DK143048B - INSURANCE INSURANCE - Google Patents

INSURANCE INSURANCE Download PDF

Info

Publication number
DK143048B
DK143048B DK173076AA DK173076A DK143048B DK 143048 B DK143048 B DK 143048B DK 173076A A DK173076A A DK 173076AA DK 173076 A DK173076 A DK 173076A DK 143048 B DK143048 B DK 143048B
Authority
DK
Denmark
Prior art keywords
fuse
wire
fuses
time delay
fusible
Prior art date
Application number
DK173076AA
Other languages
Danish (da)
Other versions
DK143048C (en
DK173076A (en
Inventor
H Arikawa
F Akiyama
M Maruo
Original Assignee
San O Ind Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San O Ind Co filed Critical San O Ind Co
Publication of DK173076A publication Critical patent/DK173076A/en
Publication of DK143048B publication Critical patent/DK143048B/en
Application granted granted Critical
Publication of DK143048C publication Critical patent/DK143048C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/18Casing fillings, e.g. powder
    • H01H85/185Insulating members for supporting fusible elements inside a casing, e.g. for helically wound fusible elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member

Landscapes

  • Fuses (AREA)

Description

(11) FREMLÆGGELSESSKRIFT 143048 \fia/ DANMARK (51) lnt Cl·3 H 01 h 85/08 §(21) Ansøgning nr. 1750/76 (22) Indleveret den 14. apr. 1976 (24) Løbedag 1 4. apr. 1 976 (44) Ansøgningen fremlagt og fremlæggelsesskriftet offentliggjort den 1 6. mar. 19&1(11) SUBMISSION LETTER 143048 \ fia / DENMARK (51) lnt Cl · 3 H 01 h 85/08 § (21) Application no. 1750/76 (22) Submitted on 14 Apr. 1976 (24) Running day 1 4. apr. 1 976 (44) The application was submitted and the document was published on 1 6 March. 19 & 1

DIREKTORATET FORDIRECTORATE FOR

PATENT- OG VAREMÆRKEVÆSENET i30? Pr,oritet begæret fra denPATENT AND TRADEMARK iS30 i30? Pr, ority coveted from it

16. apr. 1975, 50/045534, JPApr 16 1975, 50/045534, JP

(71) SAN-0 INDUSTRIAL CO. LTD., Tejima Building, 33 Shiba-Kocohira-Chu,(71) SAN-0 INDUSTRIAL CO. LTD., Tejima Building, 33 Shiba-Kocohira-Chu,

Tokyo, JP.Tokyo, JP.

(72) Opfinder: Hiroo Arikawa, 1-14-9, Qyamadai Setagaya-ku, Tokyo, JP:(72) Inventor: Hiroo Arikawa, 1-14-9, Qyamadai Setagaya-ku, Tokyo, JP:

Fumitake Akiyama, 1352 Kamlsugeta-cho, Hodogaya-ku, Yokohama, JP:Fumitake Akiyama, 1352 Kamlsugeta-cho, Hodogaya-ku, Yokohama, JP:

Masaya Maruo, 1-29-14, shinkoyasu Kanagavia-ku, Yokohama, JP.Masaya Maruo, 1-29-14, shinkoyasu Kanagavia-ku, Yokohama, JP.

(74) Fuldmægtig under sagens behandling:(74) Proxy during the proceedings:

Ingeniørfirmaet Hofman-Bang & Boutard.The engineering firm Hofman-Bang & Boutard.

(54) Træg sikring.(54) Slow fuse.

Opfindelsen angår en træg sikring af den i krav l's indledning angivne art.The invention relates to a sluggish securing of the kind specified in the preamble of claim 1.

Der findes en mængde typer og størrelser af smeltesikringer, som umiddelbart benyttes i forskellige elektriske og elektroniske kredsløb, og deres anvendelse i sådanne kredsløb har faktisk været kendt i årevis. Som det er velkendt er en smeltesikring en komponent, som skal smelte og bryde et elektrisk kredsløb, når strømbelastningen på kredsløbet overstiger en forud bestemt sikkerhedsværdi, d.v.s. smeltesikringens nominelle strømkapacitet, I nogle kredsløb såsom f.eks. vekselstrømsmotorkreds- 2 143048 løb bryder smeltesikringen imidlertid for hurtigt ved moderate overbelastninger. For at overvinde denne ulempe er der udviklet såkaldte tidsforsinkelsessmeltesikringer, som kun bryder kredsløbet efter, at en overbelastning har varet adskillige gange så lang tid som den overbelastning, som en almindelig smeltesikring kan tåle.There are a variety of types and sizes of fuses that are immediately used in various electrical and electronic circuits, and their use in such circuits has actually been known for years. As is well known, a fuse is a component that must melt and break an electrical circuit when the current load on the circuit exceeds a predetermined safety value, i.e. nominal current capacity of the fuse, In some circuits such as e.g. however, the AC motor circuit 14 144848 breaks the fuse too quickly at moderate overloads. To overcome this drawback, so-called time-delay fuses have been developed, which only break the circuit after an overload has lasted several times as long as the overload that an ordinary fuse can withstand.

Smeltesikringer med et smelteligt trådelement viklet over en kerne, som er fremstillet af aluminiumoxid (alumina; Al20^) og magnesiumoxid (magnesia; MgO) har tidligere været anvendt. Kernedelen i denne type smeltesikring har sædvanligvis et stjerneformet eller uregelmæssigt tværsnit og indeholder et organ til at afbryde den elektriske bue, som dannes i smeltesikringen.Fuses with a fusible wire element wound over a core made of alumina (alumina; Al 2 O 3) and magnesium oxide (magnesia; MgO) have been used in the past. The core part of this type of fuse usually has a star-shaped or irregular cross-section and contains a means for interrupting the electric arc which is formed in the fuse.

Disse smeltesikringer er imidlertid beregnet til yderligere afkøling af den varme, som frembringes af den elektriske strøm, ved udnyttelse af den høje varmeledningsevne og det høje temperaturspredningstal i alumina og magnesia, hvoraf kernedelen er fremstillet. Disse smeltesikringer er imidlertid ikke beregnet til at anvendes som tidsforsinkelsessikringer, fordi de ikke besidder tidsforsinkelsesegenskaber, men de benyttes snarere, når der er behov for en forbedret nominel strømkapacitet.However, these fuses are intended for further cooling of the heat generated by the electric current, by utilizing the high thermal conductivity and the high temperature dispersion in alumina and magnesia, of which the core part is made. However, these fuses are not intended to be used as time delay fuses because they do not possess time delay characteristics, but rather they are used when an improved rated current capacity is needed.

Smeltesikringer af fjedertypen med tidsforsinkelsesegenskaber har også været i almindelig anvendelse. Disse typer smeltesikringer, som udnytter et loddemetal med et lavt smeltepunkt som deres varmeoplagrende element har været vanskeligt at massefremstille med opretholdelse af en fast trækstyrke på fjederen og en passende mængde loddemetal med lavt smeltepunkt. Tilmed har de den naturlige ulempe, at de er uregelmæssige i deres smelteegenskaber som følge af varmepåvirkning, som opstår fra gentagne strømbelastninger under brug eller lang tids ugunstig virkning på fjederens trækspænding.Spring-type fuses with time delay properties have also been in common use. These types of fuses, which utilize a low melting point solder as their heat storage element, have been difficult to mass produce while maintaining a fixed tensile strength on the spring and an appropriate amount of low melting point solder. In addition, they have the natural disadvantage that they are irregular in their melting properties due to heat exposure which arises from repeated current loads during use or long-term adverse effect on the tension of the spring.

En anden type tidsforsinkelsessmeltesikring benytter et enkelt smelteligt trådelement viklet over en glasfiber eller et glasrør. Eftersom glas har lavt blødgøringspunkt (650°-700°C), og det er nødvendigt at benytte en tråd med et lavere smeltepunkt end glassets blødgøringstemperatur, begrænser dette imidlertid de typer tråd, som kan benyttes ved denne type sikring.Another type of time delay fuse uses a single fusible wire element wound over a fiberglass or glass tube. However, since glass has a low softening point (650 ° -700 ° C) and it is necessary to use a wire with a lower melting point than the glass softening temperature, this limits the types of wire that can be used in this type of fuse.

3 U30483 U3048

Andre træge sikringer kendes. Fra beskrivelserne til USA patenterne nr. 3.144.534- og nr. 3.267.238 kendes således træge sikringer af den indledningsvis angivne art, d.v.s. træge sikringer, som hver omfatter en isoleret, rørformet del med to ender, og med et tætningsorgan ved hver ende.Other sluggish fuses are known. From the descriptions of U.S. Pat. Nos. 3,144,534 and 3,267,238, thus, sluggish fuses of the type initially indicated are known, i.e. sluggish fuses, each comprising an insulated, tubular member with two ends, and with a sealing member at each end.

Opfindelsen har til formål at tilvejebringe en træg sikring af den indledningsvis angivne art, som let og billigt kan massefremstilles og som alligevel bibeholder sin mekaniske stivhed og udmærkede tidsforsinkelsesegenskaber.The object of the invention is to provide a sluggish safety device of the type indicated in the introduction, which can be mass-produced easily and cheaply and which nevertheless retains its mechanical rigidity and excellent time-delay properties.

Dette formål opnås ifølge opfindelsen ved, at den i krav l’s indledning angivne træge sikring er ejendommelig ved det i krav l’s kendetegnende del angivne.This object is achieved according to the invention in that the sluggish fuse specified in the preamble of claim 1 is peculiar in the characterizing part of claim 1.

Trådkordelen er således dannet af et par sammensmeltelige trådelementer, hvoraf det ene er en trådkerne, hvorpå det andet trådelement er viklet. Den langstrakte kernedel, hvorpå dette sammensatte trådelement, som danner en trådkordel, er skrueviklet, består af et materiale med høj termisk ledningsevne. Med kernedelens diagonale anbringelse opnås især større modstand imod deformation.The wire cord part is thus formed by a pair of fusible wire elements, one of which is a wire core on which the other wire element is wound. The elongate core part, on which this composite wire element, which forms a wire cord, is screw-wound, consists of a material with high thermal conductivity. With the diagonal arrangement of the core part, greater resistance to deformation is obtained in particular.

Som anført i krav 2 kan den isolerede rørformede del bestå af glas eller keramik.As stated in claim 2, the insulated tubular part may consist of glass or ceramic.

Kernedelen kan som angivet i krav 3 bestå af et keramisk materiale med høj varmeledning eller som angivet i krav 4 af aluminiumoxid og magnesiumoxid.The core part may, as stated in claim 3, consist of a ceramic material with a high heat conduction or, as stated in claim 4, of alumina and magnesium oxide.

Krav 5 angiver en velegnet sammensætning af det i krav 4 anførte materiale. Den i krav 5 angivne relative sammensætning af disse to oxider har i praksis vist sig at resultere i det bedste materiale.Claim 5 states a suitable composition of the material stated in claim 4. The relative composition of these two oxides stated in claim 5 has in practice been found to result in the best material.

Opfindelsen skal i det følgende nærmere beskrives med henvisning til regningen, hvorpå fig. 1 er et sidebillede af trådkordelen, som benyttes i praksis til opfindelsen, . 143048 4 fig. 2 er et sidebillede, som viser den måde, hvorpå trådkordelen i fig. 1 er viklet over en stanglignende kernedel ifølge opfindelsen, fig. 3 er et sidebillede, delvis i snit af en tidsforsinkelsessmeltesikring ifølge opfindelsen, og fig. 4 sammenligner tidsforsinkelsesegenskabeme for en smeltesikring ifølge opfindelsen med to smeltesikringer af den tidligere nævnte art.The invention will be described in more detail below with reference to the calculation, in which fig. 1 is a side view of the wire cord part used in practice for the invention,. 143048 4 fig. 2 is a side view showing the manner in which the wire cord portion of FIG. 1 is wound over a rod-like core part according to the invention, fig. 3 is a side view, partly in section, of a time delay fuse according to the invention, and fig. 4 compares the time delay characteristics of a fuse according to the invention with two fuses of the previously mentioned type.

I fig. 1 er vist en trådkordel, som er fremstillet ved vikling af et metallisk smelteligt trådelement 2 over en metallisk gensidig smeltelig trådkerne 1, således som det nærmere er beskrevet i japansk offentliggørelsesskrift nr. 1491(1970). Trådkordelen bliver så spiralviklet over en keramisk aflangt generelt cylindrisk (stangformet) del 3, som er vist i fig. 2, og som har høj varmeledningsevne, og den keramiske stanglignende del 3 bliver så anbragt diagonalt i en dielektrisk rørdel 4, såsom f.eks. et glas eller keramisk rør som vist på fig. 3.In FIG. 1 shows a wire cord made by winding a metallic fusible wire element 2 over a metallic mutually fusible wire core 1, as further described in Japanese Laid-Open Publication No. 1491 (1970). The wire cord part is then spirally wound over a ceramic elongate generally cylindrical (rod-shaped) part 3, which is shown in fig. 2, and which has a high thermal conductivity, and the ceramic rod-like part 3 is then arranged diagonally in a dielectric pipe part 4, such as e.g. a glass or ceramic tube as shown in FIG. 3.

Terminalerne af trådkordelen bliver loddet ved enderne af den stanglignende kernedel 3 med et loddemateriale med højt smeltepunkt som vist ved 6 i nøje kontakt med tætningsorganet 5 (f.eks. dupsko eller andre egnede tætningsorganer).The terminals of the wire cord part are soldered at the ends of the rod-like core part 3 with a high melting point solder material as shown at 6 in close contact with the sealing member 5 (e.g. dab shoes or other suitable sealing means).

De to trådelementer 1 og 2, som benyttes til at fremstille den i fig. 2 viste trådkordel, kan fremstilles af en mængde metaller, som er gode elektriske ledere og har høje smeltepunkter. Fremgangsmåden til at fremstille trådkordelen er helt beskrevet i førnævnte japanske patent.The two wire elements 1 and 2 used to make the one shown in fig. 2, can be made of a quantity of metals which are good electrical conductors and have high melting points. The method of making the wire cord part is fully described in the aforementioned Japanese patent.

Trådkordelen er spiralviklet over den langstrakte cylindriske kernedel 3 og er fortrinsvis viklet med en deling på omkring 5 til 10 pr. cm. Delingen kan dog variere noget uden ugunstig indvirkning på smeltesikringens ydelse.The wire cord portion is helically wound over the elongate cylindrical core portion 3 and is preferably wound with a pitch of about 5 to 10 per cent. cm. However, the division may vary somewhat without adversely affecting the performance of the fuse.

Den stanglignende kernedel 3 er fortrinsvis fremstillet af et højtledende materiale bestående i det væsentlige af aluminiumoxid og magnesiumoxid, fortrinsvis en sintret blanding af alu- 5 U30A0 miniumoxid og magnesiumoxidspinel. De relative sammensætninger af de to oxider kan variere noget, men det har vist sig, at det bedste materiale består i det væsentlige af omkring 72 vægtprocent aluminiumoxid og 28 vægtprocent magnesiumoxid.The rod-like core part 3 is preferably made of a highly conductive material consisting essentially of alumina and magnesium oxide, preferably a sintered mixture of alumina and magnesium oxide spinel. The relative compositions of the two oxides may vary somewhat, but it has been found that the best material consists essentially of about 72 weight percent alumina and 28 weight percent magnesium oxide.

Den stanglignende del 3 har et generelt ensartet cylindrisk eller polygonalt tværsnitsareal for at sikre passende og tilstrækkelig berøring mellem det smeltelige trådelement og den stanglignende del 3 i hele dennes længde. Dette tillader effektiv køling af det smeltelige trådelement ved udnyttelse af den keramiske kernes bedre termiske ledningsevne. Når der derfor går en meget stor strøm gennem trådkordelen, f.eks. når strømmen er i størrelsesordenen 200% af den nominelle strømkapacitet for en stan-dardsmeltesikring af A-typen, bliver sikringstråden betragteligt afkølet af den keramiske understøtning (den stanglignende del 3). Eftersom den smeltelige tråd ikke smelter, før temperaturen af den keramiske understøtning når trådens smeltepunkt, er det muligt at opnå betragtelige tidsforsinkelsesegenskaber ved anvendelse af tidsforsinkelsessmeltesikringer, som er fremstillet ifølge opfindelsen. Dette er i modsætning til de tidligere kendte smeltesikringer, hvor tværsnitsarealet af det understøttende materiale er stjerneformet eller uregelmæssigt, og som ikke tilvejebringer passende berøring mellem det smeltelige trådelement og det understøttende materiale, og således viser dårlige tidsforsinkelsesegenskaber.The rod-like part 3 has a generally uniform cylindrical or polygonal cross-sectional area to ensure suitable and sufficient contact between the fusible wire element and the rod-like part 3 along its entire length. This allows efficient cooling of the fusible wire element by utilizing the better thermal conductivity of the ceramic core. Therefore, when a very large current passes through the wire cord, e.g. when the current is of the order of 200% of the rated current capacity of a standard A-type fuse, the fuse wire is considerably cooled by the ceramic support (the rod-like part 3). Since the fusible wire does not melt until the temperature of the ceramic support reaches the melting point of the wire, it is possible to obtain considerable time delay properties by using time delay fuses made according to the invention. This is in contrast to the prior art fuses, where the cross-sectional area of the support material is star-shaped or irregular, and which does not provide adequate contact between the fusible wire member and the support material, thus showing poor time delay properties.

Den termiske ligevægtstilstand, når den maksimale elektriske strøm passerer gennem en almindelig type glassmeltesikring, kan beskrives ved følgende ligning: Q = qc + qa hvor Q er varmemængden i kalorier, således som den frembringes pr. enhedslængde ved midterregionen af det smeltelige trådelement, q er varmemængden i kalorier, som ledes fra hver enhedslængdeThe thermal equilibrium state when the maximum electric current passes through a common type of glass melt fuse can be described by the following equation: Q = qc + qa where Q is the amount of heat in calories as it is generated per. unit length at the central region of the fusible wire element, q is the amount of heat in calories conducted from each unit length

VV

af den smeltelige tråd til smeltesikringens ender, og q_ er varme- α mængden i kalorier, som spredes fra hver enhedslængde af den smeltelige tråd til den omgivende atmosfære (luft).of the fusible wire to the ends of the fuse, and q_ is the amount of heat α in calories, which is spread from each unit length of the fusible wire to the ambient atmosphere (air).

Når både q og q aftager, aftager Q tilsvarende og ud fra for- C αWhen both q and q decrease, Q decreases correspondingly and based on for- C α

r 1430ASr 1430AS

o holdet mellem den nominelle strømværdi og diameteren af den smeltelige tråd bliver det muligt at nedsætte den nominelle strømværdi, hvilket resulterer i tidsforsinkelsesegenskaber i smeltesikringen.o the ratio between the nominal current value and the diameter of the fusible wire, it becomes possible to reduce the nominal current value, which results in time delay properties in the fuse.

Ved anvendelse af et relativt langt smelteligt trådelement er det muligt at nedsætte mængden af varme q , som strømmer fra midtenBy using a relatively long fusible wire element it is possible to reduce the amount of heat q flowing from the center

Vs imod enderne eller terminalerne af tråden. Også eftersom to sammenknyttede tråde benyttes til at fremstille trådkordelen som vist i fig. 1, bliver de påvirket ved varmefrembringelse på samme måde og det er således muligt at nedsætte mængden af varme qa, som spredes i den omgivende atmosfære.Vs towards the ends or terminals of the wire. Also, since two interconnected wires are used to make the wire cord portion as shown in FIG. 1, they are affected by heat generation in the same way and it is thus possible to reduce the amount of heat qa which is dissipated in the surrounding atmosphere.

I en specifik udførelsesform ifølge opfindelsen opnås forbedret køling af det smeltelige trådelement og dermed forbedrede tidsforsinkelsesegenskaber ved at fremstille den stanglignende del 3 af en sintret blanding af keramisk materiale af spineltypen bestående af 71,8 vægtprocent aluminiumoxid og 28,2 vægtprocent magnesiumoxid. Dette materiale har væsentligt højere termisk ledningsevne end kvartsglas eller aluminiumoxid iltfast materiale som vist i nedenstående tabel.In a specific embodiment of the invention, improved cooling of the fusible wire element and thus improved time delay properties are obtained by producing the rod-like part 3 of a sintered mixture of ceramic material of the spinel type consisting of 71.8% by weight of alumina and 28.2% by weight of magnesium oxide. This material has significantly higher thermal conductivity than quartz glass or alumina oxygen-resistant material as shown in the table below.

Bæremateriale Sammensætning Termisk ledningsevneCarrier material Composition Thermal conductivity

vægtprocent ved 100°C. K cal/m.hr.°Cweight percent at 100 ° C. K cal / m.hr. ° C

Kvartsglas 100% SiO^ 0,8Quartz glass 100% SiO 2 0.8

Aluminiumoxid 75% AlpO^ 3,8Alumina 75% AlpO 3 3.8

Iltfast materiale 25% ler 0Refractory material 25% clay 0

Spinel A190, 71,8% AlpO, 12,9Spinel A190, 71.8% AlpO, 12.9

: MgO -3 28,2% MgO D: MgO -3 28.2% MgO D

Fig. 4 sammenligner tidsforsinkelsesegenskaberne for en smeltesikring ifølge opfindelsen med to tidligere kendte smeltesikringer. På denne figur er procenten af nominel strømværdi afsat som funktion af tiden (i sekunder) som det tager at smelte det smeltelige trådelement. Kurven A angiver forholdet for en enkel ttråds almindelig type A smeltesikring med en nominel strømkapacitet på 5 ampere, kurve B angiver forholdet for en smeltesikring i hvilken det smeltelige trådelement er fremstillet som angivet i førnævnte japanske patentansøgning, og som også har en nominel strømkapacitet på 5 ampere. Kurve C repræsenterer forholdet for en trådkordel, såsom den i fig. 2 viste (som ved kur- 7 143048 ven B) viklet med en deling på 7,5/cm over en spineltype keramisk stamlignende understøtningsdel fremstillet af 71,8% aluminiumoxid og 28,2% magnesiumoxid. Det blev bemærket, at den nominelle strømkapacitet for sidstnævnte smeltesikring blev nedsat fra 5 til 3,5 ampere, medens den frembød tidsforsinkelsesegenskaber, som var bedre end de andre to typer smeltesikringer. Derved kan der ifølge opfindelsen fremstilles tidsforsinkelsessmeltesikringer, som har bedre tidsforsinkelsesegenskaber, medens de bibeholder deres mekaniske integritet. F.eks. frembyder den resulterende smeltesikring større slagstyrke og større modstand mod vibration og kan derfor forsendes, oplagres og håndteres uden brud eller deformation ved diagonal anbringelse af den stanglignende del 3 i smeltesikringen og lodning af de smeltelige trådelementer ved enderne med loddemateriale med højt smeltepunkt på den før beskrevne måde. Eftersom passende mængder højt smelteligt loddemateriale benyttes til at lodde de smeltelige trådelementer ved terminalerne, kan denne type smeltesikring også let massefremstilles med ringe udgift, medens dens mekaniske stivhed og gode tidsforsinkelsesegenskab bibeholdes.FIG. 4 compares the time delay characteristics of a fuse according to the invention with two previously known fuses. In this figure, the percentage of nominal current value is plotted as a function of the time (in seconds) it takes to melt the fusible wire element. Curve A indicates the ratio of a single wire ordinary type A fuse with a rated current of 5 amps, curve B indicates the ratio of a fuse in which the fusible wire element is made as stated in the aforementioned Japanese patent application and which also has a rated current of 5 ampere. Curve C represents the ratio of a wire cord, such as that in FIG. 2 (as in curve B) wound with a pitch of 7.5 / cm over a spinel-type ceramic stem-like support member made of 71.8% alumina and 28.2% magnesium oxide. It was noted that the rated current capacity of the latter fuse was reduced from 5 to 3.5 amps while offering time delay characteristics which were better than the other two types of fuses. Thereby, according to the invention, time delay fuses can be manufactured which have better time delay properties while maintaining their mechanical integrity. For example. the resulting fuse offers greater impact strength and greater resistance to vibration and can therefore be shipped, stored and handled without breakage or deformation by diagonally placing the rod-like part 3 in the fuse and soldering the fusible wire elements at the ends with high melting point solder on the previously described manner. Since appropriate amounts of high fusible solder are used to solder the fusible wire elements at the terminals, this type of fuse can also be easily mass-produced at low cost while maintaining its mechanical rigidity and good time delay property.

Eftersom smeltepunktet af den keramiske kerne er temmeligt højt (Al20^:Mg0 spinel har et smeltepunkt på 2135°C), kan en mængde smeltelige tråde tilmed benyttes uden den naturlige begrænsning som ved de tidligere omtalte typer smeltesikringer, som benytter en glasfiberkeme eller lignende kernematerialer.Since the melting point of the ceramic core is rather high (Al 2 O 3: MgO spinel has a melting point of 2135 ° C), a quantity of fusible wires can even be used without the natural limitation as with the previously mentioned types of fuses which use a glass fiber core or similar core materials. .

X disse glasfibersmeltesikringer er glasfiberkernen desuden placeret i et glasrør og fastgjort til rørets ender, medens det underkastes trækkraft for at holde dem stift på plads, således at de ikke går løs og forskydes som følge af slag eller mekanisk vibration. Når derimod den stanglignende del 3 er anbragt diagonalt, er der ikke behov for at udøve en trækkraft under installationen.In addition, in these fiberglass fuses, the fiberglass core is placed in a glass tube and attached to the ends of the tube while being subjected to tensile force to hold them rigidly in place so that they do not come loose and displace due to impact or mechanical vibration. On the other hand, when the rod-like part 3 is arranged diagonally, there is no need to exert a traction force during the installation.

Smeltesikringer af den ifølge opfindelsen angivne type kan fremstilles med en række nominelle kapaciteter i området fra omkring få milliampere til omkring adskillige ampere og så højt som 30 ampere, og de kan passende massefremstilles i miniaturestørrelser (omkring 3 cm lange) med moderate omkostninger, selv om de bibeholder den fornødne mekaniske stivhed og tidsforsinkelsesegenskaberne .Fuses of the type specified according to the invention can be manufactured with a range of nominal capacities in the range from about a few milliamps to about several amperes and as high as 30 amperes, and they can be suitably mass-produced in miniature sizes (about 3 cm long) at moderate cost, although they retain the required mechanical rigidity and time delay properties.

DK173076A 1975-04-16 1976-04-14 SLOW SECURITY DK143048C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP50045334A JPS5842576B2 (en) 1975-04-16 1975-04-16 Time lag fuse
JP4533475 1975-04-16

Publications (3)

Publication Number Publication Date
DK173076A DK173076A (en) 1976-10-17
DK143048B true DK143048B (en) 1981-03-16
DK143048C DK143048C (en) 1981-10-19

Family

ID=12716393

Family Applications (1)

Application Number Title Priority Date Filing Date
DK173076A DK143048C (en) 1975-04-16 1976-04-14 SLOW SECURITY

Country Status (11)

Country Link
US (1) US4057774A (en)
JP (1) JPS5842576B2 (en)
BR (1) BR7602339A (en)
CA (1) CA1047078A (en)
CH (1) CH604367A5 (en)
DE (1) DE2616718A1 (en)
DK (1) DK143048C (en)
FR (1) FR2308190A1 (en)
GB (1) GB1541935A (en)
IT (1) IT1059144B (en)
SE (1) SE407487B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141345A (en) * 1975-05-30 1976-12-06 Hitachi Ltd Current limiting type fuse
JPS5293950A (en) * 1976-02-03 1977-08-08 Sano Sangyo Kk Time lag fuse
JPS5312066A (en) * 1976-07-21 1978-02-03 Nagasawa Denki Seisakushiyo Kk Small current capacity fuse element
US4445106A (en) * 1980-10-07 1984-04-24 Littelfuse, Inc. Spiral wound fuse bodies
US4517544A (en) * 1983-10-24 1985-05-14 Mcgraw-Edison Company Time delay electric fuse
US4560971A (en) * 1984-09-10 1985-12-24 Littelfuse, Inc. Spiral wound shunt type slow blow fuse
US4971716A (en) * 1989-10-23 1990-11-20 Allied-Signal Inc. Azeotrope-like compositions of octafluorocyclobutane and ethylene oxide
US5736919A (en) * 1996-02-13 1998-04-07 Cooper Industries, Inc. Spiral wound fuse having resiliently deformable silicone core
US5927060A (en) * 1997-10-20 1999-07-27 N.V. Bekaert S.A. Electrically conductive yarn
US6650223B1 (en) * 1998-04-24 2003-11-18 Wickmann-Werke Gmbh Electrical fuse element
JP3820143B2 (en) 2001-02-16 2006-09-13 エス・オー・シー株式会社 Surface mount type small fuse
CZ302392B6 (en) * 2005-03-01 2011-04-27 Fojtík@Vincenc Low voltage safety fuse
US8154376B2 (en) * 2007-09-17 2012-04-10 Littelfuse, Inc. Fuses with slotted fuse bodies
US20090108980A1 (en) * 2007-10-09 2009-04-30 Littelfuse, Inc. Fuse providing overcurrent and thermal protection
US9117615B2 (en) * 2010-05-17 2015-08-25 Littlefuse, Inc. Double wound fusible element and associated fuse
CN102779705B (en) * 2012-08-06 2015-01-14 象山县供电局 Fuse
US11393651B2 (en) * 2018-05-23 2022-07-19 Eaton Intelligent Power Limited Fuse with stone sand matrix reinforcement
US11348754B2 (en) * 2019-05-06 2022-05-31 Eaton Intelligent Power Limited Aluminum alloy miniature cartridge fuses
US12106921B2 (en) 2019-05-06 2024-10-01 Eaton Intelligent Power Limited Aluminum alloy miniature cartridge fuses

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB465950A (en) * 1935-11-13 1937-05-13 Harry John Gregory Delayed-action fuse
DE717681C (en) * 1938-04-06 1942-02-19 Wickmann Werke Ag Overcurrent carrier glass cartridge fuse
DE921758C (en) * 1951-12-02 1954-12-30 Licentia Gmbh Overcurrent fuse
NL264370A (en) * 1960-10-12
US3144534A (en) * 1960-12-12 1964-08-11 Littelfuse Inc Slow blowing fuse
GB1053280A (en) * 1963-08-12
US3267238A (en) * 1964-08-17 1966-08-16 Sony Corp Electrical fuses
US3562162A (en) * 1966-11-14 1971-02-09 Gen Electric Electrical insulating material and method of making
NL142815B (en) * 1970-09-15 1974-07-15 Olvis Smeltzekeringen PROCEDURE FOR MANUFACTURING A MELT SAFETY, ESPECIALLY FOR LOW CURRENT, AS WELL AS MELT SAFETY PREPARED.
JPS5430089B2 (en) * 1972-12-26 1979-09-28

Also Published As

Publication number Publication date
CA1047078A (en) 1979-01-23
FR2308190A1 (en) 1976-11-12
JPS51129652A (en) 1976-11-11
CH604367A5 (en) 1978-09-15
US4057774A (en) 1977-11-08
SE7604429L (en) 1976-10-17
GB1541935A (en) 1979-03-14
JPS5842576B2 (en) 1983-09-20
DK143048C (en) 1981-10-19
BR7602339A (en) 1976-10-12
IT1059144B (en) 1982-05-31
DK173076A (en) 1976-10-17
DE2616718A1 (en) 1976-10-28
FR2308190B1 (en) 1979-08-31
SE407487B (en) 1979-03-26

Similar Documents

Publication Publication Date Title
DK143048B (en) INSURANCE INSURANCE
CA1246128A (en) Spiral wound shunt type slow blow fuse
US4297666A (en) Slow-blowing fuse using zinc-manganese alloy link
EP0141344A1 (en) Time delay electric fuse
US2302820A (en) Safety fuse for electric circuits
US3825870A (en) Fuse element and a high voltage current-limiting fuse
US4114128A (en) Composite sectionalized protective indicating-type fuse
US20160099125A1 (en) Fuse with carbon fiber fusible element
US3571775A (en) High-voltage fuse having a plurality of helically wound ribbon fuse links
US2326031A (en) Protective device for electrical apparatus and systems
US4099153A (en) Gas evolving clamp for current limiting fuse
US3374328A (en) Cartridge-type fuse with explosion pots
US2605371A (en) Fuse
US4731600A (en) Fuse
EP0168874B1 (en) Electric incandescent lamp
US3849755A (en) Current limiting fuse with fuse element with a diamond shaped cutout
US4283700A (en) Double tubular time-lag fuse having improved breaking capacity
CA1043399A (en) Miniature time-delay fuse
US3735317A (en) Electric multibreak forming cartridge fuse
SU797617A3 (en) Fusible conductor
US3069520A (en) Electric fuse construction
GB2174256A (en) Current-limiting fuse
JPS5842131A (en) Fusible element for fuse and fuse
US2561464A (en) Time lag fuse
US4074220A (en) Fuse structure having improved granular filler material

Legal Events

Date Code Title Description
PUP Patent expired
B1 Patent granted (law 1993)
PBP Patent lapsed

Effective date: 20131231