DK142799B - Coil construction for deflecting a beam of electrically charged particles. - Google Patents

Coil construction for deflecting a beam of electrically charged particles. Download PDF

Info

Publication number
DK142799B
DK142799B DK564272AA DK564272A DK142799B DK 142799 B DK142799 B DK 142799B DK 564272A A DK564272A A DK 564272AA DK 564272 A DK564272 A DK 564272A DK 142799 B DK142799 B DK 142799B
Authority
DK
Denmark
Prior art keywords
coil
electron
window
coil construction
rod
Prior art date
Application number
DK564272AA
Other languages
Danish (da)
Other versions
DK142799C (en
Inventor
David Hugh Mcnitt
Zia Hashmi
Original Assignee
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Motor Co filed Critical Ford Motor Co
Publication of DK142799B publication Critical patent/DK142799B/en
Application granted granted Critical
Publication of DK142799C publication Critical patent/DK142799C/da

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J33/00Discharge tubes with provision for emergence of electrons or ions from the vessel; Lenard tubes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means

Description

(W, (11) FREMLÆGGELSESSKRIFT 1^2799 DANMARK <!”lnt'C''’S h 37/04 ± (21) Ansøgning nr. 5642/72 (22) Indleveret døn l4. IlOV. 1972 f(24) Løbedag 14. HOV. 1972 (44) Ansøgningen fremlagt og fremlæggelseaekriftet offentliggjort den 26· jan. 1 So1(W, (11) SUBMISSION WRITING 1 ^ 2799 DENMARK <! ”Lnt'C '' S h 37/04 ± (21) Application No. 5642/72 (22) Submitted to death l4. IlOV. 1972 f (24) Running day 14. HOV 1972 (44) The application submitted and the submission document published on 26 · Jan 1 So1

DIREKTORATET FORDIRECTORATE OF

PATENT-OG VAREMÆRKEVÆSENET (30) Prioritet begæret fra denPATENT AND TRADE MARKET (30) Priority requested from it

15. nov. 1971a 198599a US15 nov. 1971a 198599a US

(71) FORD MOTOR COMPANY, The American Road, Dearborn, Michigan, US.(71) FORD MOTOR COMPANY, The American Road, Dearborn, Michigan, US.

(72) Opfinder: David Hugh McNitt, 802 Hilldale, Royal Oak, Michigan, US:(72) Inventor: David Hugh McNitt, 802 Hilldale, Royal Oak, Michigan, US:

Zia Hashtni, Apt. 118-5515 Woodrow Ave., Austin, Texas, US.Zia Hashtni, Apt. 118-5515 Woodrow Ave., Austin, Texas, US.

(74) Fuldmaegtig under sagens behandling:(74) Plenipotentiary:

Ingeniørfirmaet Hofman-Bang & Boutard._ (54) Spolekonstruktion til afbøjning af en stråle af elektrisk ladede par= tikler.Hofman-Bang & Boutard Engineering Company._ (54) Coil construction for deflecting a beam of electrically charged pairs = ticks.

Opfindelsen angår en spolekonstruktion til afbøjning af en stråle af elektrisk ladede partikler, såsom en elektronstråle, hvilken spolekonstruktion er af den i krav l*s indledning angivne art.The invention relates to a coil structure for deflecting a beam of electrically charged particles, such as an electron beam, which coil structure is of the kind specified in the preamble of claim 1.

Elektronacceleratorer anvendes konventionelt til bestråling af en målelektrode ved hjælp af en elektronstråle, som frembringes indeni et evakueret kammer og udtræder fra kammeret gennem et elektronperraeabelt vindue, som er formet af en tynd metalplade, som er placeret i en åbning i kammeret. Elektronstrålen udsendes af en katode ved den ene ende af kammeret og accelereres af og rettes mod en anode ved hjælp af en stor potentialforskel, som findes mellem katoden og anoden. Det elektrongen-nemtrængelige vindue kan udgøre en del af eller hele anodekonstruktionen.Electron accelerators are conventionally used to irradiate a measuring electrode by means of an electron beam which is produced inside an evacuated chamber and exits from the chamber through an electron permeable window formed by a thin metal plate located in an opening in the chamber. The electron beam is emitted by a cathode at one end of the chamber and accelerated by and directed to an anode by a large potential difference found between the cathode and the anode. The electron-permeable window may form part or all of the anode structure.

2 1427992 142799

For at holde vinduet intakt over for elektronstråleenergien skanderes strålen sædvanligvis hen over vinduet på en sådan måde, at den træffer vinduet på afvekslende steder. Ligeledes er det fordelagtigt at forhindre forskydninger af vinduet, som følge af kræfter, som forårsages af atmosfæretrykket, ved anbringelse af en gitterkonstruktion til støtte af vinduet, hvilket gitter har form af ribber, der strækker sig ud fra vinduet.In order to keep the window intact against the electron beam energy, the beam is usually scanned across the window in such a way that it hits the window in alternating locations. Also, it is advantageous to prevent shifts of the window due to forces caused by atmospheric pressure by applying a lattice structure to support the window, the lattice having the form of ribs extending from the window.

Disse ribber i gitteret må danne en vinkel med hinanden, som svarer til vinkelforholdene mellem elektronstrålebanerne med henblik på at tillade strålen at passere gennem gitteret parallelt med sidefladerne af ribberne og derved formindske de energitab, som forårsages af stråleindfaldet mod gitterelementet.These ribs in the grating must form an angle with each other corresponding to the angular ratios of the electron beam paths to allow the beam to pass through the grating parallel to the lateral surfaces of the ribs, thereby reducing the energy losses caused by the radiation incident to the grating element.

Sådanne gitre er som følge af deres beskaffenhed dyre og vanskelige at fremstille på grund af de nøjagtige vinkelstillinger som ribberne må indtage.Such grids, due to their nature, are expensive and difficult to manufacture due to the exact angular positions that the ribs must take.

Man har derfor foreslået, se f.eks. USA patentskrift nr. 3469139» at styre en skanderet acceleratorelektronstråle på en sådan måde, at strålen passerer gennem gitteret og vinduet i parallelle baner, når den skanderes. En sådan elektronstrålestyring medfører anvendelsen af et gitter, som har relativt let fremstillelige gitterelementer, idet disse kan udformes således, at ribberne alle står vinkelret på vinduet, uden at der opstår alt for store og ikke ønskelige energitab på grund af strålefaldet mod gitterkonstruktionen.It has therefore been proposed, see e.g. U.S. Patent No. 3469139 "to control a scanned accelerator electron beam in such a way that the beam passes through the grating and window in parallel paths as it is scanned. Such electron beam control entails the use of a grid which has relatively easily fabricated grid elements, these being designed so that the ribs are all perpendicular to the window without causing excessive and undesirable energy losses due to the radiation fall to the grid structure.

En spolekonstruktion af den indledningsvis angivne art, som er specielt anvendelig i sammenhæng med en elektronaccelerator af den ovenfor beskrevne type, er ifølge opfindelsen ejendommelig ved det i krav 1' s kendetegnende del angivne. Stavene er udført af et magnetisk materiale. På hver af stavene er et antal spoler anbragt, som er adskilt fra hinanden, langs stavens længde. Fortrinsvis er spolerne elektrisk seriekoblet med hinanden. Når en strøm optræder i spolen, frembringes mellem stavene et magnetfelt, som varierer i strømtæthed fra den ene ende af stavene til deres anden ende. I området mellem respektive ene ender af stavene og omtrent deres midtpunkt, har magnetfeltet en første retning og størrelse, som gradvis aftager. Ved eller nær stavenes centrum bliver magnetfeltet lig med nul og tiltager derefter gradvis i størrelse, men 3 142799 har modsat retning af retningen på den anden side af stavenes centrum.A coil construction of the type mentioned initially, which is particularly useful in connection with an electron accelerator of the type described above, is according to the invention characterized by the characterizing part of claim 1. The rods are made of a magnetic material. On each of the rods, a plurality of spools are spaced apart along the length of the rod. Preferably, the coils are electrically connected in series. When a current occurs in the coil, a magnetic field is generated between the rods which varies in current density from one end of the rods to their other end. In the region between respective one ends of the rods and approximately their midpoint, the magnetic field has a first direction and magnitude which gradually decreases. At or near the center of the rods, the magnetic field becomes equal to zero and then gradually increases in size, but the direction of the direction on the other side of the center of the rods increases.

Opfindelsen er specielt praktisk, når man ønsker at afbøje en skanderet stråle inden for blot en del af dens totale skanderingsområde.The invention is particularly convenient when one wishes to deflect a scanned beam within just a portion of its total scanning range.

Opfindelsen er nærmere beskrevet herunder med henvisning til tegningen, hvorpå fig, 1 viser et skematisk billede af en elektronaccelerator, som har en spolekonstruktion ifølge opfindelsen, fig. 2 et lodret billede af en anden udførelsesform af en styre-spolekonstruktion ifølge opfindelsens principper, fig. 3 et skematisk billede af en experimentel spolekonstruktion af lignende type som i fig. 2, og fig. 4 viser et diagram over den magnetiske strømtæthed, som frembringes af den experimentelle spolekonstruktion i fig. 3.The invention is described in more detail below with reference to the drawing, in which Fig. 1 shows a schematic view of an electron accelerator having a coil construction according to the invention; 2 is a vertical view of another embodiment of a control coil assembly according to the principles of the invention; FIG. 3 is a schematic view of an experimental coil assembly similar to that of FIG. 2, and FIG. 4 shows a diagram of the magnetic current density produced by the experimental coil construction of FIG. Third

I tegningens figurer, hvor ens dele af forsynet med samme henvisningsbetegnelser, betegner 10 alment en elektronaccelerator med evakueret kammer. Elektronacceleratoren indeholder et rørformet element 12 og en tragt 14. Tragten 14 har divergerende sider og rektangulært tværsnit. Tragten 14 er forsynet med forstærknings-flanger 16. En tragtforlængelse 18 er ved 20 forbundet med tragten 14 og en gitterkonstruktion med et elektrongennemtrængeligt vindue , som i almindelighed er betegnet med 22, er ved 24 forbundet med tragtforlængelsen 18.In the drawings, in which like parts of the same reference numerals, 10 generally denotes an electron accelerator with evacuated chamber. The electron accelerator contains a tubular member 12 and a funnel 14. The funnel 14 has divergent sides and rectangular cross sections. The hopper 14 is provided with reinforcing flanges 16. A hopper extension 18 is connected at 20 to the hopper 14 and a grid structure with an electron-permeable window, generally designated 22, is connected to the hopper extension 18 at 24.

4 1427994 142799

Gitterkonstruktionen dannes af parallelle ribber 26, som strækker sig over åbningen 28 i tragtforlængelsen 18. De parallelle ribber 26 bærer et elektrongennemtrængeligt vindue 30, som i det typiske tilfælde kan bestå af en tynd metalfolie, f.eks. aluminiumsfolie. Det rørformede element 12, tragten 14, tragtforlængelsen 18 samt gitter- og vindueskonstruktion 22 samvirker til dannelse af et evakueret kammer 32. Fortrinsvis er de kamre 32, som danner delene, fremstillet af et magnetisk materiale, såsom magnetisk rustfrit stål.The lattice structure is formed by parallel ribs 26 extending over the opening 28 of the hopper extension 18. The parallel ribs 26 carry an electron-permeable window 30, which may typically consist of a thin metal foil, e.g. aluminum foil. The tubular member 12, the hopper 14, the hopper extension 18 as well as the grille and window structure 22 cooperate to form an evacuated chamber 32. Preferably, the chambers 32 forming the parts are made of a magnetic material such as magnetic stainless steel.

En katode 34, som på figuren er vist i overdreven målestok, befinder sig ved den ene ende af kammeret 32, og er i stand til at udsende en stråle af elektroner. To elektromagnetiske afbøjningsspoler 36 og 38, er placeret på hver sin side af det rørformede element 12, og langs dettes længde. På indenfor acceleratorteknikken velkendt måde kan afbøjning af den fra katoden 34 udsendte elektronstråle opnås ved variering af forholdet mellem strømmen i spolerne 36 og 38. Til nærmere forklaring af anvendelsen af spolerne 36 og 38 til afbøjning af elektronstråler henvises til beskrivelsen til USA patent nr.A cathode 34, shown in the figure in scale, is located at one end of the chamber 32 and is capable of emitting a beam of electrons. Two electromagnetic deflection coils 36 and 38 are located on each side of the tubular member 12 and along its length. As is well known in the accelerator art, deflection of the electron beam emitted from cathode 34 can be achieved by varying the ratio of the current in coils 36 and 38.

3 066 238.3 066 238.

En elektronstyrestrålespolekonstruktion som i almindelighed betegnes med 40, befinder sig nær enden af tragten 14.An electron control beam coil assembly, generally designated 40, is located near the end of the hopper 14.

Under acceleratorens 10 drift evakueres kammeret 32, og en elektronstråle med ringe diameter udsendes fra katoden 34. Denne stråle dirigeres langs kammeret 32*s centerakse 42 og accelereres kraftigt i kammeret 32 som følge af en stor potentielforskel mellem katoden 34 og den ved den modsatte ende af kammeret 32 anbragte konstruktion med gitter og vindue 22. Når elektronstrålen indtræder i magnetfeltet mellem de feltet frem-bringende afbøjningsspoler 36 og 38, afbøjes den gennem et begrænset antal vinkelafbøjende baner, som til dels repræsenteres af linjerne 44. Denne vinkelafbøjning repræsenteres som optrædende i punktet 46. Når elektronstrålen rettes langs en af de divergerende baner 44, indtræder den i det magnetfelt, som frembringes af spolekonstruktionen 40. Når elektronstrålen pas- 5 142799 serer gennem spolekonstruktionen 40, afbøjes strålen igen således at den løber langs parallelle baner 48, når den bøjes fra den ene side af acceleratoren til den anden. Det bør observeres, at størrelsen af den nødvendige afbøjning aftager, når strålen løber fra den ene side af acceleratoren mod dennes midterakse 42, og derefter igen forøges, denne gang dog i den modsatte retning. Således må spolekonstruktionen 40 tilvejebringe et magnetfelt, som varierer både i strømtæthed og i retning fra den ene side af spolekonstruktionen til den anden.During the operation of the accelerator 10, the chamber 32 is evacuated and a small diameter electron beam is emitted from the cathode 34. This beam is routed along the center axis 42 of the chamber 32 and is strongly accelerated in the chamber 32 due to a large potential difference between the cathode 34 and the opposite end. The structure of the chamber 32 is provided with grating and window 22. As the electron beam enters the magnetic field between the field producing deflection coils 36 and 38, it is deflected through a limited number of angular deflection paths, which are partly represented by lines 44. This angular deflection is represented as occurring in point 46. When the electron beam is directed along one of the divergent paths 44, it enters the magnetic field produced by the coil structure 40. As the electron beam passes through the coil structure 40, the beam is deflected so that it runs along parallel paths 48 when it bends from one side of the accelerator to the other. It should be noted that the magnitude of the required deflection decreases as the jet runs from one side of the accelerator toward its center axis 42, and then increases again, this time, however, in the opposite direction. Thus, the coil assembly 40 must provide a magnetic field which varies both in current density and in the direction from one side of the coil assembly to the other.

I fig. 2 vises en spolekonstruktion i almindelighed betegnet med 66, som kan anvendes til afbøjning af en skanderet elektronstråle i blot én vinkelretning. Det af spolekonstruktionen 66 frembragte felt kan varieres i strømtæthed, men det kan også holdes enkeltrettet i området for den afbøjede elektronstråle.In FIG. 2 shows a coil assembly generally designated 66 which can be used to deflect a scanned electron beam in just one angular direction. The field produced by the coil structure 66 can be varied in current density, but it can also be kept single-directional in the region of the deflected electron beam.

En spolekonstruktion af denne type, er ønskelig ved udførelses-former, hvor den afbøjede elektronstråle må afbøjes i én retning, under en del af sin svungne bane, og derefter efterlades upåvirket af magnetfeltet, eller på anden måde afbøjet. En spolekonstruktion af denne type kan f.eks. anvendes i de tilfælde, hvor man ønsker at belyse et mål, som har langsom eller på anden måde kompliceret konfiguration.A coil construction of this type is desirable in embodiments where the deflected electron beam must be deflected in one direction, during part of its oscillating path, and then left unaffected by the magnetic field, or otherwise deflected. A coil construction of this type can e.g. is used in cases where one wants to elucidate a goal that has slow or otherwise complicated configuration.

I fig. 2 indeholder spolekonstruktion 66 en første stav 68 og en anden stav 70, som befinder sig i afstand fra og er parallel med den første stav 68. Én tredje stav 72 er placeret mellem den første og den anden stav, og er parallel med og adskilt fra disse stave. En fjerde stav 74, er placeret mellem den tredje stav 72 og den anden stav 70. Også den fjerde stav 74 er parallel med og i afstand fra de øvrige stave.In FIG. 2, coil assembly 66 contains a first rod 68 and a second rod 70 which are spaced apart and parallel to the first rod 68. One third rod 72 is located between the first and second rod and is parallel to and separated from these spells. A fourth rod 74 is located between the third rod 72 and the second rod 70. Also, the fourth rod 74 is parallel to and spaced from the other rods.

Respektive endedele 76 og 78 af den første og den anden stav har mellem sig en bane med lav reluktans, dannet af et forbindelseselement 80 af magnetisk materiale. Den anden endedel af den første stav 66 har en bane med lav reluktans, til den tredje stav 72, via et forbindelseelement 82 af magnetisk materiale. Analogt har den anden endedel af den anden stav 70 en bane med lav reluktans til den fjerde stav 74 via et forbindelseselement 84, som ligeledes er af magnetisk materiale.Respective end portions 76 and 78 of the first and second rods have a low reluctance web formed between a magnetic member connecting member 80. The second end portion of the first rod 66 has a low reluctance path, to the third rod 72, via a magnetic material connecting member 82. By analogy, the second end portion of the second rod 70 has a low reluctance path to the fourth rod 74 via a connecting member 84 which is also of magnetic material.

6 1427996 142799

Hver og en af stavene 66, 70, 72 og 74 er fremstillet af magnetisk materiale, har fortrinsvis rektangulært tværsnit, samt har et antal skruespiralviklede spoler 86 med mellemrum fordelt langs/længden.Each of the rods 66, 70, 72 and 74 is made of magnetic material, preferably having a rectangular cross section, and having a plurality of helical coils 86 spaced apart along the length.

De primære magnetfeltbaner markeres af de punkterede linier, som har pile til angivelse af retningen. Stillingen for et elektron-gennemtrængeligt vindue er markeret med de punkterede linier 88. Spolerne 86 i fig. 2 kan være elektrisk seriekoblede med hinanden eller på anden måde aktiverede af en elektrisk fødekilde.The primary magnetic field trajectories are marked by the dotted lines which have arrows to indicate the direction. The position of an electron-permeable window is marked by the dotted lines 88. The coils 86 of FIG. 2 may be electrically connected in series with one another or otherwise activated by an electric supply source.

I fig. 3 vises skematisk en experimented spolekonstruktion af lignende type, som spolekonstruktionen 66 i fig. 2. Spolerne A, B og C er placeret på hver arm af spolekonstruktionen. Spolerne A har flere viklinger end spolerne B, og spolerne B har flere viklinger end spolerne C. Således aftager antallet af viklinger i spolerne progressivt udefter i stavenes længde.In FIG. 3 schematically shows an experimented coil construction of similar type to the coil construction 66 of FIG. 2. The coils A, B and C are located on each arm of the coil assembly. The coils A have more windings than the coils B, and the coils B have more windings than the coils C. Thus, the number of windings in the coils progressively decreases along the length of the rods.

Fig. 4 viser et diagram over den feltfordeling, som blev opnået med en experimented spolekonstruktion af den i fig. 3 viste udførelsesform. Af fig. 4 fremgår, at feltfordelingen stort set er lineær i det område af vinduet 68, hvor spolekonstruktionen befinder sig.FIG. 4 shows a diagram of the field distribution obtained with an experimental coil construction of the one shown in FIG. 3. In FIG. 4 shows that the field distribution is largely linear in the area of the window 68 where the coil construction is located.

DK564272AA 1971-11-15 1972-11-14 Coil construction for deflecting a beam of electrically charged particles. DK142799B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19859971A 1971-11-15 1971-11-15
US19859971 1971-11-15

Publications (2)

Publication Number Publication Date
DK142799B true DK142799B (en) 1981-01-26
DK142799C DK142799C (en) 1981-08-24

Family

ID=22734033

Family Applications (1)

Application Number Title Priority Date Filing Date
DK564272AA DK142799B (en) 1971-11-15 1972-11-14 Coil construction for deflecting a beam of electrically charged particles.

Country Status (13)

Country Link
US (1) US3748612A (en)
JP (1) JPS4862376A (en)
AR (1) AR192493A1 (en)
BE (1) BE791387A (en)
CA (1) CA980023A (en)
DE (1) DE2255273C2 (en)
DK (1) DK142799B (en)
FR (1) FR2160419B1 (en)
GB (1) GB1388169A (en)
IT (1) IT973529B (en)
NL (1) NL152399B (en)
SE (1) SE381131B (en)
ZA (1) ZA727371B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3152735A1 (en) * 1981-02-23 1983-02-24 Oleg Aleksandrovic Gusev DEVICE FOR IRRADIATING OBJECTS WITH ELECTRONES
FR2510340A1 (en) * 1981-07-21 1983-01-28 Gusev Oleg Electron beam irradiation unit - has accelerator with scanning and deflection electromagnets arranged to reduce size and weight
GB2157069A (en) * 1984-04-02 1985-10-16 Philips Electronic Associated Step and repeat electron image projector
US6617586B2 (en) * 2002-01-18 2003-09-09 Scandinova Ab Beam delivery system
US6933507B2 (en) * 2002-07-17 2005-08-23 Kenneth H. Purser Controlling the characteristics of implanter ion-beams
US8604443B2 (en) * 2009-11-13 2013-12-10 Varian Semiconductor Equipment Associates, Inc. System and method for manipulating an ion beam
CN105097062A (en) * 2015-09-11 2015-11-25 中广核达胜加速器技术有限公司 Accelerator scanning box used for improving energy utilization rate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR847896A (en) * 1937-12-23 1939-10-18 Telefunken Gmbh Cathode ray deflector system
NL249741A (en) * 1959-03-23
US3469139A (en) * 1968-02-27 1969-09-23 Ford Motor Co Apparatus for electron beam control
US3541328A (en) * 1969-03-12 1970-11-17 Deuteron Inc Magnetic spectrograph having means for correcting for aberrations in two mutually perpendicular directions

Also Published As

Publication number Publication date
CA980023A (en) 1975-12-16
NL7215047A (en) 1973-05-17
JPS4862376A (en) 1973-08-31
BE791387A (en) 1973-03-01
NL152399B (en) 1977-02-15
US3748612A (en) 1973-07-24
DK142799C (en) 1981-08-24
DE2255273A1 (en) 1973-05-24
ZA727371B (en) 1973-06-27
IT973529B (en) 1974-06-10
GB1388169A (en) 1975-03-26
FR2160419B1 (en) 1976-04-23
AR192493A1 (en) 1973-02-21
AU4798672A (en) 1973-10-04
DE2255273C2 (en) 1983-06-01
SE381131B (en) 1975-11-24
FR2160419A1 (en) 1973-06-29

Similar Documents

Publication Publication Date Title
US2316214A (en) Control of electron flow
US6333969B1 (en) X-ray tube
US4675890A (en) X-ray tube for producing a high-efficiency beam and especially a pencil beam
JP4504344B2 (en) X-ray source
US4492873A (en) Apparatus for electron beam irradiation of objects
JPH02295038A (en) X-ray scanning tube with deflecting electrode
DK142799B (en) Coil construction for deflecting a beam of electrically charged particles.
KR102410722B1 (en) X-ray generator
US2680823A (en) Electron optic device for a beam propagating perpendicularly to crossed magnetic and electric fields
ES8609814A1 (en) Electron-beam device and semiconducteur device for use in such an electron-beam device.
US4126805A (en) X-ray tubes
US4492894A (en) Electron-beam forming system for multi-beam cathode-ray tubes
US2453647A (en) Electric discharge tube with deflection control
US3445708A (en) Electron diffraction unit
US2600142A (en) Electron-discharge tube
Lee Electron Gun for LEED Applications
US3869636A (en) Filament for electron guns
JP4204717B2 (en) Transmission X-ray tube device
US2609516A (en) Art of forming and utilizing electron-beams of noncircular cross section
Lowe et al. The distribution of rotational energy in N2+ excited by 3 kev Li+ ions
JP3527843B2 (en) Electron beam deflector
US3609401A (en) Line focus electron gun
US3454806A (en) System for the production of a flat electron beam for a traveling wave tube with purely electrostatic focusing
US3524056A (en) Double focusing spectrograph employing a rotatable quadrupole lens to minimize doppler broadening
US2391273A (en) Deflecting plate for cathode ray tubes

Legal Events

Date Code Title Description
PBP Patent lapsed