DK141763B - Zirconium alloy containing niobium, tin, iron and chromium and / or molybdenum. - Google Patents
Zirconium alloy containing niobium, tin, iron and chromium and / or molybdenum. Download PDFInfo
- Publication number
- DK141763B DK141763B DK364074AA DK364074A DK141763B DK 141763 B DK141763 B DK 141763B DK 364074A A DK364074A A DK 364074AA DK 364074 A DK364074 A DK 364074A DK 141763 B DK141763 B DK 141763B
- Authority
- DK
- Denmark
- Prior art keywords
- alloys
- alloy
- molybdenum
- chromium
- zirconium
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C16/00—Alloys based on zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Powder Metallurgy (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
(11) FREMLÆGGELSESSKRIFT 1 41763 DANMARK («11 Intel.» C 22 C 16/00 §(21) Ansøgning nr. 3640/74 (22) Indleveret den 8. jul. 1974 (23) Løbedag 8. jul. 1974 (44) Ansøgningen fremlagt og o fremlaeggelsesskriftet offentliggjort den 9 · Jhn * ‘ 9 ου DIREKTORATET FOR _ PATENT-OG VAREMÆRKEVÆSENET <3°) Prioritet bøgeret fra den(11) PUBLICATION REPORT 1 41763 DENMARK («11 Intel.» C 22 C 16/00 § (21) Application No 3640/74 (22) Filed on 8 Jul 1974 (23) Running day 8 Jul 1974 (44) ) The application presented and the letter of presentation published on 9 · Jhn * '9 ου DIRECTORATE FOR _ PATENT AND TRADEMARKET <3 °) Priority book from the
9. jul. 1973, 2801/73, NOJul 9 1973, 2801/73, NO
(71) AB ATOMENERGI, Studsvik, 611 01 Nykoeping, SE: ATOMENERGIKOMMISSIONEN, Strandgade 29, København K, DK: INSTITUTT FOR ATOMENERGI, Postboks 40, 2007 Kjeller, NO: UNITED KINGDOM-ATOMIC ENERGY AUTHORITY, 11, Char* les II Street, Loncfon S.W. 1, GB: VALTION TEKNILLINEN TUTKIMUSKESKUS, Loennrotln Katu 37, 00180 Helsingfors 18, FI.(71) AB ATOMENERGI, Studsvik, 611 01 Nykoeping, SEE: ATOMENERGY COMMISSION, Strandgade 29, Copenhagen K, DK: INSTITUTE OF ATOMENERGY, PO Box 40, 2007 Kjeller, NO: UNITED KINGDOM-ATOMIC ENERGY AUTHORITY, 11, Char * les II Street , Loncfon SW 1, GB: VALTION TEKNILLINEN TUTKIMUSKESKUS, Loennrotln Katu 37, 00180 Helsinki 18, FI.
(72) Opfinder: Liv Lunde, Askeladdveien 12, 1482 Nlttedal, NO: Gustaf Oes.t= berg, Karlavaegen 46, Stockholm, SE: Erich Tolksdorf, Rhoen Stresse 49, 6051 Nieder-Roden-Rollwold, DE: Raymond Cecil Asher, Woodcutts, Hermi* tage Road, Cold Ash, Newbury, Berks, GB: Gerard Slattery, "Winterings , Nr. Preston PR4 ORI, GB: Frank William Trowse, 1"2, Lea Road, Lea, ire* ston, GB: Christopher Tyzack, 19, GorseFank Road, Hale Barns, Chesbi= re, GB.(72) Inventor: Liv Lunde, Askeladdveien 12, 1482 Nlttedal, NO: Gustaf Oes.t = berg, Karlavaegen 46, Stockholm, SE: Erich Tolksdorf, Rhoen Stresse 49, 6051 Nieder-Roden-Rollwold, DE: Raymond Cecil Asher, Woodcutts, Hermi * take Road, Cold Ash, Newbury, Berks, GB: Gerard Slattery, "Winterings, No. Preston PR4 ORI, GB: Frank William Trowse, 1" 2, Lea Road, Lea, ire * ston, GB: Christopher Tyzack, 19, GorseFank Road, Hale Barns, Chesbi = re, GB.
(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:
Ingeniørfirmaet Hofman-Bang & Boutard.Hofman-Bang & Boutard Engineering Company.
(δ4) Zirconlumlegerlng indeholdende niobium, tin, jern og chrom og/eller molybden.(δ4) Zirconium alloy containing niobium, tin, iron and chromium and / or molybdenum.
Opfindelsen angår en korrosionsresistent zirconiumlegering indeholdende niobium, tin, jern og chrom og/eller molybden.The invention relates to a corrosion resistant zirconium alloy containing niobium, tin, iron and chromium and / or molybdenum.
Zirconiumlegeringer har i stor udstrækning været benyttet til indkapsling for nukleært brændsel, trykrør og andre komponenter inde i reaktorkernen på grund af deres lave neutrontværsnit kombineret med tilfredsstillende korrosions- og mekaniske egenskaber.Zirconium alloys have been widely used for encapsulation for nuclear fuel, pressure pipes and other components within the reactor core due to their low neutron cross-section combined with satisfactory corrosion and mechanical properties.
I kommercielle vandkølede atomreaktorer har zirconium-tin-legerin«· gerne »Zircaloy 2" (1,50% Sn, 0,15% Fe, 0,10% Cr og 0,05% Ni, resten Zr) og "Zircaloy 4" (1,50% Sn, 0,22% Fe, 0,10% Cr og højst 0,007% Ni, resten Zr) været benyttet i betydelig udstrækning.In commercial water-cooled nuclear reactors, zirconium tin alloys preferably have "Zircaloy 2" (1.50% Sn, 0.15% Fe, 0.10% Cr and 0.05% Ni, the remainder Zr) and "Zircaloy 4" (1.50% Sn, 0.22% Fe, 0.10% Cr and at most 0.007% Ni, the remainder Zr) have been used extensively.
2 141763 (Alle angivne procenter i denne beskrivelse er beregnet på vægt).(All percentages given in this specification are by weight).
Ved en temperatur under 300° C og uden radioaktiv bestråling har disse legeringer den laveste korrosionshastighed, som er rapporteret for zirconiumlegeringer, men deres korrosionshastighed øges hurtigt ved højere temperatur. Under kombineret påvirkning af oxygen og radioaktiv bestråling kan korrosionshastigheden blive øget betydeligt.At a temperature below 300 ° C and without radioactive radiation, these alloys have the lowest corrosion rate reported for zirconium alloys, but their corrosion rate increases rapidly at higher temperatures. Under the combined influence of oxygen and radioactive radiation, the corrosion rate can be significantly increased.
En række legeringer med meget bedre korrosionsmodstand ved hø je temperaturer end "Zircaloy 2 og 4" er allerede kendt. Alle disse legeringer, som i det væsentlige består af Zr, Cr og Fe, har den ulempe at have meget højere korrosionshastighed end ''Zircaloy 2 og 4" ved lave temperaturer. Korrosionsbestandigheden ved høje temperaturer er for de fleste af legeringerne afhængig af en kompliceret varmebehandling, som øger prisen på det færdige produkt, således at de ikke kan udnyttes kommercielt i stor målestok.A number of alloys with much better corrosion resistance at higher temperatures than "Zircaloy 2 and 4" are already known. All of these alloys, consisting essentially of Zr, Cr and Fe, have the disadvantage of having much higher corrosion rates than "Zircaloy 2 and 4" at low temperatures. For most of the alloys, the corrosion resistance depends on a complicated heat treatment which increases the price of the finished product so that they cannot be exploited commercially on a large scale.
Zirconium legeret med 1,0% Nb er blevet almindeligt benyttet til kapslingsrør i USSR, og zirconium legeret med 2,5% Nb bliver be-. nyttet til trykrør for reaktorer i mange lande. Disse legeringer har en korrosionshastighed, som er højere end "Zircaloy" uden bestråling, særlig i omgivelser som indeholder oxygen. Den sædvanlige vanskelighed med disse legeringer er,, at deres korrosionsopførsel er meget afhængig af en korrekt varmebehandling. Dette pro-— biem er specielt udpræget i forbindelse med svejsninger.Zirconium alloy with 1.0% Nb has been widely used for enclosure tubes in the USSR, and zirconium alloy with 2.5% Nb is used. used for pressure pipes for reactors in many countries. These alloys have a corrosion rate higher than "Zircaloy" without irradiation, especially in environments containing oxygen. The usual difficulty with these alloys is that their corrosion behavior is highly dependent on proper heat treatment. This problem is particularly pronounced in connection with welds.
Zirconium-niobium-tin-legeringer er også kendt. Blandt disse legeringer har man mest erfaring med "Ozhenite 0,5", (0,2% Sn, 0,1% Fe, 0,1% Ni og 0,1% Nb, resten Zr) og zirconium legeret med 3% Nb og 1% Sn. Kombinationen af Nb og Sn synes at give legeringer med en god korrosionsmodstand over et større temperaturområde, da Sn sikrer bestandigheden ved lav temperatur ved at modvirke den skadelige virkning af nitrogen. Legeringen med 3% Nb har samme ulemper som de ovenfor nævnte legeringer, der indeholder Nb, medens "Ozhenite 0,5" har den ulempe at have lavere styrke.Zirconium-niobium-tin alloys are also known. Among these alloys, one has the most experience with "Ozhenite 0.5", (0.2% Sn, 0.1% Fe, 0.1% Ni and 0.1% Nb, the remainder Zr) and zirconium alloy with 3% Nb and 1% Sn. The combination of Nb and Sn appears to provide alloys with good corrosion resistance over a larger temperature range, since Sn ensures low temperature resistance by counteracting the detrimental effect of nitrogen. The 3% Nb alloy has the same disadvantages as the above-mentioned Nb alloys, while "Ozhenite 0.5" has the disadvantage of having lower strength.
Fra svensk fremlæggelsesskrift nr. 319 309 kendes en zirconium-legering indeholdende 0,5-5 vægt-% niobium, 0,005-1 vægt-% beryllium og eventuelt et eller flere af stofferne tin, kobber, jern, chrom, molybden, vanadium, wolfram, tantal, nikkel, yttrium, antimon og tellur, samt resten zirconium (undtagen urenheder), hvorved mæng- 3 141763 den af komponenter ud over zirconium i legeringen udgør højst 10 vægt-%. Denne legering har et relativt højt niobiumindhold, og der vil derfor være en tendens til, at rent niobium udfældes fra den faste zirconium/niobiumfase i legeringen. Dette gør, at varmebehandlingen af legeringen bliver vanskeligere, og legeringens svejseegenskaber forringes.From Swedish Patent Specification No. 319,309, a zirconium alloy containing 0.5-5% by weight of niobium, 0.005-1% by weight of beryllium and possibly one or more of the substances tin, copper, iron, chromium, molybdenum, vanadium, tungsten is known. , tantalum, nickel, yttrium, antimony and tellurium, as well as the rest zirconium (except impurities), whereby the amount of components other than zirconium in the alloy constitutes a maximum of 10% by weight. This alloy has a relatively high niobium content, and therefore pure niobium tends to precipitate from the solid zirconium / niobium phase in the alloy. This makes the heat treatment of the alloy more difficult and the welding properties of the alloy deteriorate.
Zirconiumlegeringen ifølge den foreliggende opfindelse er ejendommelig ved, at den består af 0,25-1,50 vægt-% niobium, 0,025-0,20 vægt-% tin, 0,02-1,00 vægt-# summen af chrom og molybden og resten zirconium, idet den totale sum af niobium, chrom og molybden ligger mellem 0,7 og 1,8 vægt-#.The zirconium alloy of the present invention is characterized in that it consists of 0.25-1.50 wt% niobium, 0.025-0.20 wt% tin, 0.02-1.00 wt% of chromium and molybdenum and the remainder zirconium, the total sum of niobium, chromium and molybdenum being between 0.7 and 1.8% by weight.
Ved at tilsætte legeringer af Zr-Nb-Sn små mængder af chrom og molybden blev der opnået forbedret korrosionsmodstand og lavere følsomhed overfor varmebehandling. De specielle træk ved den nye legering er: - Korrosionsmodstand sammenlignelig med "Zircaloy 2 og 4" ved lav temperatur og ved høj temperatur sammenlignelig med de ved høj temperatur bedst modstandsdygtige zirconiumlegeringer.By adding alloys of Zr-Nb-Sn small amounts of chromium and molybdenum improved corrosion resistance and lower heat treatment sensitivity were achieved. The special features of the new alloy are: - Corrosion resistance comparable to "Zircaloy 2 and 4" at low temperature and at high temperature comparable to the best resistant zirconium alloys.
- Korrosionshastighed som ikke fremskyndes ved kombineret påvirkning af oxygen og radioaktiv bestråling.- Corrosion rate which is not accelerated by the combined influence of oxygen and radioactive radiation.
- God korrosionsmodstand og mekaniske egenskaber, som ikke er afhængige af komplicerede og kostbare varmebehandlinger.- Good corrosion resistance and mechanical properties that do not depend on complicated and expensive heat treatments.
Brugen af Sn sikrer modstanden ved lav temperatur, og de øvrige legeringstilsætninger sikrer modstanden ved høj temperatur. Eksperimenter har vist, at god korrosionsmodstand er afhængig af en fin og jævnt fordelt sekundærfase. Legeringerne ifølge opfindelsen opnår fordelingen af sekundærfasen ved normale fabrikationsrutiner, idet bratkøling og ældningstrin kun er nødvendige på emnestadiet.The use of Sn ensures the resistance at low temperature, and the other alloying additions ensure the resistance at high temperature. Experiments have shown that good corrosion resistance is dependent on a fine and evenly distributed secondary phase. The alloys of the invention achieve the distribution of the secondary phase by normal fabrication routines, with quenching and aging steps being required only at the workpiece stage.
En anden fordel er, at udskillelserne hindrer kornvækst ved forlænget opvarmning over omkrystallisationstemperatur. Denne effekt opstår ved fiksering af kornstrukturen på grund af udfældningen.Another advantage is that the secretions prevent grain growth by prolonged heating over recrystallization temperature. This effect arises from fixation of the grain structure due to the precipitation.
4 1417634 141763
Ved omfattende forsøg og prøvninger er det fastslået af ansøgerne, at der ved zirconiumlegeringer med legeringsbestanddele inden for de grænser, som angivet i patentkravet, overraskende opnås en væsentlig forenkling af legeringens termiske 'behandling. En besværlig bratkøling, som tidligere har været nødvendig for niobium-holdige zirconiumlegeringer, har det således været muligt at undgå, uden at legeringens korrosionsbestandighed og mekaniske styrkeegenskaber nedsættes. Dette er af særlig betydning ved tilvirkning af meget store reaktorkomponenter, som kan have en sådan længde-udstrækning, at en effektiv bratkøling næppe er mulig·, i alle tilfælde ikke i industriel målestok.By extensive trials and tests, the applicants have determined that, with zirconium alloys with alloying constituents within the limits set forth in the patent claim, a significant simplification of the alloy thermal treatment is surprisingly achieved. Thus, a troublesome quenching that has previously been necessary for niobium-containing zirconium alloys has been possible to avoid without reducing the alloy's corrosion resistance and mechanical strength properties. This is of particular importance in the manufacture of very large reactor components which can be of such length that effective quenching is hardly possible ·, in any case not on an industrial scale.
Chrom og molybden kan erstatte hverandre over et bredt blandings-område. Jern er næsten altid til stede som en uundgåelig forurening i zirconiumlegeringer. Fortrinsvis skal legeringerne indeholde mindst 0,02% Fe.Chromium and molybdenum can replace each other over a wide mixing range. Iron is almost always present as an inevitable contaminant in zirconium alloys. Preferably, the alloys should contain at least 0.02% Fe.
Fem legeringer som udgør foretrukne udførelsesformer er de nedenfor angivne legeringer "Scanuk 2, 3, 4, 5 og 6".Five alloys which constitute preferred embodiments are the alloys listed below "Scanuk 2, 3, 4, 5 and 6".
ee
Legering Nb Sn Cr Mo Fe 2 0,92-0,94 0,06-0,09 200 ppm 45 ppm 0,04 3 1,10-1,13 0,05-0,06 0,41-0,54 40 ppm 0,04-0,05 4 0,49-0,54 0,05-0,07 0,45-0,50 40 ppm 0,03-0,04 5 0,47-0,51 0,04-0,05 100 ppm 0,27-0,28 0,03-0,04 6 0,56-0,61 0,05-0,06 0,32 0,22 0,04Alloy Nb Sn Cr Mo Fe 2 0.92-0.94 0.06-0.09 200 ppm 45 ppm 0.04 3 1.10-1.13 0.05-0.06 0.41-0.54 40 ppm 0.04-0.05 4 0.49-0.54 0.05-0.07 0.45-0.50 40 ppm 0.03-0.04 0.47-0.51 0, 04-0.05 100 ppm 0.27-0.28 0.03-0.04 6 0.56-0.61 0.05-0.06 0.32 0.22 0.04
Resultater af korrosionsprøvninger for disse legeringer og nogle tidligere kendte legeringer er vist i tabellerne 1-6.Results of corrosion tests for these alloys and some prior art alloys are shown in Tables 1-6.
Korrosionsprøvningerne viser, at foretrukne legeringer bør indeholde 0,45-1,2 vægt-% niobium, 0,04-0,1 vægt-% tin, 0,25-0,60 vægt-% af summen af chrom og molybden og 0,02-0,05 vægt-% jern, idet den totale sum af niobium, chrom og molybden ligger mellem 0,7 og 1,8 vægt-^.The corrosion tests show that preferred alloys should contain 0.45-1.2% by weight niobium, 0.04-0.1% by weight tin, 0.25-0.60% by weight of the sum of chromium and molybdenum and 0 , 02-0.05% by weight of iron, the total sum of niobium, chromium and molybdenum being between 0.7 and 1.8% by weight.
Korrosionsprøvninger er blevet udført i autoklaver og prøvekredse under betingelser som specificeret i de nedenstående tabeller. Legeringerne er blevet prøvet som tyndplader og rør. Det vil fremgå, 5 141763 at de nye legeringer gør sig bemærket ved at have en korrosionshastighed, som er sammenlignelig med korrosionshastigheden for "Zirca-loy 2” ved lave temperaturer, og at de har en meget bedre korrosionshastighed ved høje temperaturer.Corrosion tests have been performed in autoclaves and test circuits under conditions as specified in the tables below. The alloys have been tested as thin sheets and tubes. It will be appreciated that the new alloys are noted to have a corrosion rate comparable to the corrosion rate of "Zirca-loy 2" at low temperatures and that they have a much better corrosion rate at high temperatures.
Det fremgår af tabel 5, at legeringernes hydrogen-optagelse over hele temperaturområdet 290-500° C er betydeligt lavere end for "Zircaloy 2".It can be seen from Table 5 that the hydrogen uptake of the alloys over the entire temperature range 290-500 ° C is significantly lower than that of "Zircaloy 2".
Legeringerne er blevet prøvet ved 240° C i Halden-reaktoren, og som det fremgår af tabel 6 er den gode korrosionsopførsel ved lave temperaturer også opretholdt under radioaktiv bestråling. Andre forbedrede legeringer, såsom Zr-Cr-Fe og "Ozhenite 0,5" har en meget højere korrosionshastighed.The alloys have been tested at 240 ° C in the Halden reactor, and as can be seen from Table 6, the good corrosion behavior at low temperatures is also maintained under radioactive irradiation. Other improved alloys such as Zr-Cr-Fe and "Ozhenite 0.5" have a much higher corrosion rate.
Tabel 7 viser en sammenligning af komstørrelsen for de forskellige legeringer ved forskellige temperaturer sammen med "Zirca-loy 2". Resultaterne viser klart de aktuelle legeringers forbedrede modstand mod kornvækst sammenlignet med "Zircaloy 2" ved samme temperatur.Table 7 shows a comparison of the grain size of the different alloys at different temperatures together with "Zirca-Loi 2". The results clearly show the current resistance of grain alloys to grain growth compared to "Zircaloy 2" at the same temperature.
Ved fabrikationen blev alle legeringer udstøbt til blokke med 15 cm diameter og varmebehandlet ved 1000-1050° C i 1 time. Blokken blev hamret til 20 cm diameter ved en temperatur på 950° C med efterfølgende varmebehandling ved 1000-1050° C i 1 time. Emnet blev så smedet til 14 cm diameter ved en temperatur på 950° C og igen varmebehandlet ved 1000-1050° C i 2 timer før en efterfølgende bratkøling i vand. Prøver til kemiske analyser, metallografisk undersøgelse af kornstørrelse og fordeling af intermetalliske partikler blev taget fra enden og midten af emnerne. Emnerne blev maskin-bearbejdet for at fjerne glødeskaller. Den videre behandling varierede, afhængigt af hvorvidt der skulle laves bolte, plader eller rør.During fabrication, all alloys were cast into blocks of 15 cm diameter and heat treated at 1000-1050 ° C for 1 hour. The block was hammered to 20 cm diameter at a temperature of 950 ° C with subsequent heat treatment at 1000-1050 ° C for 1 hour. The blank was then forged to 14 cm diameter at a temperature of 950 ° C and again heat-treated at 1000-1050 ° C for 2 hours before a subsequent quench in water. Samples for chemical analyzes, metallographic examination of grain size and distribution of intermetallic particles were taken from the end and middle of the blanks. The blanks were machined to remove incandescent shells. The further treatment varied, depending on whether bolts, plates or tubes were to be made.
1. Til fremstilling af bolte blev-materialet varmebehandlet ved 750° C og varmvalset til ønsket dimension med mellemliggende varmebehandlinger ved 750° C. Bolten blev derefter udsat for centerløs slibning, bejdset og giødet i 1 time ved 675° C.1. For making bolts, the material was heat treated at 750 ° C and hot rolled to the desired dimension with intermediate heat treatments at 750 ° C. The bolt was then subjected to centerless grinding, stained and cast for 1 hour at 675 ° C.
2. Til fremstilling af plader blev materialet varmebehandlet ved 750° C og smedet ved mellemglødning til 750° C. Den endelige tyk- ♦ 6 141763 kelse blev opnået ved koldvalsning med mellemglødning ved 675° C.2. For making sheets, the material was heat treated at 750 ° C and forged by medium annealing to 750 ° C. The final thickness was obtained by cold rolling with intermediate annealing at 675 ° C.
Den sidste udvalsning gav 60% tykkelsesreduktion uden yderligere varmebehandling.The final roll-out provided a 60% thickness reduction without further heat treatment.
3. Til fremstilling af rør blev emnet maskinbearbejdet, belagt med kobber, varmebehandlet ved 750° C og extruder et. Kobberet blev fjernet ved syrebejdsning, 0g rørene blev giødet ved 675° C. Rørene blev valset til ønsket dimension i et pilgrimsvalseværk med mellemglødning foretaget ved 675° C. Den endelige rørreduktion gav en arealreduktion på 70%, og rørene blev givet en sidste varmebehandling i 4 timer ved 600° C. Rørene blev slebet udvendigt og sandblæst indvendigt.3. For the manufacture of pipes, the workpiece was machined, coated with copper, heat-treated at 750 ° C and extruded. The copper was removed by acid machining, and the tubes were cast at 675 ° C. The tubes were rolled to the desired dimension in a medium annealing pilgrimage plant made at 675 ° C. The final tube reduction gave an area reduction of 70% and the tubes were given a final heat treatment. 4 hours at 600 ° C. The tubes were sanded externally and sand blasted inside.
TABEL 1 Vægtøgning for forskellige legeringer prøvet i afgasset vand ved 290° C. 74 kg/cm2 p Vægtøgning - mg/dmTABLE 1 Weight gain for various alloys tested in degassed water at 290 ° C. 74 kg / cm2 p Weight gain - mg / dm
Legering 168 504 1176 1848 2856 3452 ‘ timer timer timer timer timer timer "Soanuk 2” 8,2 10,5 13,7 16,4 18,9 20,5 3 8,4 11,4 14,8 17,6 20,4 22,3 4 8,2 9,9 12,2 14,0 15,7 16,9 :-.5 8,8 11,6 13,9 16,1 18,3 19,4 6 9,2 13,7 16,1 18,0 19,7 20,7Alloy 168 504 1176 1848 2856 3452 Hours Hours Hours Hours Hours "Soanuk 2" 8.2 10.5 13.7 16.4 18.9 20.5 3 8.4 11.4 14.8 17.6 20 4 22.3 4 8.2 9.9 12.2 14.0 15.7 16.9: - 5 8.8 11.6 13.9 16.1 18.3 19.4 6 9.2 13.7 16.1 18.0 19.7 20.7
Zr-2-plade 9,9 12,2 14,9 15,5 16,7 17,3 iS-plad? M«1 13-2 16>3 22’4 24’3 " trykrør 9,5 13,2 16,0 19,2 21,5 22,9 7 141763 TABEL 2 Vægtøgning for forskellige legeringer prøvet i vand med 7 ppm oxygen ved 290° C, 91 kg/cm2 2 Vægtøgning - mg/dmZr-2 plate 9.9 12.2 14.9 15.5 16.7 17.3 iS plate? M «1 13-2 16> 3 22'4 24'3" Pressure Tube 9.5 13.2 16.0 19.2 21.5 22.9 7 141763 TABLE 2 Weight gain for various alloys tested in water with 7 ppm oxygen at 290 ° C, 91 kg / cm2 2 Weight gain - mg / dm
Legering 168 528 1200 timer timer timer "Scanuk 2" 13,2 21,3 29,0 3 11,6 23,2 30,8 i 4 8,6 15,4 16,4 5 10,1 13,0 16,4 6 12,1 19,4 21,0Alloy 168 528 1200 hours hours hours "Scanuk 2" 13.2 21.3 29.0 3 11.6 23.2 30.8 in 4 8.6 15.4 16.4 5 10.1 13.0 16, 4 6 12.1 19.4 21.0
Zr-plade 11,9 14,3 16,4 ; plade1/2%Nb" 16'8 28’4 56,6 " trykrør 15,7 24,3 33,1 ......Zr plate 11.9 14.3 16.4; plate1 / 2% Nb "16'8 28'4 56.6" pressure tube 15.7 24.3 33.1 ......
TABEL 3 Vægtøgning for forskellige legeringerTABLE 3 Weight gain for different alloys
r\ Or \ O
prøvet i damp ved 400 C, 70 kg/cm 2 Vægtøgning - mg/dmtested in steam at 400 C, 70 kg / cm 2 Weight gain - mg / dm
Legering Γ Γ ~~ 72 336 624 1248 1752 2424 timer timer timer timer timer timer' ,fScanuk 2" 24,0 44,7 57,1 66·,'8 84,4 101,0 ; 3 23,0 46,0 62,9 80,7 112,8 151,2 4 22,2 34,0 45,1 52,6 68,5 93,2 j 5 28,4 40,6 51,9 61,0 77,9 103,4 6 27,5 50,4 60,5 69,0 89,2 113,6 iAlloy 33 72 ~~ 72 336 624 1248 1752 2424 Hours Hours Hours Hours Hours ', fScanuk 2 "24.0 44.7 57.1 66 ·,' 8 84.4 101.0; 3 23.0 46.0 62.9 80.7 112.8 151.2 4 22.2 34.0 45.1 52.6 68.5 93.2 j 5 28.4 40.6 51.9 61.7 77.9 103, 4 6 27.5 50.4 60.5 69.0 89.2 113.6 i
Zr-2 plade 25,4 38,1 53,8 61,5 78,6 93,9 jZr-2 plate 25.4 38.1 53.8 61.5 78.6 93.9 j
NblplJd? 38’5 75>0 99»3 132»° 192’2 260’8 ' " trykrør 29,6 48,9 62,3 70,5 90,4 120,5 i 8 141763 TABEL 4 Vægtøgning for forskellige legeringer prøvet i damp ved 500° C, 70 kg/cm2 Vægtøgning - mg/dmNblplJd? 38'5 75> 0 99 »3 132» ° 192'2 260'8 '"Pressure Tube 29.6 48.9 62.3 70.5 90.4 120.5 i 8 141763 TABLE 4 Weight gain for various alloys tested in steam at 500 ° C, 70 kg / cm2 Weight gain - mg / dm
Legering - 72 168 336 672 1008 timer timer timer timer timer "Scanuk 2" 80,6 135 229 447 644,7 3 92,3 149 294 539 751,7 4 64,8 109 233 420 597,9 5 76,5 133 234 416 569,4 6 90,1 153 293 518 734,3Alloy - 72 168 336 672 1008 Hours Hours Hours Hours "Scanuk 2" 80.6 135 229 447 644.7 3 92.3 149 294 539 751.7 4 64.8 109 233 420 597.9 5 76.5 133 234 416 569.4 6 90.1 153 293 518 734.3
Zr-2-plade 5797 desintegreretZr-2 plate 5797 disintegrated
Nb-pladf 111 207 457 776 1050·6 " trykrør 84,4 132 334 556 742,7 TABEL 5 Vægtøgning for legeringer testet i 331 dage under 12 2 bestråling ved en neutronfluks på 10 neutron/cm *sek i vand _ved 240° C__ Vægt- Område Antal UdseendeNb Platform 111 207 457 776 1050 · 6 "Pressure Tube 84.4 132 334 556 742.7 TABLE 5 Weight gain for alloys tested for 331 days under 12 irradiation at a neutron flux of 10 neutron / cm * sec in water _ at 240 ° C__ Weight- Range Number of Appearances
Legering øgning mg/dm^ prøver "Scanuk 2" 62,1 58,0-64,2 4 Sort, glinsende 3 53,4 51,9-54,3 4 " » 4 55,9 51,0-58,0 4 Sort, noget mat 5 76,5 72,8-79,0 3 " " " 6 69,8 63,0-79,0 4 Sort, glinsende (66,6) (63,0-69,1) (3)Alloy increase mg / dm ^ samples "Scanuk 2" 62.1 58.0-64.2 4 Black, glistening 3 53.4 51.9-54.3 4 "» 4 55.9 51.0-58.0 4 Black, some matt 5 76.5 72.8-79.0 3 "" "6 69.8 63.0-79.0 4 Black, glossy (66.6) (63.0-69.1) ( 3)
Zr-2,5% Nb 58,1 51,9-63,0 3 Grå, mat "Ozhenite 143,4 135,8-150,6 3 Sort, glinsende 0,5"Zr-2.5% Nb 58.1 51.9-63.0 3 Gray, matt "Ozhenite 143.4 135.8-150.6 3 Black, glistening 0.5"
Zr-Cr-Fe 130,9 ; 128,4-133,3 3 SortZr-Cr-Fe 130.9; 128.4-133.3 3 Black
Zr-2 54,3 ! 53,1-55,6 3 Sort, glinsende 141763 9 TABEL 6Zr-2 54.3! 53.1-55.6 3 Black, shiny 141763 9 TABLE 6
Hydrogenoptagelse under forskellige orøvn-iripsforholdHydrogen uptake under various furnace-irrip conditions
^—I—————I I I II I j " ' ........ I ' ‘ " 1 " 1 —I. P^ —I ————— I I I II I j "'........ I' '" 1 "1 —I. P
i . Afgasset vand 9 Damp 9 Damp Qi. Degassed water 9 Vapor 9 Vapor Q
2goo ?4 kg/cm^ 400o 70 kg/cm^ 500o c> 70 kg/cm^ 2856 timer 2682 timer 1008 timer2goo? 4 kg / cm ^ 400o 70 kg / cm ^ 500o c> 70 kg / cm ^ 2856 hours 2682 hours 1008 hours
Legering mgH2/dm2 % H2 mgH2/dm2 % H2 mgH2/dm2 % H2 "Scanuk 2" 0,23 . 9,7 3,02 21,3 28,81 36,8 3 0,23 9,7 4,74 21,7 52,11 57,4 4 0,20 10,7 3,98 31,6 32,19 43,4 5 0,28 11,7 4,39 28,7 37,57 55,6 6 0,29 11,8 6,29 38,9 53,02 56,9Alloy mgH2 / dm2% H2 mgH2 / dm2% H2 mgH2 / dm2% H2 "Scanuk 2" 0.23. 9.7 3.02 21.3 28.81 36.8 3 0.23 9.7 4.74 21.7 52.11 57.4 4 0.20 10.7 3.98 31.6 32.19 43.4 5 0.28 11.7 4.39 28.7 37.57 55.6 6 0.29 11.8 6.29 38.9 53.02 56.9
Zr-2 plade 0,88 41,9 5,37 40,7 desintegreret plade590 ^ °’38 l4’° 7’75 20’7 ^36 37,3 " trykrør 0,30 11,0 3,43 20,1 34,20 38,1 TABEL 7Zr-2 plate 0.88 41.9 5.37 40.7 disintegrated plate590 ^ ° '38 l4' ° 7'75 20'7 ^ 36 37.3 "pressure tube 0.30 11.0 3.43 20.1 34.20 38.1 TABLE 7
Kornstørrelsens afhængighed af glødetemperaturGrain size dependence on annealing temperature
Legeringalloy
Tid Temperatur "Scanuk "Scanuk "Scanuk "Scanuk "Scanuk 7 P (timer) (° C) 2" 3" 4" 5" 6"Time Temperature "Scanuk" Scanuk "Scanuk" Scanuk "Scanuk 7 P (hours) (° C) 2" 3 "4" 5 "6"
Gennemsnitlig kornstørrelse iwm 550 4,1 3,8 3,6 3,7 3,9 4,9 600 4,7 4,2 3,9 4,1 4,4 5,8 24 650 5,3 4,4 4,3 4,5 5,1 7,3 700 7,4 5,1 5,0 5,8 5,9 9,2 760 9,0 6,3 6,5 6,7 6,6 11,9Average grain size in 550 4.1 3.8 3.8 3.7 3.9 4.9 600 4.7 4.2 3.9 4.1 4.4 5.8 24 650 5.3 4.4 4 , 3 4.5 5.1 7.3 700 7.4 5.1 5.0 5.8 5.9 9.2 760 9.0 6.3 6.5 6.7 6.6 11.9
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO280173 | 1973-07-09 | ||
NO2801/73A NO130993C (en) | 1973-07-09 | 1973-07-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK364074A DK364074A (en) | 1975-04-14 |
DK141763B true DK141763B (en) | 1980-06-09 |
DK141763C DK141763C (en) | 1980-11-03 |
Family
ID=19879153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK364074AA DK141763B (en) | 1973-07-09 | 1974-07-08 | Zirconium alloy containing niobium, tin, iron and chromium and / or molybdenum. |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS547494B2 (en) |
DE (1) | DE2432664A1 (en) |
DK (1) | DK141763B (en) |
FI (1) | FI65816C (en) |
FR (1) | FR2236955B1 (en) |
GB (1) | GB1460185A (en) |
NO (1) | NO130993C (en) |
SE (1) | SE404379B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076018B2 (en) * | 1986-07-29 | 1995-01-25 | 三菱マテリアル株式会社 | Zr alloy with excellent corrosion resistance for reactor fuel cladding |
DE3862606D1 (en) * | 1987-04-23 | 1991-06-06 | Gen Electric | CORROSION-RESISTANT ZIRC ALLOYS. |
FR2626291B1 (en) * | 1988-01-22 | 1991-05-03 | Mitsubishi Metal Corp | ZIRCONIUM-BASED ALLOY FOR USE AS A FUEL ASSEMBLY IN A NUCLEAR REACTOR |
JP2580273B2 (en) * | 1988-08-02 | 1997-02-12 | 株式会社日立製作所 | Nuclear reactor fuel assembly, method of manufacturing the same, and members thereof |
US5560790A (en) * | 1993-03-04 | 1996-10-01 | A.A. Bochvar All-Russian Inorganic Materials Research Institute | Zirconium-based material, products made from said material for use in the nuclear reactor core, and process for producing such products |
CN115011822B (en) * | 2022-06-13 | 2023-07-18 | 国核宝钛锆业股份公司 | Preparation method of square-outside and round-inside zirconium alloy section bar |
-
1973
- 1973-07-09 NO NO2801/73A patent/NO130993C/no unknown
-
1974
- 1974-07-08 DE DE2432664A patent/DE2432664A1/en active Pending
- 1974-07-08 SE SE7408970A patent/SE404379B/en unknown
- 1974-07-08 DK DK364074AA patent/DK141763B/en not_active IP Right Cessation
- 1974-07-09 FI FI2106/74A patent/FI65816C/en active
- 1974-07-09 FR FR7423856A patent/FR2236955B1/fr not_active Expired
- 1974-07-09 GB GB3040774A patent/GB1460185A/en not_active Expired
- 1974-07-09 JP JP7861874A patent/JPS547494B2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
NO130993C (en) | 1975-03-25 |
JPS547494B2 (en) | 1979-04-07 |
FR2236955A1 (en) | 1975-02-07 |
DK141763C (en) | 1980-11-03 |
SE7408970L (en) | 1975-01-10 |
FR2236955B1 (en) | 1977-06-24 |
NO130993B (en) | 1974-12-09 |
JPS50148213A (en) | 1975-11-27 |
GB1460185A (en) | 1976-12-31 |
FI65816C (en) | 1984-07-10 |
FI210674A (en) | 1975-01-10 |
DE2432664A1 (en) | 1975-01-30 |
SE404379B (en) | 1978-10-02 |
FI65816B (en) | 1984-03-30 |
DK364074A (en) | 1975-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4212686A (en) | Zirconium alloys | |
US4075010A (en) | Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors (LMFBRS) | |
CN1818111B (en) | Zirconium based alloys having excellent creep resistance | |
US5985211A (en) | Composition of zirconium alloy having low corrosion rate and high strength | |
US3298826A (en) | Embrittlement-resistant iron-chromium-aluminum-yttrium alloys | |
GB1559069A (en) | Gamma prime hardened nickel-iron based superalloy | |
US4019900A (en) | High strength oxidation resistant nickel base alloys | |
US4556423A (en) | Austenite stainless steels having excellent high temperature strength | |
US4006015A (en) | Ni-Cr-W alloys | |
GB1558936A (en) | High strangth ferritic alloy | |
US4231795A (en) | High weldability nickel-base superalloy | |
JPH01275740A (en) | Austenite stainless steel alloy | |
DK141763B (en) | Zirconium alloy containing niobium, tin, iron and chromium and / or molybdenum. | |
RU2126559C1 (en) | Zirconium base alloy tube for nuclear reactor fuel assembly | |
RU2360992C1 (en) | Low-activated heat-resistant radiation-resistant steel | |
US4877465A (en) | Structural parts of austenitic nickel-chromium-iron alloy | |
DE102020132193A1 (en) | Use of a nickel-chromium-iron-aluminum alloy with good workability, creep resistance and corrosion resistance | |
RU2187155C2 (en) | Alloy and tube for nuclear reactor fuel assembly and tube manufacturing process | |
GB1569071A (en) | High temperature nickle-base alloys | |
US4033767A (en) | Ductile corrosion resistant alloy | |
US3576622A (en) | Nickel-base alloy | |
KR100286871B1 (en) | Zirconium alloy composition with excellent corrosion resistance and mechanical properties | |
JPS6335750A (en) | Zr alloy for nuclear reactor fuel clad pipe excellent in corrosion resistance | |
US4481033A (en) | High Mn-Cr non-magnetic steel | |
US5122334A (en) | Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |