regenerated catalyst conduit 18 contains a sliding valve 3 for controlling the flow of regenerated catalyst to the riser reaction zone 6.

Ved bunden af stigrøret 6 er der en tilgang 1, igennem hvilken frisk fødemateriale og/eller recirkuleringsmaterialer kommer ind i og kommer i kontakt med både regenereret og recirkuleret katalysator. Fødematerialet fordampes, hvilket får katalysatoren til at passere ind til stigrøret for at blive fluidiseret og ført op gennem stigrøret ind i beholderen 8.At the bottom of the riser 6 there is an approach 1 through which fresh feed and / or recyclable materials enter and come into contact with both regenerated and recycled catalyst. The feed is evaporated causing the catalyst to pass into the riser to be fluidized and passed through the riser into the container 8.

Stigrøret 6 går ind i reaktionsbeholderen 8 ved dennes nederste del, således at materialer fra stigrøret 6 passerer gennem den tætte masse 16. I visse tilfælde kan afgangsstrøm fra stigrøret 6 passere direkte til en cyclonadskillelseszone til øjeblikkelig frasklllelse af katalysator fra carbonhydrider. I disse tilfælde ville stigrøret sandsynligvis være anbragt langs siden af reaktionsbeholderen 8 og passere ind i denne beholder gennem dennes side og direkte ind i et cyclonadskillelsesorgan.The riser 6 enters the reaction vessel 8 at its lower part, so that materials from the riser 6 pass through the dense mass 16. In some cases, residual current from the riser 6 can pass directly to a cyclone separation zone for immediate separation of hydrocarbon catalyst. In these cases, the riser would probably be located along the side of the reaction vessel 8 and pass into this vessel through its side and directly into a cyclone separator.

4 t43S$84 t43S $ 8

Ved normal drift kommer fødemateriale ind via tilgangen 1 og kommer i kontakt med regenereret katalysator fra ledningen 18 og recirkuleret katalysator fra ledningen 5. Den varme katalysator fordamper fødematerialet, og hele blandingen af fødemateriale og katalysator føres op gennem stigrøret ind i reaktionsbeholderen 8.In normal operation, feedstock enters via approach 1 and contacts regenerated catalyst from conduit 18 and recycled catalyst from conduit 5. The hot catalyst evaporates the feedstock and the entire mixture of feedstock and catalyst is fed through the riser into reaction vessel 8.

I visse tilfælde vil den katalysator, der kommer ind i stigrøret, ikke være tilstrækkelig varm til at fordampe fødematerialet. I disse tilfælde kan strømningen af regenereret katalysator til reaktionszonen forøges til tilvejebringelse af mere varm regenereret katalysator til fordampning af fødematerialet. Alternativt kan den recirkulerede katalysator forvarmes i en katalysator-forvarmer, før den kommer ind i stigrøret 6.In some cases, the catalyst entering the riser will not be hot enough to evaporate the feedstock. In these cases, the flow of regenerated catalyst to the reaction zone may be increased to provide more hot regenerated catalyst for evaporation of the feedstock. Alternatively, the recycled catalyst may be preheated in a catalyst preheater before entering the riser 6.

Recirkuleringsledningen 5 og ledningen 7 behøver ikke at være adskilte ledninger. Kun én ledning behøver at forbinde beholderen 8 med stigrøret, når blot der et eller andet sted langs denne ledning er tilvejebragt en ledning, der også står i forbindelse med regeneratoren. Også andre metoder til recirkulering af katalysator til stigrøret er omfattet, og den foreliggende opfindelse er ikke begrænset til den måde, på hvilken dette materiale recirkuleres til stigrøret.Recycle line 5 and line 7 need not be separate lines. Only one conduit need to connect the container 8 to the riser provided that somewhere along this conduit is provided a conduit also connected to the regenerator. Other methods for recirculating the riser catalyst are also included, and the present invention is not limited to the manner in which this material is recycled to the riser.

Som afbildet kan hele apparaturet være i en enkelt isoleringsbeholder, der kan indeholde et varmereguleringsorgan til tilvejebringelse af regulerede temperaturer på forskellige dele i den samlede proces.As depicted, the entire apparatus may be in a single insulating container which may contain a heat control means for providing controlled temperatures at various parts in the overall process.

De fluidiserede katalytiske processer, ved hvilke den foreliggende opfindelse med fordel kan anvendes, indbefatter katalytisk . dehydrogenering og katalytisk krakning. Andre katalytiske processer kan indbefattes som værende inden for rammerne af udtrykket "fluidiseret katalytisk proces".The fluidized catalytic processes by which the present invention can be advantageously employed include catalytic. dehydrogenation and catalytic cracking. Other catalytic processes may be included within the scope of the term "fluidized catalytic process".

Reaktionsbetingelserne i stigrørsreaktionszonen for katalytisk krakning indbefatter en temperatur på fra ca. 427 til ca.The reaction conditions in the riser reaction zone for catalytic cracking include a temperature of from ca. 427 to approx.

621°C, fortrinsvis fra ca. 482 til ca. 554°G, en gashastighed på fra ca. 2 til ca. 23 m/sek, fortrinsvis fra 2,4 til 13,7 m/sek, et tryk på fra ca. 1,5 til ca. 5^1 atm, fortrinsvis fra ca. 2,0 til ca. 4,1 atm og en vægtrumhastighed eller vægt af carbonhydrider pr. time pr. vægt af katalysator, der er tilbageholdt i stigrøret, på fra ca. 10 til ca. 300* fortrinsvis fra ca. 10 til ca. 150, og et vægtforhold af katalysator til olie, baseret på katalysator og olie, der kommer ind i stigrøret, på fra ca. 4 til ca. 20, fortrinsvis fra ca. 6 til ca. 12. Foretrukne katalysatorer indbefatter 5 149*98 zirconiumoxid, siliciumoxid, siliciumoxid-aluminiumoxid og de krystallinske aluminiumsilicat-zeoliter.621 ° C, preferably from ca. 482 to approx. 554 ° G, a gas velocity of approx. 2 to approx. 23 m / sec, preferably from 2.4 to 13.7 m / sec, a pressure of from approx. 1.5 to approx. 5 µl atm, preferably from ca. 2.0 to approx. 4.1 atm and a weight room rate or weight of hydrocarbons per per hour weight of catalyst retained in the riser of approx. 10 to approx. 300 * preferably from ca. 10 to approx. 150, and a weight ratio of catalyst to oil, based on catalyst and oil entering the riser, of approx. 4 to approx. 20, preferably from ca. 6 to approx. 12. Preferred catalysts include 5 149 * 98 zirconia, silica, silica-alumina and the crystalline aluminosilicate zeolites.

Reaktionsbetingelser for en katalytisk dehydrogenerings-proces indbefatter almindeligvis temperaturer på fra ca. 510 til ca. 704°C, fortrinsvis fra ca. 566 til ca. 677°C, tryk fra ca. atmosfærisk tryk til ca. 7,8 atm, fortrinsvis fra ca. atmosfærisk tryk til ca. 2,7 atm. Katalysator:olie-forholdet kan variere fra ca. 4 til ca. 40, fortrinsvis fra ca. 6 til ca. JO, og vægtrumhastigheder kan variere fra ca. 1 til ca. 50* fortrinsvis fra ca. 10 til ca. 30. Anvendelige katalysatorer, indbefatter chromoxid og chromoxid-aluminiumoxid-katalysatorer.Reaction conditions for a catalytic dehydrogenation process generally include temperatures of from ca. 510 to approx. 704 ° C, preferably from ca. 566 to approx. 677 ° C, pressure from approx. atmospheric pressure to approx. 7.8 atm, preferably from ca. atmospheric pressure to approx. 2.7 atm. Catalyst: the oil ratio can vary from approx. 4 to approx. 40, preferably from ca. 6 to approx. JO, and weight room rates can vary from approx. 1 to approx. 50 * preferably from about 10 to approx. 30. Applicable catalysts, including chromium oxide and chromium oxide-alumina catalysts.

Katalysator:olie-forholdet K/0, i stigrørsreaktionszonen kan opdeles i et K/0 baseret på frisk fødemateriale og et K/0 baseret på kombineret fødemateriale, der kommer ind i stigrørs-reaktionszonen. K/0 er sædvanligvis baseret på regenereret katalysatorstrømning, men ved anvendelsen af den her omhandlede proces vil K/0 baseret på regenereret katalysator være lavere end det faktiske K/0, eftersom i det mindste en del af katalysatoren i stigrørsreaktionszonen ikke er regenereret katalysator. Således kan den mængde katalysator, der ledes ind 1 stigrørsreaktionszonen, ændres ved hjælp af den mængde katalysator, der recirkuleres til denne zone, og ved hjælp af den mængde regenereret katalysator, der ledes ind i denne zone.Catalyst: the oil ratio K / 0 in the riser reaction zone can be divided into a K / 0 based on fresh feed and a K / 0 based on combined feed entering the riser reaction zone. K / 0 is usually based on regenerated catalyst flow, but when using this process, K / 0 based on regenerated catalyst will be lower than the actual K / 0, since at least part of the catalyst in the riser reaction zone is not regenerated catalyst. Thus, the amount of catalyst introduced into the riser reaction zone can be changed by the amount of catalyst recycled into this zone and by the amount of regenerated catalyst fed into this zone.

De ledninger, der leder regenereret katalysator og recirkuleret katalysator, kan hver især indeholde reguleringsventiler, således at forholdet mellem regenereret og recirkuleret katalysator kan reguleres.The conduits conducting regenerated catalyst and recycled catalyst may each contain control valves so that the ratio of regenerated and recycled catalyst can be regulated.

Det nøjagtige forhold mellem regenereret katalysator og recirkuleret katalysator er en funktion af katalysator- og føde-materialeegenskaber, ønskede produkter og begrænsninger i apparaturet.The exact ratio of regenerated catalyst to recycled catalyst is a function of catalyst and feed material properties, desired products and apparatus limitations.

Store koksmængder svækker almindeligvis katalysatoraktiviteten. En raffinør, der driver en fluidiseret katalytisk krakningsproces, kan ønske at fremstille mere brændselsolie i vintermånederne end om sommeren. Større koksmængder på katalysatoren reducerer benzinproduktionen, således at raffinøren har en let måde at skifte sin produktion fra benzin til brændselsolie på. Raffinøren kan drive sit anlæg i sommermånederne med kun ringe eller ingen katalysatorrecirkulering og i vintermånederne drive det med fra ca. 5 til ca.Large amounts of coke generally impair the catalyst activity. A refiner operating a fluidized catalytic cracking process may wish to produce more fuel oil in the winter months than in the summer. Larger quantities of coke on the catalyst reduce gasoline production, so the refiner has an easy way to switch its production from gasoline to fuel oil. The refiner can operate his plant in the summer months with little or no catalyst recycling and in the winter months operate it from approx. 5 to approx.

95% recirkuleret katalysator. Som her anvendt betyder "5% recirku- 6 143988 leret katalysator", at 5$ af den katalysator, der kommer ind i stigroret, er recirkuleret, og 95$ er regenereret.95% recycled catalyst. As used herein, "5% recycled catalyst" means that $ 5 of the catalyst entering the stirrer is recycled and 95 $ is regenerated.

Kontinuerlig tilsætning.af både recirkuleret og regenereret katalysator til stigrøret foretrækkes, skønt intermitterende tilsætning af recirkuleret katalysator i visse tilfælde kan være fordelagtig.Continuous addition of both recycled and regenerated catalyst to the riser is preferred, although intermittent addition of recycled catalyst may be advantageous in some cases.

Hvis en raffinør driver sin enhed med mindre end ca. 5$ recirkuleret katalysator, er der kun en meget ubetydelig ændring i drift, og kun få, hvis overhovedet nogen, af de fordele, der tilvejebringes ved den her omhandlede proces, ville blive observeret. Drift med overskud af katalysatorrecirkulering kan resultere i særdeles store mængder forurenende stoffer på katalysatoren og kan også påvirke processens varmebalance i uheldig retning. I overensstemmelse hermed kan fra ca. 5 til ca. 95$ af katalysatoren recirkuleres til opnåelse af fordelene ved den foreliggende opfindelse, selv om området fra ca. 25 til ca. 75$ recirkulering, er langt at fortrække.If a refiner operates his unit with less than approx. 5 $ recycled catalyst, there is only a very minor change in operation, and only a few, if any, of the benefits provided by the process in question would be observed. Operation with excess catalyst recycling can result in extremely large amounts of pollutants on the catalyst and can also adversely affect the heat balance of the process. Accordingly, from ca. 5 to approx. 95 $ of the catalyst is recycled to obtain the advantages of the present invention, although the range from about 25 to approx. $ 75 recycling is far preferable.

Ved omdannelse af eksisterende fluidiserede katalytiske krakningsenheder således, at de anvender den her omhandlede metode, synes et snævrere område, fra ca. 50 til ca. 50$ recirkulering, optimalt, selv om de ovennævnte bredere områder også kan anvendes. Varme fra den regenererede katalysator dækker processens varmebehov, idet fra ca. 50 til ca. 70$ af den katalysator, der kommer ind i stigrøret, bør være varm, regenereret katalysator, for at der kan opnås optimal ydeevne. I nye enheder med alternative organer til tilføring af varme til processen er et større spillerum muligt ved ' bestemmelsen af den mængde katalysator, der skal recirkuleres.When converting existing fluidized catalytic cracking units to use the method of the present invention, a narrower range, from approx. 50 to approx. $ 50 recycling, optimal, although the aforementioned wider areas can also be used. Heat from the regenerated catalyst covers the heat demand of the process, from approx. 50 to approx. $ 70 of catalyst entering the riser should be hot, regenerated catalyst for optimum performance. In new units with alternative means for supplying heat to the process, greater leeway is possible in determining the amount of catalyst to be recycled.

Pødematerialerne kan variere i afhængighed af den drift, der finder sted. Ved fluidiseret katalytisk krakning anvendes sædvanligvis et gasoliefødemateriale. En del af produktet kan også recirkuleres til stigrørsreaktionszonen. Recirkuleringsmaterialet kan være en tung cyclusolie, en let cyclusolie, recirkuleringsbenzin eller en naphtha-recirkuleringsstrøm.The putty materials may vary depending on the operation taking place. In fluidized catalytic cracking, a gas oil feed material is usually used. Part of the product may also be recycled to the riser reaction zone. The recycle material may be a heavy cycle oil, a light cycle oil, recycle gasoline or a naphtha recycle stream.

Fødemateriale til dehydrogeneringsdrift kan variere fra paraffiner med lav molekylvægt til paraffiner med j50 carbonatomer eller derover. I visse tilfælde kan dehydrogeneringsfødematerialer være olefiner eller cyclo-paraffiner med samme carbonområde som angivet for paraffinforbindelserne.Feeding material for dehydrogenation operation can range from low molecular weight paraffins to paraffins having 50 carbon atoms or more. In some cases, dehydrogenation feed materials may be olefins or cycloparaffins having the same carbon range as indicated for the paraffin compounds.

Stigrørsreaktionszonen kan variere i dimensioner, og den har fortrinsvis et længde-til-diameter-forhold, L/D, på fra ca.The riser reaction zone may vary in dimensions, and preferably has a length-to-diameter ratio, L / D, of from ca.

143988 7 2,5:1 til ca. 100:1 eller derover. Området er fortrinsvis fra ca.2.5: 1 to approx. 100: 1 or greater. The area is preferably from approx.

4:1 til ca. 15:1, men det kan variere i afhængighed af den drift, der finder sted. Stigrøret er typisk vertikalt og munder enten ud i en reaktionszone med fluidiseret tæt masse eller direkte ud i en cyclon-adskillelseszone, der øjeblikkelig adskiller afgangsstrømmen i katalysator og reaktionsprodukter. Hvis stigrøret munder direkte ud i en cyclon, kan eyclonen være anbragt inde i en stor reaktionsbeholder, der kan indeholde en fluidiseret masse af katalysator.4: 1 to approx. 15: 1, but this may vary depending on the operation taking place. The riser is typically vertical and opens either into a fluid-dense mass reaction zone or directly into a cyclone separation zone that immediately separates the effluent stream in catalyst and reaction products. If the riser opens directly into a cyclone, the eyclone may be placed inside a large reaction vessel which may contain a fluidized mass of catalyst.

Regenereringszoner er velkendte inden for teknikken. Regeneratorer har sædvanligvis et lavere L/D end stigrør til reducering af overfladevæskehastigheden til reducering af katalysatormedrivning, hvorved anvendelsen af cyclonadskillere med lav effektivitet på regeneratorrøggasstrømmen gøres mulig. Regeneratoren afbrænder koksaflejringer fra katalysatoren, før denne returneres til stigrørszo-nen som regenereret katalysator. Regeneratoren er typisk vertikal og har en luft- eller oxygentilgang i bunden. Oxygenet forbrænder koks til carbondioxid med deraf følgende fjernelse af carbondioxid fra regeneratoren i form af røggas. Katalysator, der er fjernet fra regeneratoren, indeholder mindre end 0,1 vægtprocent koks, i visse tilfælde mindre end 0,01 vægtprocent koks. Recirkuleret katalysator indeholder en højere koncentration af koks.Regeneration zones are well known in the art. Regenerators usually have a lower L / D than riser to reduce the surface fluid velocity to reduce catalyst drift, thereby enabling the use of low efficiency cyclone separators on the regenerator flue gas stream. The regenerator burns coke deposits from the catalyst before returning it to the riser zone as regenerated catalyst. The regenerator is typically vertical and has an air or oxygen supply at the bottom. The oxygen burns carbon dioxide coke, resulting in the removal of carbon dioxide from the regenerator in the form of flue gas. Catalyst removed from the regenerator contains less than 0.1% by weight of coke, in some cases less than 0.01% by weight of coke. Recycled catalyst contains a higher concentration of coke.

Den katalysator- og carbonhydridblanding, der forlader stigrørsreaktionszonen, passerer ind i et adskillelsesorgan, der skiller fast katalysator fra carbonhydrid. Stigrøret kan gå direkte ind i en cyclon, der er anbragt inde i en beholder, eller det kan gå ind i en reaktionsbeholder (som vist på tegningen) og passere gennem en fluidiseret tæt masse af katalysator, før det kommer ind i et adskillelsesorgan. Udtrykket '’adskillelsesorgan" indbefatter eycloner og ligeledes andre apparaturudformninger, der skiller fast katalysator fra carbonhydridstrømme.The catalyst and hydrocarbon mixture leaving the riser reaction zone passes into a separator separating solid catalyst from hydrocarbon. The riser may enter directly into a cyclone disposed within a container or it may enter a reaction vessel (as shown in the drawing) and pass through a fluidized dense mass of catalyst before entering a separator. The term "separator" includes eyclones and also other apparatus designs that separate solid catalyst from hydrocarbon streams.

Efter fraskillelse fra reaktionsprodukter og uomsat føde-materiale kan katalysatoren opdeles i to strømme, hvoraf den ene er en recirkuleringsstrøm. Recirkuleringskatalysatoren returneres til stigrøret, medens den resterende katalysator ledes ind i regeneratoren. Til reducering af udbyttetab afdrives katalysatoren forud for regenerering ved, at en afdrivningsstrøm, sædvanligvis en indifferent gas eller vanddamp, ledes gennem katalysatoren i modstrømsretning til afdrivning af reaktionsprodukter fra katalysatoren, før denne kommer ind i regeneratoren. Det kan være ønskeligt at afdrive recirkuleringskatalysatoren delvis, før den kommer ind i stigrøret 8 143988 til fjernelse af adsorberede carbonhydrider eller fødemateriale fra den recirkulerede katalysator. Til eliminering af for megen koksdannelse på katalysatoren gøres dette ved bortskylning af adsorberede carbonhydrider fra katalysatoren.After separation from reaction products and unreacted feed, the catalyst can be divided into two streams, one of which is a recycle stream. The recycle catalyst is returned to the riser while the remaining catalyst is fed into the regenerator. To reduce yield losses, the catalyst is stripped prior to regeneration by passing a stripping stream, usually an inert gas or water vapor, through the catalyst countercurrently to stripping reaction products from the catalyst before entering the regenerator. It may be desirable to partially evaporate the recycle catalyst before entering the riser 8 to remove adsorbed hydrocarbons or feed material from the recycled catalyst. To eliminate excessive coke formation on the catalyst, this is done by rinsing off adsorbed hydrocarbons from the catalyst.

Afdrivning gennemføres sædvanligvis i en tilbageløbsledning eller et andet apparatur, hvor der kan forekomme kontakt mellem en afdrivningsstrøm og katalysator. Udformning af afdrivningsorganer er velkendt teknik.Stripping is usually carried out in a reflux line or other apparatus where contact between a stripping stream and catalyst may occur. The design of peelers is well known in the art.

En foretrukken udførelsesform for den her omhandlede proces består i en fluidiseret katalytisk proces, hvor en fødestrøm, regenereret katalysator og recirkuleret katalysator passerer gennem en reaktionszone, en del af katalysatoren udtages fra reaktionszonen til en regenereringszone, og en del af katalysatoren udtages fra reaktionszonen og returneres til reaktionszonen som recirkuleret katalysator uden at komme ind i regenereringszonen.A preferred embodiment of the present process consists in a fluidized catalytic process in which a feed stream, regenerated catalyst and recycled catalyst passes through a reaction zone, a portion of the catalyst is withdrawn from the reaction zone into a regeneration zone, and a portion of the catalyst is withdrawn from the reaction zone. to the reaction zone as recycled catalyst without entering the regeneration zone.

Claims (2)

143988 9143988 9 1. Fluidiseret katalytisk krakningsproces, hvor aktiviteten af en katalysatorblanding, som kommer i kontakt med en carbonhydridfødeblanding, kan reguleres til frembringelse af en ønsket produktudbyttestruktur, kendetegnet ved, at den omfatter trinene: (a) en carbonhydridfødestrøm i en stigrørsreaktionszone bringes i kontakt med en katalysatorblanding, som omfatter en frisk, regenereret katalysatorstrøm fra en regenereringszone og en separat, recirkuleret strøm af forbrugt katalysator udtaget fra en afdrivningszone for forbrugt katalysator, (b) fødestrømmen og katalysatorblandingen ledes i blanding gennem reaktionszonen ved katalytiske krakningsbetingelser, herunder afsætning af koks på katalysa-torblandingen, til dannelse af forbrugt katalysator og produktkomponenter, (c) blandingen tømmes ud i en adskillelseszone ved adskillelsesbetingelser til adskillelse af katalysator fra produktkomponenter og eventuelt uomsat fødestrøm, (d) produkt og eventuelt uomsat fødestrøm udvindes, og den forbrugte katalysator ledes fra adskillelseszonen ind i en afdrivningszone for forbrugt katalysator ved afdrivningsbetingelser til fjernelse af adsorberede og i mellemrummene tilstedeværende car-bonhydrider derfra til dannelse af afdrevet, forbrugt katalysator, hvorpå der findes koks, (e) en første del af afdrevet, forbrugt katalysator ledes fra afdrivningszonen ind i en regenereringszone, der holdes ved oxidationsbetingelser, og hvori koks oxideres fra katalysatoren til frembringelse af frisk, regenereret katalysator, (f) frisk regenereret katalysator ledes fra regenereringszonen til stigrøret i trin (a), og (g) der samtidig ledes en anden del af afdrevet, forbrugt katalysator fra afdrivningszonen til stigrøretA fluidized catalytic cracking process wherein the activity of a catalyst mixture contacting a hydrocarbon feed mixture can be regulated to produce a desired product yield structure, characterized in that it comprises the steps of: (a) contacting a hydrocarbon feed stream in a riser reaction zone; catalyst mixture comprising a fresh, regenerated catalyst stream from a regeneration zone and a separate, recycled stream of spent catalyst taken from a spent catalyst stripping zone, (b) the feed stream and catalyst mixture are passed through mixing through the reaction zone by catalytic cracking, (c) the mixture is discharged into a separation zone under separation conditions to separate the catalyst from product components and any unreacted feed stream, (d) product and any unreacted feed stream are recovered, and spent catalyst is discharged from the separation zone into a spent catalyst stripping zone under stripping conditions to remove adsorbed and hydrocarbons present therefrom to form stripped, spent catalyst containing coke, (e) a first portion of stripped spent carbon is conducted from the stripping zone into a regeneration zone maintained under oxidation conditions and wherein coke is oxidized from the catalyst to produce fresh, regenerated catalyst, (f) freshly regenerated catalyst is conducted from the regeneration zone to the riser in step (a), and (g) simultaneously another portion of stripped, spent catalyst is directed from the stripping zone to the riser
DK218172A 1971-05-03 1972-05-02 FLUIDIZED CATALYTIC CRACKING PROCESS DK143988C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13943371A 1971-05-03 1971-05-03
US13943371 1971-05-03

Publications (2)

Publication Number Publication Date
DK143988B true DK143988B (en) 1981-11-09
DK143988C DK143988C (en) 1982-05-03

Family

ID=22486628

Family Applications (1)

Application Number Title Priority Date Filing Date
DK218172A DK143988C (en) 1971-05-03 1972-05-02 FLUIDIZED CATALYTIC CRACKING PROCESS

Country Status (21)

Country Link
JP (1) JPS525032B1 (en)
AR (1) AR192444A1 (en)
AU (1) AU459793B2 (en)
BE (1) BE782612A (en)
BR (1) BR7202712D0 (en)
CA (1) CA967498A (en)
DD (1) DD97138A5 (en)
DE (1) DE2221618A1 (en)
DK (1) DK143988C (en)
EG (1) EG10866A (en)
ES (1) ES402306A1 (en)
FI (1) FI55860C (en)
FR (1) FR2135237B1 (en)
GB (1) GB1387127A (en)
HU (1) HU166038B (en)
IT (1) IT957690B (en)
NL (1) NL173482C (en)
SE (1) SE396087B (en)
SU (1) SU854267A3 (en)
TR (1) TR17454A (en)
ZA (1) ZA722959B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0919418A2 (en) * 2008-09-30 2015-12-15 Uop Llc device and process for contacting a regenerating catalyst with a hydrocarbon feed
US8815082B2 (en) * 2011-12-12 2014-08-26 Uop Llc Process and apparatus for mixing two streams of catalyst
US8747657B2 (en) * 2011-12-12 2014-06-10 Uop Llc Process and apparatus for mixing two streams of catalyst
US8936758B2 (en) * 2012-03-20 2015-01-20 Uop Llc Process and apparatus for mixing two streams of catalyst
US8815166B2 (en) 2012-03-20 2014-08-26 Uop Llc Process and apparatus for mixing two streams of catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2377935A (en) * 1941-04-24 1945-06-12 Standard Oil Co Catalytic hydrocarbon conversion system

Also Published As

Publication number Publication date
AR192444A1 (en) 1973-02-21
FR2135237A1 (en) 1972-12-15
FR2135237B1 (en) 1975-08-29
SE396087B (en) 1977-09-05
DE2221618A1 (en) 1972-11-23
BR7202712D0 (en) 1973-06-21
ZA722959B (en) 1973-02-28
FI55860B (en) 1979-06-29
EG10866A (en) 1976-08-31
JPS525032B1 (en) 1977-02-09
BE782612A (en) 1972-10-25
SU854267A3 (en) 1981-08-07
AU459793B2 (en) 1975-04-10
DK143988C (en) 1982-05-03
TR17454A (en) 1975-07-23
IT957690B (en) 1973-10-20
HU166038B (en) 1974-12-28
CA967498A (en) 1975-05-13
NL173482B (en) 1983-09-01
NL173482C (en) 1984-02-01
FI55860C (en) 1979-10-10
GB1387127A (en) 1975-03-12
NL7205939A (en) 1972-11-07
ES402306A1 (en) 1975-04-01
DD97138A5 (en) 1973-04-20
AU4183472A (en) 1973-11-08

Similar Documents

Publication Publication Date Title
US4058452A (en) Alkylaromatic hydrocarbon dealkylation process
US3969426A (en) Conversion of methanol to products comprising gasoline boiling components
US2284603A (en) Process for the catalytic conversion of hydrocarbons
US4422925A (en) Catalytic cracking
US2304128A (en) Fluid catalyst process and apparatus
US2396109A (en) Treating hydrocarbon fluids
US5211838A (en) Fixed-bed/moving-bed two stage catalytic reforming with interstage aromatics removal
US2399050A (en) Treating hydrocarbon fluids
US4806624A (en) Dehydrogenation of dehydrogenatable hydrocarbons
JPS6313730B2 (en)
EP0230655B1 (en) Improved dehydrocyclodimerization process
JPH01279993A (en) Modification of hydrocarbon
US2360463A (en) Hydrocarbon conversion
JPS6363600B2 (en)
EP0345950B1 (en) Hydrocarbon dehydrogenation process using a combination of isothermal and adiabatic dehydrogenation steps
GB2191214A (en) Production of higher molecular weight hydrocarbons from methane
CA2086099A1 (en) Process and apparatus for dehydrogenating alkanes
US2958643A (en) Two-stage catalytic conversion process for producing naphthalene and an aromatic gasoline from cycle oils
US5220093A (en) Process for production of olefins from mixtures of light paraffins
DK143988B (en) FLUIDIZED CATALYTIC CRACKING PROCESS
JPS5852229A (en) Dehydrogenation
US2809981A (en) Method of carrying out homogeneous vapor phase reactions
US4009218A (en) Alkylaromatic hydrocarbon dehydrogenation process
US3966587A (en) Method for controlling regenerator temperature in a fluidized cracking process
US2967878A (en) Vapor phase catalytic conversion processes