DK143430B - SELF-PRESENT CLASS-C OSCILLATOR FOR OPERATING LIGHT STORAGE - Google Patents

SELF-PRESENT CLASS-C OSCILLATOR FOR OPERATING LIGHT STORAGE Download PDF

Info

Publication number
DK143430B
DK143430B DK402274AA DK402274A DK143430B DK 143430 B DK143430 B DK 143430B DK 402274A A DK402274A A DK 402274AA DK 402274 A DK402274 A DK 402274A DK 143430 B DK143430 B DK 143430B
Authority
DK
Denmark
Prior art keywords
winding
capacitor
oscillator
voltage
resonant circuit
Prior art date
Application number
DK402274AA
Other languages
Danish (da)
Other versions
DK143430C (en
DK402274A (en
Inventor
V Farrow
Original Assignee
Thorn Electrical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thorn Electrical Ind Ltd filed Critical Thorn Electrical Ind Ltd
Publication of DK402274A publication Critical patent/DK402274A/da
Publication of DK143430B publication Critical patent/DK143430B/en
Application granted granted Critical
Publication of DK143430C publication Critical patent/DK143430C/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53832Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Description

(wf\ (19) DANMARK \£5/(wf \ (19) DENMARK \ £ 5 /

|j| (12) FREMLÆGGELSESSKRIFT od 143^30 B| J | (12) PUBLICATION WRITE OR 143 ^ 30 B

DIREKTORATET EOR PATENT- OG VAREMÆRKEVÆSENETDIRECTORATE EOR PATENT AND TRADEMARKET SYSTEM

(21) Ansøgning nr. 4022/74 (51) IntCI.3 H 03 B 5/12 (22) Indleveringsdag 26. jul· 1974 // H 05 B 41/29 (24) Løbedag 26. Jul. 1974 (41) Aim. tilgængelig 51 · jan. 1975 (44) Fremlagt 17. aug. 1981 (86) International ansøgning nr. " (86) International indleveringsdag -(85) Videreførelsesdag ~ (62) Stamansøgning nr. -(21) Application No. 4022/74 (51) IntCI.3 H 03 B 5/12 (22) Filing date 26 Jul · 1974 // H 05 B 41/29 (24) Race day 26 Jul. 1974 (41) Aim. available 51 Jan 1975 (44) Posted Aug 17 1981 (86) International Application No. "(86) International Filing Day - (85) Continuation Day ~ (62) Master Application No. -

(30) Prioritet 50. Jul. 1975, 56200/75, GB(30) Priority 50 Jul. 1975, 56200/75, GB

(71) Ansøger THORN ELECTRICAL INDUSTRIES LIMITED, London WC2H 9ED, GB.(71) Applicant THORN ELECTRICAL INDUSTRIES LIMITED, London WC2H 9ED, GB.

(72) Opfinder Victor Francis Farrow, GB.(72) Inventor Victor Francis Farrow, GB.

(74) Fuldmægtig Ingeniørfirmaet Lehmann & Ree.(74) Associate Engineer Lehmann & Ree.

(54) Selvforspsendt klasse-C oscillator til drift af lysstofrør.(54) Self-biased Class-C oscillator for fluorescent lamp operation.

Den foreliggende opfindelse angår en selvforspændt klasse-C oscillator.The present invention relates to a self-biased Class C oscillator.

Sådanne oscillatorer anvendes f.eks. som effektinvertere til drift af lysstofrør ved høj frekvens fra en jævnstrømskilde. Invertere af denne art behøves i offentlige transportkøretøjer, campingvogne og små både. En vellykket kredsløbstype er beskrevet i britisk patentskrift nr. 1.308.284.Such oscillators are used e.g. as power inverters for operation of high frequency fluorescent lamps from a DC source. Inverters of this kind are needed in public transport vehicles, caravans and small boats. A successful circuit type is described in British Patent Specification No. 1,308,284.

I det nævnte patentskrift beskrives en selvforspændt klasse-C ® oscillator med en enkelt transistor, hvor transistorens kollektor er ^ forbundet med den positive jævnstrømsforsyningspol gennem et paralleled" resonanskredsløb, og emitteren er forbundet med den negative Strøm-The aforementioned patent discloses a single-biased Class C single oscillator oscillator wherein the transistor collector is connected to the positive DC supply terminal through a parallel resonant circuit and the emitter is connected to the negative current.

Lj! forsyningspol. Basis er over en tilbagekoblingsvikling og en forspæn- *"" dingskondensator forbundet med emitteren, og tilbagekoblingsviklingen *Lj! forsyningspol. Base is over a feedback winding and a biasing capacitor connected to the emitter, and the feedback winding *

OISLAND

143430 2 er ved gensidig induktans koblet til en induktionsspole i parallelresonanskreds løbet. En resonansladningsinduktionsspole er forbundet mellem den positive strømforsyningspol og parallelresonanskredsløbet.143430 2 is connected to an inductor coil in the parallel resonant circuit by mutual inductance. A resonant charge induction coil is connected between the positive power supply coil and the parallel resonant circuit.

Under drift går der til at begynde med en lille strøm gennem basis-emitterovergangen i transistoren og bringer denne til at lede og føre strøm til parallelresonanskredsløbet. Tilbagekoblingsviklingen afføler denne strøm og indkobler transistoren helt. Efter et kort tidsrum begynder potentialet over parallelresonanskredsløbet at skifte polaritet, og tilbagekoblingsviklingen spærrer således transistoren. Resonansladningsinduktionsspolen styrer gennemgangshastigheden af strøm til kondensatoren i parallelresonanskredsløbet, når transistoren indkobles.In operation, initially a small current passes through the base-emitter junction of the transistor and causes it to conduct and conduct current to the parallel resonant circuit. The feedback winding senses this current and switches on the transistor completely. After a short period of time, the potential across the parallel resonant circuit begins to shift polarity and thus the feedback winding blocks the transistor. The resonant charge induction coil controls the flow rate of current to the capacitor in the parallel resonant circuit when the transistor is switched on.

Virkningsgraden af driften af oscillatoren er afhængig af nøjagtigheden af faseindstillingen og formen af transistorimpulsen i forhold til resonanskredsløbets kurveform. Hvis strømimpulsen ankommer for sent, giver den store værdi af kollektorstrømmen ved afskæring anledning til en høj spændingsspids mellem kollektoren og emitteren, som kan være ødelæggende. Hvis strømimpulsen ankommer for tidligt, optages for meget energi af det afstemte kredsløb, der returnerer den næsten øjeblikkeligt til strømkilden som en returstrøm. Selv om middelstrømmen fremad til inverteren kan registreres som en relativt beskeden værdi, består den i virkeligheden af en stor strømimpuls i fremadgående retning og en meget stor returstrømimpuls. Effektive trømmen til oscillatoren kan følgelig være meget stor, endog helt op til det punkt, hvor oscillatoren ødelægges.The efficiency of the operation of the oscillator depends on the accuracy of the phase setting and the shape of the transistor pulse relative to the waveform of the resonant circuit. If the current pulse arrives too late, the large value of the collector current when cut off gives rise to a high voltage peak between the collector and the emitter, which can be devastating. If the current pulse arrives too early, too much energy is absorbed by the tuned circuit, which returns it almost immediately to the power source as a return current. Although the mean current forward to the inverter can be recorded as a relatively modest value, it actually consists of a large forward pulse and a very large return current pulse. Accordingly, the effective current to the oscillator can be very large, even up to the point where the oscillator is destroyed.

Faseindstillingen af strømimpulsen er afhængig af summen af spændingerne over tilbagekoblingsviklingen og forspændingskondensatoren. Forspændingskondensatoren søger at optage en voksende ladning, og det er således nødvendigt at udlade kondensatoren ved en sådan hastighed, at summen af spændingerne over tilbagekoblingsviklingen og forspændingskondensatoren er en sådan, at transistoren indkobles i det rette øjeblik.The phase setting of the current pulse is dependent on the sum of the voltages across the feedback winding and the biasing capacitor. The bias capacitor seeks to absorb a growing charge and thus it is necessary to discharge the capacitor at such a rate that the sum of the voltages across the feedback winding and bias capacitor is such that the transistor is switched on at the right moment.

Hvis oscillatoren imidlertid drives af en forholdsvis høj spænding, såsom 110 eller 240 volt, kan spændingsfaldet over udladningsvejen være et sådant, at det er nødvendigt at have et uacceptabelt stort effekttab.However, if the oscillator is driven by a relatively high voltage, such as 110 or 240 volts, the voltage drop across the discharge path may be such that it is necessary to have an unacceptably large power loss.

Ifølge den foreliggende opfindelse undgås de nævnte ulemper, idet der tilvejebringes en selvforspændt klasse-C oscillator indeholdende en transistor, der har en første og en anden styret elektrode og en styreelektrode, og hvor den første styrede elektrode 143430 3 er forbundet med en første indgangsklemme over et parallelresonans-kredsløb, den anden styrede elektrode er forbundet med en anden indgangsklemme, styreelektroden er forbundet over en tilbagekoblingsvikling og en forspændingskondensator til den anden styrede elektrode, og tilbagekoblingsviklingen er koblet ved gensidig induktans til en induktionsspole i parallelresonanskredsløbet, idet arrangementet er et sådant, at strømimpulser føres fra forspændingskondensatoren og tilbagekoblingsviklingen til styreelektroden for at levere strøm med den korrekte fase til opretholdelse af resonanskredsløbets oscillation, hvilken oscillator er ejendommelig ved, at den desuden omfatter en yderligere vikling, som er koblet til induktionsspolen for at tilvejebringe en spænding, der er mindre end'spændingen mellem den første og anden indgangsklemme, og organer, som indbefatter et ensretterorgan, der forbinder den yderligere vikling med forspændingskondensatoren for at tilvejebringe en udladningsvej for denne, når transistoren ikke er ledende.According to the present invention, the disadvantages mentioned are avoided by providing a self-biased Class C oscillator containing a transistor having a first and second controlled electrode and a control electrode, and the first controlled electrode being connected to a first input terminal above a parallel resonant circuit, the second controlled electrode is connected to a second input terminal, the control electrode is connected over a feedback winding and a biasing capacitor to the second controlled electrode, and the feedback winding is coupled by mutual inductance to an induction coil in the parallel resonant circuit, current pulses are fed from the bias capacitor and the feedback winding to the control electrode to supply current with the correct phase for maintaining the resonant circuit oscillator, which oscillator is characterized in that it further comprises an additional winding coupled to the induction coil. for providing a voltage less than the voltage between the first and second input terminals, and means including a rectifier connecting the further winding to the biasing capacitor to provide a discharge path for it when the transistor is nonconductive.

De nævnte organer kan ifølge opfindelsen omfatte en diode og en modstand, der er forbundet i serie med den yderligere vikling over forspændingskondensatoren.Said means may according to the invention comprise a diode and a resistor connected in series with the additional winding over the biasing capacitor.

Hvis inverteren anvendes til drift af en udladningslampe, opstår en yderligere vanskelighed. Hvis kredsløbet indstilles til korrekt drift, når lampen er tændt, vil inverteren i tidsrummet, før lampen tænder, arbejde ved en meget lavere frekvens på grund af, at belastningen reelt er afbrudt, således at den induktive effekt af belastningskredsløbet er fjernet (der er normalt en induktiv ballast i serie med lampen). Under denne førtændingstiIstand vil strømimpulsen ankomme for tidligt i forhold til resonanskredsløbets kurveform, og hvis førtændingstilstanden skulle vedvare, f.eks. på grund af en defekt lampe, kan inverteren ødelægge sig selv. Lignende problemer vil opstå, hvis lampen er dæmpet.If the inverter is used to operate a discharge lamp, a further difficulty arises. If the circuit is set to proper operation when the lamp is on, the inverter will operate at a much lower frequency during the period of time before the lamp is turned on, so that the inductive power of the load circuit is removed (usually an inductive ballast in series with the lamp). During this pre-ignition state, the current pulse will arrive prematurely relative to the waveform of the resonant circuit, and if the pre-ignition state should persist, e.g. due to a defective lamp, the inverter can destroy itself. Similar problems will occur if the lamp is dimmed.

Dette yderligere problem kan afhjælpes ved et arrangement, hvor udgangseffekten tages fra en udgangsvikling, som med sprednings-reaktans er koblet til induktionsspolen i parallelresonanskredsløbet, og hvor den yderligere vikling er i serie med og i modfase til en hjælpevikling, som ved gensidig induktans er koblet til udgangsviklingen .This additional problem can be remedied by an arrangement in which the output power is taken from an output winding coupled with scattering reactance to the induction coil of the parallel resonant circuit, and where the additional winding is in series with and in phase to an auxiliary winding coupled by mutual inductance. to the output winding.

Opfindelsen skal herefter forklares nærmere under henvisning til tegningen, hvor 4 143430 fig. 1 viser et kredsløbsdiagram over en udførelsesform for en selvforspændt klasse-C oscillator ifølge opfindelsen, fig. 2 et kredsløbsdiagram over en modifikation af fig. 1, hvor hjælpeviklingen og tilbagekoblingsviklingen er kombineret, fig. 3 et kredsløbsdiagram over en yderligere modifikation af fig. 1 indeholdende en yderligere hjælpevikling og fig. 4 opbygningen af transformatoren 23 i fig. 3.The invention will now be explained in more detail with reference to the drawing, in which FIG. 1 shows a circuit diagram of one embodiment of a self-biased Class C oscillator according to the invention; FIG. 2 is a circuit diagram of a modification of FIG. 1, wherein the auxiliary winding and the feedback winding are combined; FIG. 3 is a circuit diagram of a further modification of FIG. 1 containing a further auxiliary winding; and FIG. 4 shows the structure of the transformer 23 in FIG. Third

Fig. 1 viser en selvforspændt klasse-C oscillator, hvor en bipolær NPN fladetransistor 11 er indkoblet således, at dens kollektor 12 er forbundet over et parallelresonanskredsløb 13 og en resonansladningsinduktionsspole 21 til en positiv strømforsyningsklemme 14, dens emitter 15 er forbundet med en negativ strømforsyningsklemme 16, og dens basis 17 er forbundet over en tilbagekoblingsvikling 18 til en forspændingskondensator 19, hvilken vikling 18 er koblet ved gensidig induktans til en induktionsspole 2o i parallelresonanskreds-løbet 13, der også indeholder en kondensator 22. Induktionsspolen 2o er primærviklingen i en transformator 23 med fire sekundærviklinger, hvoraf den ene udgør tilbagekoblingsviklingen 18, og de andre 24, 24a,24b er forbundet med en udladningslampe 6o med opvarmede elektroder 61 og 62. I serie med forspændingskondensatoren ligger spredningsinduktansen af tilbagekoblingsviklingen 18, og der dannes således et seriekredsløb, som forbinder basis 17 med emitteren 15. Den ene elektrode 25 i kondensatoren 19 er over en modstand 26 forbundet med klemmen 14, og den anden elektrode 29 er direkte forbundet med den anden klemme 16. Det hidtil beskrevne kredsløb er i det væsentlige som beskrevet i det ovennævnte britiske patentskrift nr.FIG. 1 depicts a self-biased Class C oscillator in which a bipolar NPN surface transistor 11 is connected such that its collector 12 is connected over a parallel resonant circuit 13 and a resonant charge induction coil 21 to a positive power supply terminal 14, its emitter 15 connected to a negative power supply terminal 16; and its base 17 is connected via a feedback winding 18 to a biasing capacitor 19, which winding 18 is coupled by mutual inductance to an inductor coil 20 of the parallel resonant circuit 13 which also contains a capacitor 22. The inductor coil 20 is the primary winding of a transformer 23 with four secondary windings, one of which is the feedback winding 18, and the other 24, 24a, 24b are connected to a discharge lamp 6o with heated electrodes 61 and 62. In series with the biasing capacitor, the scattering inductance of the feedback winding 18 is formed and thus a series circuit is formed which connects 17 with the emitter 15. The one electrode 25 of the capacitor 19 is connected over a resistor 26 to the terminal 14, and the other electrode 29 is directly connected to the other terminal 16. The circuit described so far is substantially as described in the aforementioned British patent specification no.

1.3o8.284.1.3o8.284.

Kredsløbet i fig. 1 indeholder yderligere en hjælpevikling 8o på transformatoren 23, som er forbundet i serie med en diode 81 og en modstand 82 over kondensatoren 19. Dioden 81 er polet således, at den tillader udladning af den negative ladning, som opsamles på kondensatoren 19.The circuit of FIG. 1 further contains an auxiliary winding 8o of the transformer 23 which is connected in series with a diode 81 and a resistor 82 over the capacitor 19. The diode 81 is polished to allow discharge of the negative charge which is collected on the capacitor 19.

Kredsløbet i fig. 1 fungerer på følgende måde. En ikke vist jævnspændingskilde er forbundet med klemmerne 14 og 16. Som det er sædvanligt ved selvforspændte klasse-C oscillatorer, er transistoren 11 ikke forspændt til en klasse-C tilstand, når strømkilden til at begynde med forbindes med klemmerne 14 og 16, men transistoren begynder at lede som et resultat af den positive spænding, der til- 5 U3430 føres basis 17 fra klemmen 14 over modstanden 26 og viklingen 18 og starter derved oscillation ved regenerativ tilbagekobling fra induktionsspolen 2o til basis 17 ved hjælp af viklingen 18. Når oscillatoren er begyndt, opbygges imidlertid en negativ forspænding på forspændingskondensatoren 19, hvilket resulterer i klasse-C drift.The circuit of FIG. 1 works as follows. A DC voltage source not shown is connected to terminals 14 and 16. As is customary with self-biased Class-C oscillators, transistor 11 is not biased to a Class-C state when the power source is initially connected to terminals 14 and 16, but the transistor begins to conduct as a result of the positive voltage applied to base 17 from terminal 14 across resistor 26 and winding 18, thereby initiating oscillation by regenerative feedback from induction coil 20 to base 17 by winding 18. When the oscillator is started, however, a negative bias builds up on the bias capacitor 19, resulting in Class-C operation.

Transistoren 11 leder derefter kun, når spændingen på basis 17 er positiv i forhold til spændingen på emitteren 15, hvilket forekommer i impulser, der optager ca. en trediedel af spændingens periodetid. Følgelig passerer strømimpulser gennem emitter-kollektorkredsløbet for transistoren 11, resonanskredsløbet 13 og induktionsspolen 21 og opretholder i det væsentlige sinusformede oscillationer i resonanskredsløbet 13, hvilket giver anledning til en sinusformet spænding over kredsløbet 13. Som følge af koblingen ved gensidig induktans mellem tilbagekoblingsviklingen 18 og induktionsspolen 2o optræder der en spænding over viklingen 18, som har dqn samme frekvens som spændingen over resonanskredsløbet 13. Polariteten af spændingen over viklingen 18, når strømimpulserne går gennem transistoren, er en sådan, at elektroden 25 på forspændingskondensatoren 19 gøres mere og mere negativ under disse impulser. Efter hver opladning aflades kondensatoren 19, indtil elektroden 25 kun er lidt negativ, hvorpå den næste ladeimpuls optræder.The transistor 11 then conducts only when the voltage on the base 17 is positive relative to the voltage on the emitter 15, which occurs in pulses which take approx. one-third of the voltage period. Accordingly, current pulses pass through the emitter-collector circuit of transistor 11, resonant circuit 13 and induction coil 21, and maintain substantially sinusoidal oscillations in resonant circuit 13, giving rise to a sinusoidal voltage across circuit 13. As a result of the coupling at reciprocal inductor coil between reflux 18 and 2o, there is a voltage across the winding 18 which has the same frequency as the voltage across the resonant circuit 13. The polarity of the voltage across the winding 18 as the current pulses pass through the transistor is such that the electrode 25 on the bias capacitor 19 is made more and more negative during these. impulses. After each charge, the capacitor 19 is discharged until the electrode 25 is only slightly negative, after which the next charging pulse occurs.

Basis-emitterspændingen over transistoren 11 består af summen af spændingen over forspændingskondensatoren 19 og tilbagekoblingsviklingen 18. Transistoren vil indkobles, når den negative spænding over kondensatoren 19 bliver tilstrækkeligt mindre end den positive spænding over viklingen 18 og vil udkobles, når det omvendte er tilfældet.The base-emitter voltage across transistor 11 consists of the sum of the voltage across the bias capacitor 19 and the feedback winding 18. The transistor will be switched on when the negative voltage across the capacitor 19 becomes sufficiently less than the positive voltage across the winding 18 and will be switched off when the reverse is the case.

I kredsløbet i fig. 1 sker udladningen fra kondensatoren primært gennem modstanden 82, dioden 81 og hjælpeviklingen 8o og kun i lille udstrækning gennem modstanden 26, så at effektafsætningskravene til modstanden 26 er små. Hjælpeviklingen 8o og dioden 81 tilvej ebringer en positiv hjælpeskinne med lavere spænding end klemmen 14, som tillader kondensatoren 19 at udlades under skiftende halvperioder, dvs. når transistoren 11 ikke er ledende, uden at medføre for stort effekttab. Udladningshastigheden indstilles ved passende valg af værdien af modstanden 82.In the circuit of FIG. 1, the discharge from the capacitor occurs primarily through the resistor 82, the diode 81 and the auxiliary winding 8o, and only to a small extent through the resistor 26, so that the power deposition requirements for the resistor 26 are small. The auxiliary winding 8o and the diode 81 provide a positive auxiliary rail with a lower voltage than the terminal 14 which allows the capacitor 19 to be discharged during alternating half periods, i.e. when the transistor 11 is not conductive without causing excessive power loss. The discharge rate is set by appropriately selecting the value of the resistor 82.

Det skal bemærkes, at det ikke ville være muligt at reducere effekttabet ved at gøre kondensatoren 19 mindre, da dette ville medføre utilstrækkelig strøm til basisemitterovergangen i transistoren 11 til virksom drift.It should be noted that it would not be possible to reduce the power loss by reducing capacitor 19 as this would cause insufficient current to the base-emitter junction of transistor 11 for operation.

Fig. 2 viser en modifikation af fig. 1, hvor en enkelt vikling 18a anvendes i stedet for de separate tilbagekoblings- og 6 143430 hjælpeviklinger i fig. 1. Den ene side af viklingen 18a er forbundet med klemmen 16, og den anden side er over kondensatoren 19a forbundet med basis 17 i transistoren 11, der også over en modstand 26a er forbundet med klemmen 14. Forbindelsespunktet mellem kondensatoren 19a og viklingen 18a er over en diode 81a forbundet med den ene elektrode i en lagerkondensator 84, hvis anden elektrode er forbundet med klemmen 16, og en modstand 83 forbinder lagerkondensatoren 84 med den negative elektrode i kondensatoren 19a.FIG. 2 shows a modification of FIG. 1, where a single winding 18a is used in place of the separate feedback and auxiliary windings of FIG. 1. One side of the winding 18a is connected to the terminal 16 and the other side is connected above the capacitor 19a to the base 17 of the transistor 11, which is also connected to the terminal 14 via a resistor 26a. The connection point between the capacitor 19a and the winding 18a is over a diode 81a connected to one electrode in a storage capacitor 84, the other electrode of which is connected to the terminal 16, and a resistor 83 connects the storage capacitor 84 to the negative electrode in capacitor 19a.

Den positive strømforsyning til afladning af kondensatoren 19a tilvejebringes af dioden 81a, som oplader lagerkondensatoren 84 under de positive halvperioder af oscillatoren. Under de skiftevise halvperioder virker lagerkondensatoren 84 som en hjælpelavspændingskilde til udladning af forspændingskondensatoren 19a gennem tilbagekoblingsviklingen 18a. Afladningshastigheden indstilles ved passende valg af værdien af modstanden 83.The positive power supply for discharging the capacitor 19a is provided by the diode 81a which charges the storage capacitor 84 during the positive half periods of the oscillator. During the alternate half periods, the storage capacitor 84 acts as an auxiliary voltage source for discharging the bias capacitor 19a through the feedback winding 18a. The discharge rate is set by appropriately selecting the value of the resistor 83.

En alternativ modifikation af fig. 1 er vist i fig. 3. Her er den ende af viklingen 8o, som ikke er forbundet med dioden 81, forbundet over en vikling 86 med klemmen 16 i stedet for direkte som vist i fig. 1. Opbygningen af transformatoren 23 er som vist i fig. 4 og omfatter to hosliggende viklingssektioner A og B monteret på en ferritkerne C. Viklingssektionen A indeholder viklingerne 2o,18 og 8o, og viklingssektionen B indeholder viklingerne 24,24a,24b og 86. Konstruktionen er en sådan, at der fås spredningsinduktans mellem sektionerne A og B, som erstatter en ballast i lampekredsløbet til begrænsning af strømmen gennem lampen.An alternative modification of FIG. 1 is shown in FIG. 3. Here, the end of the winding 8o, which is not connected to the diode 81, is connected over a winding 86 with the terminal 16 instead of directly as shown in FIG. 1. The structure of the transformer 23 is shown in FIG. 4 and comprises two adjacent winding sections A and B mounted on a ferrite core C. The winding section A contains the windings 2o, 18 and 8o, and the winding section B contains the windings 24,24a, 24b and 86. The construction is such that scattering inductance is obtained between sections A and B, which replaces a ballast in the lamp circuit for limiting current through the lamp.

Med åbent kredsløb kan udgangsspændingen over viklingen 24 f.eks. typisk være 3oo volt effektiv for et 12o cm langt 4o watt rør med en diameter på 38 mm. Når røret tænder, falder udgangsspændingen til brændespændingen for røret, der typisk er loo volt. Enhver førtændings spænding på viklingssektionen B reduceres således til 1/3 af sin amplitude, så snart røret tænder. Viklingerne 8o og 86 i fig.With open circuit, the output voltage across the winding 24 can e.g. typically 3o volts are effective for a 12o cm long 4o watt tube with a diameter of 38mm. When the tube turns on, the output voltage drops to the firing voltage of the pipe, which is typically loo volts. Thus, any pre-ignition voltage on the winding section B is reduced to 1/3 of its amplitude as soon as the tube turns on. The windings 8o and 86 of FIG.

3 er forbundet i modfase, således at udladningsspændingen over kondensatoren 19 reduceres i førtændingsintervallet. Når lampen tænder, vokser oscillatorens frekvens, og udgangsspændingen på viklingen 86 falder til 1/3 af sin førtændingsværdi. Følgelig forøges kondensatoren 191 s nettoudladningsspænding til opretholdelse af korrekt faseindstilling ved den forøgede frekvens.3 is connected in the counter phase so that the discharge voltage across capacitor 19 is reduced in the pre-ignition interval. As the lamp turns on, the frequency of the oscillator increases and the output voltage of winding 86 drops to 1/3 of its pre-ignition value. Accordingly, the capacitor 191 s net discharge voltage is increased to maintain correct phase setting at the increased frequency.

Den samlede spænding, som leveres af viklingerne 8o og 86, er indrettet til netop at være tilstrækkelig til at aflade kondensatoren 19 ved den korrekte hastighed, som passer til oscillationens frekvens. Spændingen, som frembringes af viklingen 86, er afhængig af 7 143430 strømmen gennem lampen, af hvilken oscillationens frekvens også er afhængig. Dette afhjælper problemet ved ukorrekt faseindstilling under førtændingstilstanden. Kredsløbet er også særligt egnet, når en transduktor er forbundet mellem sekundærviklingen 24 og lampen 6o for at muliggøre dæmpning af lampen.The total voltage supplied by the windings 8o and 86 is arranged to be sufficient to discharge the capacitor 19 at the correct speed appropriate to the frequency of the oscillation. The voltage produced by the winding 86 is dependent on the current flowing through the lamp, on which the frequency of the oscillation is also dependent. This solves the problem of incorrect phase setting during the pre-ignition mode. The circuit is also particularly suitable when a transducer is connected between the secondary winding 24 and the lamp 6o to enable attenuation of the lamp.

Claims (5)

8 U3430 Patentkrav.8 U3430 Patent Claims. 1. Selvforspændt klasse-C oscillator indeholdende en transistor (11), som har en første og en anden styret elektrode (12,15) og en styreelektrode (17), og hvor den første styrede elektrode (12) er forbundet over et parallelresonanskredsløb (13) til en første indgangsklemme (14), den anden styrede elektrode (15) er forbundet med en anden indgangsklemme (16), styreelektroden (17) er forbundet over en'tilbagekoblingsvikling (18) og en forspændingskondensator (19) til den anden styrede elektrode (15), og tilbagekoblingsviklingen (18) er koblet ved gensidig induktans til en induktionsspole (20) i parallelresonanskreds løbet (13), idet arrangementet er et sådant, at strømimpulser føres fra forspændingskondensatoren (19) og tilbagekoblings-viklingen (18) til styreelektroden (17) for at levere strøm med den korrekte fase til opretholdelse af resonanskredsløbets (13) oscillation, kendeteg net ved en yderligere vikling (80) , som er koblet til induktionsspolen (20) for at tilvejebringe en spænding, der er mindre end spændingen mellem den første (14) og anden (16) indgangsklemme, og organer (81,82 eller 83), som indbefatter et ensretterorgan (81), der forbinder den yderligere vikling (80) med forspændingskondensatoren (19) for at tilvejebringe en udladningsvej for denne, når transistoren (11) ikke er ledende.A self-biased Class C oscillator containing a transistor (11) having a first and second controlled electrode (12,15) and a control electrode (17), and wherein the first controlled electrode (12) is connected across a parallel resonant circuit ( 13) to a first input terminal (14), the second controlled electrode (15) is connected to a second input terminal (16), the control electrode (17) is connected over a feedback winding (18) and a biasing capacitor (19) to the second controlled electrode (15), and the feedback winding (18) is coupled by mutual inductance to an induction coil (20) in the parallel resonant circuit (13), the arrangement being such that current pulses are fed from the biasing capacitor (19) and the feedback winding (18) to the control electrode (17) to supply current with the correct phase to maintain the oscillation of the resonant circuit (13), characterized by an additional winding (80) coupled to the induction coil (20) to provide a voltage ng less than the voltage between the first (14) and second (16) input terminals, and means (81.82 or 83) including a rectifier (81) connecting the additional winding (80) to the biasing capacitor (19). ) to provide a discharge path for it when the transistor (11) is not conductive. 2. Oscillator ifølge krav 1, kendetegnet ved, at de nævnte organer omfatter en diode (81) og en modstand (82), der er forbundet i serie med den yderligere vikling (80) over forspændingskondensatoren (19) .Oscillator according to claim 1, characterized in that said means comprise a diode (81) and a resistor (82) connected in series with the additional winding (80) over the biasing capacitor (19). 3. Oscillator ifølge krav 2,kendetegnet ved, at dens udgangseffekt tages fra en udgangsvikling (24), som er koblet med spredningsreaktans til induktionsspolen (20) i parallelresonans-kredsløbet (13), og at den yderligere vikling (80) er i serie med og i modfase til en hjælpevikling (86), der er koblet ved gensidig induktans til udgangsviklingen (24) .Oscillator according to claim 2, characterized in that its output power is taken from an output winding (24) coupled with spreading reactance to the induction coil (20) in the parallel resonant circuit (13) and the additional winding (80) is in series with and in reverse phase to an auxiliary winding (86) coupled by mutual inductance to the output winding (24). 4. Oscillator ifølge krav 1,kendetegnet ved, at det nævnte ensretterorgan er en diode (81a), og at de nævnte organer yderligere omfatter en lagerkondensator (84) og er forbundet med tilbagekoblingsviklingen (18 a) .Oscillator according to claim 1, characterized in that said rectifier means is a diode (81a) and said means further comprises a storage capacitor (84) and is connected to the feedback winding (18 a). 5. Oscillator ifølge et hvilket som helst af kravene 1-4, kendet-egnet ved, at den indeholder en yderligere induktionsspole (21), som er forbundet mellem den første indgangsklemme (14) ogOscillator according to any one of claims 1-4, characterized in that it contains an additional induction coil (21) which is connected between the first input terminal (14) and
DK402274A 1973-07-30 1974-07-26 SELF-BASED CLASS-C OSCILLATOR FOR OPERATION OF LIGHT FROZEN DK143430C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB3620073 1973-07-30
GB3620073A GB1471150A (en) 1973-07-30 1973-07-30 Self-biased class c oscillators

Publications (3)

Publication Number Publication Date
DK402274A DK402274A (en) 1975-03-24
DK143430B true DK143430B (en) 1981-08-17
DK143430C DK143430C (en) 1981-12-21

Family

ID=10385892

Family Applications (1)

Application Number Title Priority Date Filing Date
DK402274A DK143430C (en) 1973-07-30 1974-07-26 SELF-BASED CLASS-C OSCILLATOR FOR OPERATION OF LIGHT FROZEN

Country Status (9)

Country Link
BE (1) BE817727A (en)
DE (1) DE2432761C2 (en)
DK (1) DK143430C (en)
FR (1) FR2239808B1 (en)
GB (1) GB1471150A (en)
IE (1) IE39524B1 (en)
IT (1) IT1017268B (en)
LU (1) LU70630A1 (en)
NL (1) NL172289C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2642028C2 (en) * 1976-09-18 1986-01-09 Flender-Himmelwerk GmbH & Co KG, 7400 Tübingen Self-excited static alternator
WO1980001712A1 (en) * 1979-02-15 1980-08-21 T Fogelman Portable self contained lighting device working on solar radiation
DE2909377A1 (en) * 1979-03-09 1980-09-18 Siemens Ag METHOD AND CIRCUIT ARRANGEMENT FOR THE SIMULTANEOUS CONTROL OF MULTIPLE GAS DISCHARGE LAMPS WITH INNER GAS FILLING
FR2503954A1 (en) * 1981-04-09 1982-10-15 Sefli PROCESS FOR ESSENTIALLY SINUSOIDAL CUTTING OF CONTINUOUS VOLTAGE WITH REGULATION AND DEVICE FOR IMPLEMENTING SAID METHOD
US4587463A (en) * 1983-09-22 1986-05-06 Isco, Inc. Absorbance monitor
GB2174257A (en) * 1985-04-25 1986-10-29 Thantiri Mudalige Don Philip Oscillator for gas discharge lamp
JPH04295284A (en) * 1991-03-20 1992-10-20 Hiroshi Sakamoto Electric power supply device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1623117C3 (en) * 1967-09-29 1973-12-06 Siemens Ag, 1000 Berlin U. 8000 Muenchen Circuit arrangement for reducing the harmonic content of inductive loop detectors
GB1308284A (en) * 1971-01-25 1973-02-21 Thorn Electrical Ind Ltd Self-biased class c oscillators

Also Published As

Publication number Publication date
IE39524B1 (en) 1978-10-25
DE2432761A1 (en) 1975-02-13
DK143430C (en) 1981-12-21
FR2239808B1 (en) 1979-01-26
NL172289C (en) 1983-08-01
GB1471150A (en) 1977-04-21
DK402274A (en) 1975-03-24
NL172289B (en) 1983-03-01
FR2239808A1 (en) 1975-02-28
IE39524L (en) 1975-01-30
LU70630A1 (en) 1974-12-10
IT1017268B (en) 1977-07-20
BE817727A (en) 1974-11-18
NL7409581A (en) 1975-02-03
DE2432761C2 (en) 1984-07-12

Similar Documents

Publication Publication Date Title
US5313142A (en) Compact fluorescent lamp with improved power factor
US4544863A (en) Power supply apparatus for fluorescent lamp
US4196469A (en) DC-AC Converter including synchronized switching
EP0314077A2 (en) Discharge lamp driving circuit
US3997814A (en) Discharge lamp lighting device
US4254362A (en) Power factor compensating electroluminescent lamp DC/AC inverter
JPH07505499A (en) Circuit for driving gas discharge lamp loads
CA1184593A (en) Electronic fluorescent lamp ballast
US4513226A (en) Electronic ballast-inverter circuit
NL7908012A (en) PRE-CHAIN CHAIN FOR HIGH INTENSITY DISCHARGE LAMPS.
DK143430B (en) SELF-PRESENT CLASS-C OSCILLATOR FOR OPERATING LIGHT STORAGE
US4525649A (en) Drive scheme for a plurality of flourescent lamps
US4376911A (en) Circuit system for lighting a discharge lamp or lamps
JP2636239B2 (en) Ballast for fluorescent lamp
US3448335A (en) High frequency ac-dc fluorescent lamp driver circuit
US3676734A (en) Electric circuit for rapidly igniting a discharge tube
US4042855A (en) High frequency transistor ballast
KR0181989B1 (en) Circuit arrangement for operating low-pressure discharge lamps
KR810000566B1 (en) Stabilizer for electronic fluorescnet lamp
US4532456A (en) Output circuit for an electronic ballast system
US2497534A (en) Circuits for high-frequency operation of fluorescent lamps
ES8402688A1 (en) Ballast apparatus for operating a discharge lamp.
JPH01315996A (en) Electric discharge lamp lighting device
US3822394A (en) Discharge lamp lighting apparatus
EP0099474B1 (en) Electronic drive circuit for a dischange lamp

Legal Events

Date Code Title Description
PBP Patent lapsed