DK142664B - FAULT POWER PROTECTION SWITCH - Google Patents

FAULT POWER PROTECTION SWITCH Download PDF

Info

Publication number
DK142664B
DK142664B DK408471AA DK408471A DK142664B DK 142664 B DK142664 B DK 142664B DK 408471A A DK408471A A DK 408471AA DK 408471 A DK408471 A DK 408471A DK 142664 B DK142664 B DK 142664B
Authority
DK
Denmark
Prior art keywords
circuit breaker
core
induction
current
residual current
Prior art date
Application number
DK408471AA
Other languages
Danish (da)
Other versions
DK142664C (en
Inventor
H Roesch
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19702044302 external-priority patent/DE2044302B2/en
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of DK142664B publication Critical patent/DK142664B/en
Application granted granted Critical
Publication of DK142664C publication Critical patent/DK142664C/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by unbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by unbalance of two or more currents or voltages, e.g. for differential protection with differential transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/332Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means responsive to dc component in the fault current

Description

(11) FREMLÆ66ELSÉSSKRIFT 1 4266(11) PRESENTATION WRITING 1 4266

DANMARK <"> lnt.CI.’H 01 H 83/UDENMARK <"> lnt.CI.’H 01 H 83 / U

«(21) An*#enrng nr. 4084/71 (2¾ IraHove·» den 20 . 8Ug. I971 (24) Lobadag 20. aug. 1971 ' h (44) Aneogningen fremlagt og fremlsBggeiseeekriftet offentliggjort den 8. d.6C. 198Ο«(21) An * # enrng nr. 4084/71 (2¾ IraHove ·» den 20. 8Ug. I971 (24) Lobadag 20. aug. 1971 'h (44) Aneogningen fremlagt og fremlsBggeiseeekriftet publigt den 8. d.6C. 198Ο

DIREKTORATET FORDIRECTORATE FOR

PATENT-OG VAREMÆRKEVÆSENET (30) Prioritet begæret fra danPATENT AND TRADEMARK SYSTEM (30) Priority requested from dan

8. sep. I97O, 2044302, BESep 8 I97O, 2044302, BE

19. dec. I97O, 2062694, BEDec 19 I97O, 2062694, BE

(71) SIEMENS AKTIENGESKItLSCHAFT, Berlin und Muenchen, 8 Muenchen 2, Wit-= Telsbacherplatz 2, BE.(71) SIEMENS AKTIENGESKItLSCHAFT, Berlin und Muenchen, 8 Muenchen 2, Wit- = Telsbacherplatz 2, BE.

(72) Opfinder: Helmut Roes eh, Adalhert-Stif ter-Str. 29a, Regene burg, BE.(72) Inventor: Helmut Roes eh, Adalhert-Stif ter-Str. 29a, Regene burg, BE.

(74) Fuldmægtig under eagene behandling:(74) Agent under consideration:

Ingeniørfirmaet Giersing & Stelllnger.The engineering company Giersing & Stelllnger.

(54) Fejlstrømbeskytteleeeafbryder.(54) Faulty current protection circuit breaker.

Opfindelsen angår en fejlstrømbeskyttelsesafbryder raed en sum-strømtransformator, som har en magnetkerne raed priraærviklinger til tilslutning til en til overvågning bestemt strømkreds og med en sekundær-vikling, som føder magnetiseringsviklingen for en på en afbryderl&s for en afbryderindretning indvirkende udløsemagnet.The invention relates to a residual current circuit breaker with a sum current transformer which has a magnetic core with primary windings for connection to a circuit intended for monitoring and with a secondary winding which supplies the excitation winding of a tripping magnet acting on a switch for a switching device.

Hvis der i den overvågede strømkreds optraader en vekselstrømfejl-atrøm, opstår der i sekundærviklingen en spaanding, som følge af hvilken udløsemagneten reagerer, så at afbryderindretningen betjenes over afbryderlåsen til afbrydelse af den overvågede strømkreds.If an AC fault current occurs in the monitored circuit, a voltage is generated in the secondary winding, as a result of which the tripping magnet reacts so that the switch device is operated over the switch lock to interrupt the monitored circuit.

En sådan fejlstrømbeskyttelsesafbryder kunne hidtil ikke anvendes til overvågning af strømkredse, i hvilke der også kan forventes jævnstrømfejlstremme. Fejlstrømbeskyttelsesafbryderen udløses overhovedet ikke, hvis den gennemløbes af en jævnstrømfejlstrøm, da der som bekendt til ind-ucering af en spænding 1 sumstrømtransformatorens sekundær- 2 142664 vikling kræves en vekselstrøm i primærviklingen. End ikke den flux-ændring, som en i sumstrømtransformatorens primærvikling løbende, ved envejsensretning af4 vekselstrøm frembragt, pulserende jævnstrømfejlstrøm fremkalder i transformatoren, er så stor, at der induceres en til udløsning af fejlstrømbeskyttelsesafbryderen tilstrækkelig spænding i sumstrømtransformatorens sekundærspole.Such a residual current circuit breaker could not hitherto be used for monitoring circuits in which direct current fault currents can also be expected. The residual current circuit breaker is not tripped at all if it is passed through by a direct current fault current, since, as is known, a voltage in the primary winding is required to induce a voltage in the secondary winding of the sum current transformer. Not even the flux change which a pulsating DC fault current produced in the primary winding of the primary current transformer, produced by one-way alignment of 4 alternating current, causes in the transformer is so great that a voltage sufficient to trip the residual current circuit breaker is induced in the secondary current transformer.

Formalet med opfindelsen er at anvise en fejlstrømsbeskyttel— sesafbryder af den ovennævnte art, som også reagerer på jævnstrømsfejlstrømme.The object of the invention is to provide a residual current circuit breaker of the above-mentioned type which also responds to direct current fault currents.

Til løsning af denne opgave er en fejlstrømbeskyttelsesafbryder af den indledningsvis angivne art ejendommelig ved, at magnetkernens materiale er således valgt, at det har et udpræget stort induktionsudsving i forbindelse med udpræget stor impulspermeabilitet, hvorhos remanensen fortrinsvis er lille.To solve this problem, a residual current circuit breaker of the type indicated in the introduction is characterized in that the material of the magnetic core is chosen such that it has a markedly large induction fluctuation in connection with a markedly large impulse permeability, the residual being preferably small.

Opfindelsen beror således på den erkendelse, at årsagen til, at de kendte fejlstrømbeskyttelsesafbrydere ved pulserende jævnstrømsfejlstrømme ikke udløser ved den foreskrevne, ved vekselstrømfejlstrømme uden videre gældende aktiveringsværdi, ligger i, at både induktionsudsvinget og impulspermeabiliteten er for små ved de til fejlstrømtransformatorens kerne hidtil anvendte materialer, så at man følgelig kan løse det omhandlede problem blot ved passende valg af et egnet magnetkernemateriale. Dette er så meget mere overraskende, da sådanne materialer med de fornødne egenskaber længe har været kendt.The invention is thus based on the recognition that the reason why the known residual current circuit breakers do not trip at the prescribed DC fault currents at alternating current fault currents is that both the induction fluctuation and the impulse permeability are too small for the materials used. , so that, consequently, the present problem can be solved simply by appropriate selection of a suitable magnetic core material. This is all the more surprising since such materials with the required properties have long been known.

Hensigtsmæssigt har magnetkernen i strømtransformatoren et induktionsudsving på over 3000 Gauss, fortrinsvis på mindst 4000 Gauss, og en relativ impulspermeabilitet på mindst 1000.Suitably, the magnetic core of the current transformer has an induction fluctuation of over 3000 Gauss, preferably of at least 4000 Gauss, and a relative impulse permeability of at least 1000.

På grund af den høje impulspermeabilitet opnås små dimensioner for transformatoren og derved også for fejlstrømafbryderen, idet kun en forholdsvis ringe magnetisk aktivering er nødvendig for udløsning af fejlstrømafbryderen og fordi antallet af primære vindinger på strømtransformatoren kan holdes lille.Due to the high pulse permeability, small dimensions are obtained for the transformer and thereby also for the residual current circuit breaker, as only a relatively small magnetic activation is required for tripping the residual current circuit breaker and because the number of primary turns on the current transformer can be kept small.

Magnetkernen kan hensigtsmæssigt være en snitbåndkerne eller en ferrit med passende udvalgte egenskaber.The magnetic core may suitably be a cut tape core or a ferrite with suitably selected properties.

Opfindelsen er nærmere forklaret i det følgende under henvisning til tegningen, på hvilken fig. 1 viser hysteresesløjfer for kerner af magnetisk materiale, fig. 2 viser en fejlstrømbeskyttelsesafbryder ifølge opfindelsen, fig. 3 viser magnetiseringskarakteristikken for en hidtil almindelig fejlstrømbeskyttelsesafbryder og for en fejlstrømbeskyttelsesafbryder ifølge opfindelsen, 3 142664 fig. 4 viser en yderligere udførelsesform for fejlstrømbeskyttelsesafbryderen ifølge opfindelsen, fig. 5 viser magnetiseringskarakteristikken for fejl-strømbeskyttelsesafbryderen ifølge fig* 4.The invention is explained in more detail in the following with reference to the drawing, in which fig. 1 shows hysteresis loops for cores of magnetic material, fig. 2 shows a residual current circuit breaker according to the invention, fig. Fig. 3 shows the excitation characteristic of a hitherto common residual current circuit breaker and of a residual current circuit breaker according to the invention; Fig. 4 shows a further embodiment of the residual current circuit breaker according to the invention; 5 shows the excitation characteristic of the residual current circuit breaker according to FIG. 4.

Fig. 1 viser en hysteresesløjfe 1 (induktion B som ordinat med feltstyrken H som abscisse) for en kerne af magnetisk materiale med stort induktionsudsvingog en hysteresesløjfe 2 for en kerne af magnetisk materiale med lille induktionsudsvingΔΒ^, Ved induktionsudsvinget forstås differencen mellem mætningsinduktionen B^ og remanensinduktionen Br1 henholdsvis Br_.ΔΗ er feltstyrkeudsvinget indtil opnåelse af mætningsinduktionen· Kvotienten ^ (p0 = perme- abiliteten i det tomme rum) betegnes som impulspermeabilitet.FIG. 1 shows a hysteresis loop 1 (induction B as ordinate with the field strength H as abscissa) for a core of magnetic material with large induction oscillation and a hysteresis loop 2 for a core of magnetic material with small induction fluctuation ΔΒ. By the induction oscillation is meant the difference between saturation induction B1 and remanence induction. respectively Br_.ΔΗ is the field strength fluctuation until the saturation induction is obtained · The quotient ^ (p0 = permeability in the empty space) is referred to as impulse permeability.

Fejlstrømbeskyttelsesafbryderen J ifølge fig. 2 tjener til o-vervågning af ledningerne R/TJ og Mp i et elektrisk anlæg. Den har en sumstrømtransformator 4 med en magnetkeme 5» Magnetkernen 5 er en ringkerne, fortrinsvis en af et opviklet bånd af blødmagnetisk materiale bestående ringbåndkeme. Båndtykkelsen kan f.eks. andrage 0,006 til 0,3 mm. På denne magnetkerne sidder de i fig. 2 hver som en enkelt vinding viste primærviklinger 6 og en sekundærvikling 7* Primær-viklingerne 6 er indskudt i de til overvågning bestemte ledninger R/u og Mp. Sekundærviklingen 7 er tilsluttet til en magnetiseringsvikling 9 for en udløsemagnet 8. Denne udløsemagnet 8, som kan være en holdemagnet eller en arbejdsmagnet, indvirker gennem en mekanisk forbindelsesdel 8a på en afbryderlås 10, som gennem en koblingsstang 10a betjener afbryderkontakter 11, der indskudt i de overvågede ledninger R/TJ og Mp.The residual current circuit breaker J according to fig. 2 serves for o-monitoring of the wires R / TJ and Mp in an electrical system. It has a sum current transformer 4 with a magnetic core 5. The magnetic core 5 is a ring core, preferably a ring band core consisting of a wound band of soft magnetic material. The tape thickness can e.g. amount to 0.006 to 0.3 mm. On this magnetic core they sit in fig. 2 primary windings 6 shown as a single winding and a secondary winding 7 * The primary windings 6 are interposed in the lines R / u and Mp intended for monitoring. The secondary winding 7 is connected to a magnetizing winding 9 for a release magnet 8. This release magnet 8, which may be a holding magnet or a working magnet, acts through a mechanical connecting part 8a on a switch lock 10, which through a coupling rod 10a operates switch contacts 11 inserted in the monitored wires R / TJ and Mp.

Sums trømtransformat oren 4' s magnetkerne 5 har hensigtsmæssigt et induktionsudsving på over 3000 Gauss og en impulspermeabilitet på mindst 1000. Hensigtsmæssigt andrager induktionsudsvinget mindst 4000 Gauss.The magnetic core 5 of the sum current transformer oren 4 suitably has an induction fluctuation of more than 3000 Gauss and an impulse permeability of at least 1000 Ga. The induction fluctuation is suitably at least 4000 Gauss.

Et egnet materiale for magnetkemen 5 er f.eks. en kendt jern-nikkellegering, der indeholder 61-67 vægtprocent nikkel og 2-4 vægtprocent molybdæn såvel som små afiltnings- og bearbejdningstilsætninger (silicium og mangan indtil 1 vægtprocent) og resten jern. Denne legering respektive en af denne legering bestående ringbåndkeme blev giødet i 4-6 timer ved 950-1200°C og derefter i 3-5 timer opvarmet til en temperatur på 400—500°C. Opvarmningen til 400-500°C sker hensigtsmæssigt i et magnetfelt, hvis feltlinjer forløber på tværs af eller vinkelret på den retning, som magnetfluxen har i materialet, når dette er indbygget i form af magnetkemen i sums tr ømtransformator en.A suitable material for the magnetic core 5 is e.g. a known iron-nickel alloy containing 61-67% by weight of nickel and 2-4% by weight of molybdenum as well as small deoxygenation and processing additives (silicon and manganese up to 1% by weight) and the balance iron. This alloy or one of the alloy ring core cores was fertilized for 4-6 hours at 950-1200 ° C and then heated to a temperature of 400-500 ° C for 3-5 hours. The heating to 400-500 ° C suitably takes place in a magnetic field whose field lines extend transversely or perpendicularly to the direction which the magnetic flux has in the material, when this is built in in the form of the magnetic core in the sum current transformer.

* 142664 Mætningsinduktionen af* en således behandlet ringbåndkerne af denne legering andrager ca. 12500 Gauss, induktionsudsvinget ligger på 6000-11000 Gauss, og impulspermeabiliteten på 4000-1000.* 142664 The saturation induction of * a thus treated annular core of this alloy amounts to approx. 12500 Gauss, the induction fluctuation is at 6000-11000 Gauss, and the impulse permeability at 4000-1000.

En anden kendt, til sumstrømtransformatorens magnetkerne i fejlstrømbeskyttelsesafbryderen ifølge opfindelsen egnet jern-nikkellege-ring kan indeholde 75-82 vægt-% nikkel, 2-5>5 vægt-$ molybdæn og 0-5 vægt-9? kobber samt indtil 1 vægt-$ afiltnings- og bearbejdningstilsætninger (silicium og mangan) og resten jern. Jernindholdet andrager hensigtsmæssigt mindst 6,5 vægt-$. Denne legering respektive en deraf fremstillet ringbåndkerne blev giødet 2-6 timer ved 950-1220°C og derefter i 1-3 timer opvarmet til 450-600°C. Endelig blev legeringen respektive kernen yderligere tempereret i 1-50 timer ved 250-400°C. Tempereringen ved 250-400°C sker hensigtsmæssigt i et magnetfelt, hvis feltlinjer løber på tværs af eller vinkelret på den retning, som magnetfluxøn har i legeringen, når denne er indbygget i form af magnetkernen i sumstrøm-transformatoren. En således behandlet ringbåndkerne af denne legering har en mætningsinduktion på ca, 8000 Gauss og et induktionsudsving på 50OO-65OO Gauss samt en impulspermeabilitet på 15000-5000.Another known iron-nickel alloy suitable for the magnetic core of the sum current transformer in the residual current circuit breaker according to the invention may contain 75-82% by weight of nickel, 2-5> 5% by weight of molybdenum and 0-5% by weight of 9. copper as well as up to 1% by weight of de-blotting and processing additives (silicon and manganese) and the rest iron. The iron content is suitably at least 6.5% by weight. This alloy and a ring band core made therefrom were fertilized for 2-6 hours at 950-1220 ° C and then heated to 450-600 ° C for 1-3 hours. Finally, the alloy and core, respectively, were further tempered for 1-50 hours at 250-400 ° C. The tempering at 250-400 ° C suitably takes place in a magnetic field whose field lines run transversely or perpendicular to the direction which the magnetic flux island has in the alloy, when this is built in in the form of the magnetic core in the sum current transformer. A thus treated annulus core of this alloy has a saturation induction of about 8000 Gauss and an induction fluctuation of 50OO-65OO Gauss as well as an impulse permeability of 15000-5000.

Sumstrømtransformatorens magnetkerne 5 kan også bestå af tilsvarende ferritter, der er fremstillet med de forannævnte værdier for induktionsudsving og impulspermeabilitet.The magnetic core 5 of the sum current transformer may also consist of corresponding ferrites made with the aforementioned values for induction fluctuations and pulse permeability.

Virkemåden af fejlstrømbeskyttelsesafbryderen forklares nærmere under henvisning til fig. 3· I det i fig. 3 viste diagrams ordinat er afsat fluxen f respektive tiden t og i abscissen den i den overvågede strømkreds løbende fejlstrøm 1^. Hvis der løber en vekselstrømfejlstrøm svarende til den punkterede kurve 12 i fig. 3 gennem sumstrømtransformatoren 4, magnetiseres denne efter magnetiseringskarakteristikken 13. Ved passende størrelse af denne vekselstrøm vil hele magnetiseringskarakteristikken 13 gennemløbes under en periode af vekselstrømfejlstrømmen, og den optrædende fluxændring er meget stor, så at også den i sumstrømtransformatorens sekundærvikling inducerede spænding ifølge induktionsloven er så stor, at den overstiger udløsemagneten 8's aktiveringsspænding, så at fejlstrømbeskyttelsesafbryderen udløses uden vanskeligheder.The operation of the residual current circuit breaker is explained in more detail with reference to fig. 3 · In the embodiment shown in FIG. The diagram of the diagram shown in Fig. 3 is plotted for the flux f and the time t, respectively, and in the abscissa the residual current 1 If an alternating current current corresponds to the punctured curve 12 in FIG. 3 through the sum current transformer 4, it is magnetized according to the excitation characteristic 13. At a suitable magnitude of this alternating current, the whole excitation characteristic 13 will be traversed during a period of the alternating current fault current, and the flux change occurring is very large so that the voltage induced in the secondary current transformer , that it exceeds the activation voltage of the tripping magnet 8, so that the residual current circuit breaker is tripped without difficulty.

Har fejlstrømmen derimod karakter af en pulserende jævnstrøm svarende til den fuldt optrukne kurve 14 i fig. 3 (envejsjævnstrøm), gennemløbes ved magnetiseringen af magnetkernen 5 i sumstrømtransformatoren 3 magnetiseringskarakteristikken 13 kun indtil remanenspunktet 15. Induktionsudsvinget af sumstrømtransformatorens magnetkerne i fejlstrømbeskyttelsesafbryderen ifølge opfindelsen er imidlertid tilstrækkelig stor til, at fluxændringenΔίβ^ stadig er tilstrækkelig til en indu- cering af en spænding i sumstrømtransformatorens sekundærvikling, der 14266Λ j er større end ndløsenagneten 8's aktiveringøepænding, så at fejlstrøm» beskyttelsesafbryderen udløses. Til s menunligning er i fig. 3 »od punkterede linier vist den magnetiseringskarakteristik 16, som ville foreligge , hvis magnetkernens induktionsudsving ikke har den til udløsning af fejlstrømbeskyttelsesafbryderen fornødne størrelse. Ted forekomsten af en af pulserende jævnstrøm svarende til kurven l*t i fig* 3 bestående fejlstrøm vil magnetiseringskarakteristikken 16 kun gennemløbes til remanenspunktet 17» som ligger væsentlig højere end remanenspunktet 15» så at den tilsvarende fluxændring & er mindre end fluxændringen og ikke er tilstrækkelig til inducering af en spænding i sumstrømtransformatoren h 'e sekundærvikling 7» der overstiger aktiveringsværdien for udløsemagneten 8.On the other hand, the residual current has the character of a pulsating direct current corresponding to the solid curve 14 in fig. 3 (one-way direct current), the magnetization characteristic 13 is traversed by the magnetization of the magnetic core 5 in the sum current transformer 3 only up to the residual point 15. However, the induction fluctuation of the magnetic current transformer's magnetic core in the residual current circuit breaker according to the invention is large enough to change the flux. the secondary winding of the sum current transformer, which is 14266Λ j larger than the activation opening of the induction magnet 8, so that the residual current »protection circuit breaker is tripped. For s menu comparison, in fig. 3 »dotted lines show the excitation characteristic 16 which would exist if the induction oscillation of the magnetic core did not have the size required to trigger the residual current circuit breaker. With the occurrence of a residual current consisting of pulsating direct current corresponding to the curve 1 * in Fig * 3, the excitation characteristic 16 will only be passed to the residue point 17 »which is significantly higher than the residue point 15» so that the corresponding flux change & is less than the flux change and is not sufficient inducing a voltage in the sum current transformer h 'e secondary winding 7 »which exceeds the activation value of the tripping magnet 8.

Hvis magnetkernen i sumstrømtransformatoren i fejlstrømbeskyttel-sesabryderen ifølge opfindelsen yderligere har en stor impulspermeabi-litet, er stigningen af magnetiseringskarakteristikken 13 i fig. 3 meget stejl, d.v.s. den til udløsning af afbryderen nødvendige fluxændring A j)^ opnås allerede ved forholdsvis små fejlstrømme.If the magnetic core of the sum current transformer in the residual current circuit breaker according to the invention further has a large impulse permeability, the increase of the excitation characteristic 13 in FIG. 3 very steep, i.e. the flux change A j) ^ required to trigger the switch is obtained already at relatively small fault currents.

Fejlstrømbeskyttelsesafbryderen ifølge opfindelsen har navnlig den fordel» at forskellen mellem aktiveripgsværdierae for vekselstrem-fejlstrømmen og jævnetrømfejlstremmen er forholdsvis lille. Denne forskel er desto mindre, jo mindre remanensinduktionen af sumstrømtrans-formatorens magnetkerne er.The residual current circuit breaker according to the invention has in particular the advantage that the difference between the activation values of the alternating current residual current and the direct current residual current is relatively small. This difference is all the smaller the smaller the residual induction of the magnetic core of the sum current transformer.

Fejlstrømbeskyttelsesafbryderen 13 ifølge fig. h tjener ligeledes til overvågning af ledningerne R/U og i et elektrisk anlæg.The residual current circuit breaker 13 according to fig. h is also used to monitor the R / U cables and in an electrical system.

Den har en sumstrømtransformator ih med en magnetkerne 15* Denne mag-netkeme 15 er en snitbåndkerne, som består af to halvdele, som er sammenholdt af et spændebånd 15a, og mellem hvilke der findes to luftspalter 15b. Denne snitbåndkemes bånd kan bestå af en jern- nikkel legering, som ikke har nogen bestemt sammensætning, og som ikke er blevet under kastet nogen bestemt forbehandling. Båndtykkelsen i snitbåndkernen kan andrage f.eks. 0,06-0,3 mm. Denne snitbåndkerne omslutter de to tråde 16, som repræsenterer de to primærviklinger, og som er indskudt i de til overvågning bestemte ledninger R/U og Mp* Endvidere sidder på magnetkernen 15 en sekundærvikling 17» som er tilsluttet til magnetiserings-viklingen 19 i en udløsemagnet. Denne udløsemagnet 18, som kan være en holdemagnet eller en arbejdsmagnet, indvirker gennem en mekanisk forbindelsesdel 18a på en afbryderlås 20, som gennem en koblingsstang 20a betjener afbryderkontakter 21, der er indskudt i de til overvågning bestemte ledninger R/XJ og M^.It has a sum current transformer ih with a magnetic core 15 * This magnetic core 15 is a cutting band core which consists of two halves which are held together by a clamping band 15a and between which there are two air gaps 15b. The band of this cut-core core may consist of an iron-nickel alloy which has no particular composition and which has not been subjected to any particular pretreatment. The tape thickness in the cut tape core can amount to e.g. 0.06-0.3 mm. This sectional tape core encloses the two wires 16, which represent the two primary windings, and which are interposed in the lines R / U and Mp intended for monitoring. Furthermore, a magnetic winding 17 »which is connected to the magnetizing winding 19 in a tripping magnet . This release magnet 18, which may be a holding magnet or a working magnet, acts through a mechanical connecting part 18a on a switch lock 20, which through a coupling rod 20a operates switch switches 21 which are inserted in the lines R / XJ and M 2 intended for monitoring.

Den som snitbåndkerne udformede magnetkerne 15 har som felge af de to luftspalter 15b i sammenligning med en ringbåndkerne af samme op- 6 142664 bygning (se hysteresesløjfe 51 på fig. 5) en beskåret hysteresesløjfe (se hysteresesløjfe 52 på fig. 5) og dermed et væsentligt større induktionsudsving, der jo er defineret som differensen mellem mætningsinduktionen og remanensinduktionen. Fejlstrømbeskyttelsesafbryderen ifølge fig. 4 udløses, når ledningerne 16 gennemløbes af en vekselstrømfejlstrøm. Snitbåndkemen 15 's induktionsudsving er på grund af luftspalterne 15b tilstrækkelig stor til, at også den ved en i ledningerne 16 løbende pulserende jævnstrømfejlstrøm fremkaldte ændring af magnetfluxen er tilstrækkelig til indueering af en spænding i sumstrømstransformatoren lU's sekundærvikling 18, der overstiger aktiveringsspændingen for udløsemagneten 18, og at fejlstrømbeskyttelsesafbryderen også udløses ved gennemløb af en sådan pulserende jævnstrømfejlstrøm·The magnetic core 15 designed as the cut tape core has as a rim of the two air gaps 15b in comparison with an annular band core of the same construction (see hysteresis loop 51 in Fig. 5) a cropped hysteresis loop (see hysteresis loop 52 in Fig. 5) and thus a significantly larger induction fluctuations, which are defined as the difference between the saturation induction and the residue induction. The residual current circuit breaker according to fig. 4 is tripped when the lines 16 are traversed by an alternating current fault current. Due to the air gaps 15b, the induction oscillation of the section strip core 15 is sufficiently large that also the change of the magnetic flux induced by a pulsating direct current fault current flowing in the lines 16 is sufficient to induce a voltage in the secondary current transformer 18 which exceeds the activation voltage 18. and that the residual current circuit breaker is also triggered by the passage of such a pulsating direct current residual current ·

DK408471A 1970-09-08 1971-08-20 FAULT POWER PROTECTION SWITCH DK142664C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2044302 1970-09-08
DE19702044302 DE2044302B2 (en) 1970-09-08 1970-09-08 Residual current circuit breaker
DE2062694 1970-12-19
DE2062694A DE2062694B2 (en) 1970-09-08 1970-12-19 Residual current circuit breaker

Publications (2)

Publication Number Publication Date
DK142664B true DK142664B (en) 1980-12-08
DK142664C DK142664C (en) 1981-09-14

Family

ID=25759694

Family Applications (1)

Application Number Title Priority Date Filing Date
DK408471A DK142664C (en) 1970-09-08 1971-08-20 FAULT POWER PROTECTION SWITCH

Country Status (8)

Country Link
JP (2) JPS476429A (en)
AT (1) AT315949B (en)
BE (1) BE847794Q (en)
CH (1) CH538773A (en)
DE (1) DE2062694B2 (en)
DK (1) DK142664C (en)
FR (1) FR2106374B1 (en)
GB (1) GB1369817A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU78600A1 (en) * 1977-11-28 1979-06-13 Gath N Fault current protection switch
US4366520A (en) * 1981-03-25 1982-12-28 Magnetic Metals Corporation Differential transformer core for pulse currents
FR2520164A1 (en) * 1982-01-19 1983-07-22 Merlin Gerin OWN CURRENT DIFFERENTIAL TRIGGERING DEVICE
DE3202320A1 (en) * 1982-01-26 1983-07-28 Siemens AG, 1000 Berlin und 8000 München Fault current protection switch that responds to fault currents with direct current components
DE3244670A1 (en) * 1982-12-02 1984-06-07 Siemens AG, 1000 Berlin und 8000 München Fault current protection switch
US4622846A (en) * 1985-11-05 1986-11-18 Halliburton Company Consistency and static gel strength measuring device and method
FR2653610B1 (en) * 1989-10-25 1991-12-27 Etude Realisa Disjoncteurs SELECTIVE DIFFERENTIAL SWITCH WITH FAULT CURRENT.
DE19907320C2 (en) * 1999-02-20 2001-03-08 Aloys Wobben Toroidal core and its use
FR2993058B1 (en) * 2012-07-05 2014-08-08 Hager Electro Sas DEVICE FOR DIFFERENTIAL PROTECTION.
KR102539688B1 (en) 2016-04-28 2023-06-07 엘에스일렉트릭(주) Leakage Current Detector
CN107658092B (en) * 2016-07-25 2020-06-05 施耐德电气工业公司 Ferrite core, current transformer and earth leakage protection switch
CN112955989A (en) * 2018-11-08 2021-06-11 Tdk株式会社 Electromagnetic induction type power generation device

Also Published As

Publication number Publication date
AT315949B (en) 1974-06-25
JPS4712829A (en) 1972-06-28
FR2106374A1 (en) 1972-05-05
JPS476429A (en) 1972-04-10
DE2062694A1 (en) 1972-06-29
CH538773A (en) 1973-06-30
FR2106374B1 (en) 1976-04-30
DE2062694B2 (en) 1975-05-28
GB1369817A (en) 1974-10-09
BE847794Q (en) 1977-02-14
DK142664C (en) 1981-09-14

Similar Documents

Publication Publication Date Title
DK142664B (en) FAULT POWER PROTECTION SWITCH
US3693122A (en) Flux transfer trip device for electric circuit breakers
GB500472A (en) Improvements in and relating to high speed releasing devices suitable for electric circuit breakers
US3708723A (en) Low power magnetic circuit breaker
DK146400B (en) FAULT CURRENT PROTECTION SWITCH, ALSO REACTING
GB271439A (en) Improvements in and relating to thermal and magnetic protective or indicating devices for electric circuits
JPS61109423A (en) Cuttent limiter
US2431352A (en) Thermally responsive electrical relay system
US3123742A (en) Moser
US1696611A (en) Protective device
US2347777A (en) Signaling circuit
NO853987L (en) STROEMBEGRENSNINGSANORDNING.
US2283697A (en) Electroresponsive device
US3569876A (en) Magnetic-electric switch element
US1760542A (en) Electroresponsive device
US3313982A (en) Magnetic current zero sensing circuit
US2282833A (en) Electric protective device
US1315809A (en) Planoaraph co
US1547053A (en) Electric protective arrangement
GB229564A (en)
US1890775A (en) Instantaneous selective protective arrangement for direct current networks
FR2326028A1 (en) Leakage current circuit breaker with thermal protection - uses magnetic circuit including temperature dependent reluctance element
SU404140A1 (en)
US1586876A (en) Power-limiting method and apparatus
US1807846A (en) Transformer protective device

Legal Events

Date Code Title Description
PBP Patent lapsed