DK141221B - ROTATION SYMMETRIC CASSEGRAIN ANTENNA - Google Patents

ROTATION SYMMETRIC CASSEGRAIN ANTENNA Download PDF

Info

Publication number
DK141221B
DK141221B DK509575A DK509575A DK141221B DK 141221 B DK141221 B DK 141221B DK 509575 A DK509575 A DK 509575A DK 509575 A DK509575 A DK 509575A DK 141221 B DK141221 B DK 141221B
Authority
DK
Denmark
Prior art keywords
reflector
mirror
antenna
microwave
elevation
Prior art date
Application number
DK509575A
Other languages
Danish (da)
Other versions
DK141221C (en
DK509575A (en
Inventor
W Rebhan
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of DK509575A publication Critical patent/DK509575A/en
Publication of DK141221B publication Critical patent/DK141221B/en
Application granted granted Critical
Publication of DK141221C publication Critical patent/DK141221C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/191Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface wherein the primary active element uses one or more deflecting surfaces, e.g. beam waveguide feeds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

OD FREMLÆ66ELSESSKRIFT 141221 DANMARK (en int.ci.3 h 01 q 19/18 i (21) Ansøgning nr. 5095/75 (22) indleveret den 12. nov. 1975 (23) Løbedag 12. HOV. 1975 (44) Ansøgningen fremlagt ogOD PUBLICATION MANAGEMENT 141221 DENMARK (int.ci.3 h 01 q 19/18 in (21) Application No 5095/75 (22) filed on 12 Nov 1975 (23) Race day 12. HOV 1975 (44) The application presented and

fremlæggelsesskriftet offentliggjort den 4. feb. I98Othe petition published on Feb. 4; I98O

DIREKTORATET FORDIRECTORATE OF

PATENT-OG VAREMÆRKEVÆSENET (30) Prioritet begæret fra denPATENT AND TRADE MARKET (30) Priority requested from it

25. dec. 1974, 2461283, DE25 dec. 1974, 2461283, DE

(71) SIEMENS AKTIENGESELLSCHAfT, Berlin und Muenchen, 8 Mienchen 2, Wittels= ‘Uacherplatz 2, DE.(71) SIEMENS SHARE COMPANY, Berlin and Munich, 8 Mienchen 2, Wittels = 'Uacherplatz 2, DE.

(72) Opfinder: Wolfgang Rebhan, 8000 Muenchen 90, Schoenetraese 62, JE.(72) Inventor: Wolfgang Rebhan, 8000 Muenchen 90, Schoenetraese 62, JE.

(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:

Internationalt Patent-Bureau.International Patent Office.

(64) Rotationssyrametrisk Cassegrain-antenne.(64) Cassegrain rotary symmetric antenna.

Opfindelsen angår en rotationssynmetrisk Cassegrain-antenne med to indbyrdes uafhængige omdrejningsakser for elevation og azimut, hvor sende/modtage-apparaturet for informationssignalet er anbragt stationært i antennesoklen, hvor azimutaksen og hovedreflektorens oadrejningeakse er beliggende i ét plan, og hvor raikrobølgefødearrangementet, via hvilket det stationære sende/modtageappara-tur står i forbindelse med hovedreflektorens centrale fødeåbning, på sende/mod-tagesiden har et antennens azimutbevægelse optagende mikrobølgedrejeled og på hovedreflektorsiden et antennens elevationsbevægelse optagende 2-spejIsarrangement, som omfatter et første uden for azimutaksen men på elevationsaksen anbragt spejl og et andet i elevations- og azimutaksernes skæringspunkt anbragt og om den førstnævnte akse drejeligt spejl. Antenner af denne art egner sig i særlig grad til at formidle radioforbindelsen med legemer, der flyver i det ydre rum, hvor 2 141221 det af hensyn til de svage signaler, der modtages, er nødvendigt at have en antenne med et skarpt afgrænset strålebundt og med en stor antenneforstærkning til rådighed. De antenner, som er opbygget efter de af Cassegrain opstillede principper, som er analoge med de i optikken gældende, kræver fremfor alt i forbindelse mpd de ved satellitkommunikation ofte anvendte frekvenser imellem 2 og 6 GHz en betydelig teknisk indsats på grund af hovedreflektorens størrelse med diametre på indtil 30 meter og derover, og kravene øges yderligere af den omstændighed, at en antenne i almindelighed skal være sporingsdygtig, dvs. være bevægelig omkring to indbyrdes uafhængige omdrejningsakser for elevation og azimut.The invention relates to a Cassegrain rotationally symmetric antenna having two mutually independent rotational axes for elevation and azimuth, wherein the transmit / receive apparatus for the information signal is stationary in the antenna base, where the azimuth axis and the main reflector oscillation axis are located in one plane, and where the rotary wave is transmit / receive equipment is connected to the central reflector central feed opening, on the transmit / receive side, an antenna's azimuthal motion accommodates microwave rotating joints, and on the main reflector side an antenna's elevation motion accommodates 2-mirror arrangement which includes a first outside azimuthal axis but on a student axis but placed second in the intersection of the elevation and azimuthal axes and the mirror rotating about the former axis. Antennas of this kind are particularly suitable for conveying the radio connection to bodies flying in outer space, where, due to the weak signals received, it is necessary to have an antenna with a sharply defined beam of radiation and with a large antenna gain available. The antennas built according to Cassegrain's principles, which are analogous to those in optics, require, above all, in connection with the frequencies often used in satellite communication between 2 and 6 GHz, a considerable technical effort due to the size of the main reflector with diameters. of up to 30 meters and above, and the requirements are further increased by the fact that an antenna in general must be traceable, ie. be movable about two mutually independent rotational axes for elevation and azimuth.

Som det tydeligt fremgår af meddelelser fra Siemens AG*s centrallaboratorium for transmissionsteknik "Nachrichtentechnische Fachberichte",bind 32, 1967, side 23-33, er der anstillet en mangfoldighed af overvejelser, som angår en egnet måde at opbygge det mikrobølgefødearrangement på, som danner forbindelsen imellem sende/ modtageapparaturet og antennens hovedreflektor. Et bølgelederdrejeled for fødehornet er tilstrækkelig, når det rum, sende/modtageapparaturet er anbragt i, deltager i antennens azimutbevægelse. Det samme litteratursted (fig. 10 med tilhørende beskrivelse) og tillige tysk offentliggørelsesskrift 1.541.611 anviser også løsninger på, hvordan det kontrolrum, som indeholder sende/modtageapparaturet, kan anbringes stationært i antennesoklen. I dette tilfælde anvendes der som mikrobølgefødearrangement en knækket hornparabol, der imellem knækket og parabolreflektoren er forsynet med et andet drejeled til optagelse af antennens bevægelse omkring elevationsaksen. Denne konstruktive løsning reducerer ganske vist det tekniske opbud, men medfører dog ulemper for så vidt angår antennens elektriske egenskaber. Navnlig i dette tilfælde må visse usymmetrier i fødehornets strålingsfelt tages med i købet, hvilket blandt andet bevirker en uønsket overstråling af primærstrålingen ud over randen på Cassegrain-antennens hjælpereflektor, og medfører større sidesløjfer i antennens strålingsdiagram. Herudover forringes Cassegrain-antennens forstærkning og virkningsgrad.As is clear from messages from Siemens AG * s Central Laboratory of Transmission Technology "Nachrichtentechnische Fachberichte", Vol. 32, 1967, pages 23-33, a variety of considerations have been provided concerning a suitable way of constructing the microwave feed arrangement which forms the connection between the transmitting / receiving apparatus and the main reflector of the antenna. A waveguide swivel for the feed horn is sufficient when the space in which the transmitter / receiver is located participates in the azimuthal motion of the antenna. The same literature (Fig. 10 with accompanying description) and German publication publication 1,541,611 also provide solutions for how the control room containing the transmitting / receiving apparatus can be placed stationary in the antenna base. In this case, as a microwave feed arrangement, a broken horn satellite is used, which is provided between the crack and the satellite reflector with a second swivel joint for recording the movement of the antenna around the elevation axis. This constructive solution does reduce the technical range, but brings about disadvantages as far as the electrical properties of the antenna are concerned. In particular, in this case, certain asymmetries in the cornea's radiation field must be included, which causes, among other things, an unwanted radiation of the primary radiation beyond the rim of the Cassegrain antenna's auxiliary reflector, and causes larger side loops in the antenna radiation diagram. In addition, the gain and efficiency of the Cassegrain antenna deteriorates.

I tidsskriftet "Frequenz", årgang 22, 1968, hefte 5, side 151-156 og i "IEEE Transactions on Antennas and Propagations", november 1973, side 884-886 angives en anden løsning på konstruktionen af en Cassegrain-antennes mikrobølgefødearrangement, ved hvilken sende/modtageapparaturet ligeledes kan være anbragt stationært i antennesoklen. Dette mikrobølgefødearrangement udgør her et 4-spejls mikrobølgelederarrangement. Det består af en langs azimutaksen anbragt stationær primærstråler, hvis stråling rettes igennem hovedreflektorens centrale åbning og hen på hjælpereflektoren via fire spejle, der hver foretager en 90°'s afbøjning. Funktionen af de til fødearrangementet nødvendige drejeled for antennens elevations- og azimutbevægelser varetages af de hver for sig indbyrdes drejelige par 141221 3 bestående af primærstråleren og det første spejl samt det tredje og fjerde spejl. 4-Spejlsmikrobølgelederarrangementet giver mulighed for at udforme strålingsfeltet tilnærmet rotationssymmetrisk ved en passende udformning af primær-stråleren. Praksis har dog vist,at 4-spejls .mikrobølgelederarrangementet nødvendiggør en meget omfattende justering af de fire spejle, idet unøjagtigheder i justeringen summeres, hvorfor strålingsforvrængninger med hensyn til amplitude, fase og polarisation allerede ved små justeringsfejl kan antage et betydeligt omfang. Polarisationsfejl må fremfor alt i forbindelse med såkaldt dobbeltfrekvensudnyttelse (udstråling henholdsvis modtagelse af to ortogonalt polariserede signaler) være ekstremt små. Selv ved eksakt justering medfører et sådant spejlsystem på grund af dets principielle usymmetrier endnu visse strålingsforvrængninger, som tiltager med antallet af spejle. Tabene ved et sådant system tiltager også med antallet af spejle, idet spejlenes overstrålinger i praksis ikke kan undgås fuldstændigt.In the journal "Frequenz", year 22, 1968, booklet 5, pages 151-156 and in "IEEE Transactions on Antennas and Propagations", November 1973, pages 884-886, another solution to the design of a Cassegrain antenna's microwave feeding arrangement is given by which transmitting / receiving apparatus may also be stationary in the antenna base. This microwave feeding arrangement here constitutes a 4-mirror microwave conductor arrangement. It consists of a stationary primary beam located along the azimuth axis, the radiation of which is directed through the central aperture of the main reflector and onto the auxiliary reflector via four mirrors, each making a 90 ° deflection. The function of the rotary joints necessary for the feed arrangement for the elevation and azimuth movements of the antenna is handled by the separately rotatable pairs of the primary beam and the first mirror as well as the third and fourth mirrors. The 4-mirror microwave conductor arrangement allows for the radiation field to be approximately rotationally symmetrical in an appropriate design of the primary radiator. However, practice has shown that the 4-mirror microwave conductor arrangement requires a very extensive adjustment of the four mirrors, inaccuracies in the alignment are summed up, so radiation distortions in terms of amplitude, phase and polarization can assume a considerable extent even with small adjustment errors. Above all, polarization errors in connection with so-called double frequency utilization (radiation or reception of two orthogonally polarized signals) must be extremely small. Even with precise adjustment, such a mirror system, due to its principle asymmetries, still causes certain radiation distortions which increase with the number of mirrors. The losses in such a system also increase with the number of mirrors, since in practice, the radiations of the mirrors cannot be completely avoided.

Det er opfindelsens formål i forbindelse med en rotationssymmetrisk Casse-grain-antenne, hvor sende-modtageapparaturet er stationært anbragt i antennesok-len, at anvise en anden løsning på mikrobølgefødearrangementet, der forener de ved de kendte løsninger givne fordele uden at have de dermed forbundne ulemper.It is the object of the invention in connection with a rotationally symmetric Casse-grain antenna, where the transmitting-receiving apparatus is stationarily arranged in the antenna base, to provide another solution to the microwave feeding arrangement, which combines the advantages given by the known solutions without having the associated disadvantages.

Dette formål opnås ifølge opfindelsen ved, at mikrobølgefødearrangementet indeholder en et symmetrisk strålingsfelt frembringende hornstråler, der via et bølgelederstykke er forbundet med mikrobølgedrejeleddet og ved fri stråling og uden egne bølgeledningsmidler bestråler det første spejl, og at mikfobølgestrålin-gen på strækningen mellem det første spejl og hovedreflektorens centrale fødeåbning via det andet spejl ligeledes udelukkende dirigeres ved fri stråleudbredelse uden egne bølgeledningsmidlers mellemkomst. Herved dirigerer det første spejl strålingen i elevationsaksens retning mod det andet spejl, som igen dirigerer strålingen igennem hovedreflektorens centrale fødeåbning og hen på hjælpereflektoren.This object is achieved according to the invention in that the microwave feeding arrangement comprises a symmetrical radiation field producing horn rays which are connected via a waveguide piece to the microwave rotary joint and by free radiation and without own waveguides irradiate the first mirror and that the microwave beam radiation and the the central reflector's central feed opening via the second mirror is also directed solely by free beam propagation without the intervention of its own waveguides. In this way, the first mirror directs the radiation in the direction of the elevation axis towards the second mirror, which in turn directs the radiation through the central reflector's central feed opening and onto the auxiliary reflector.

Fra tidsskriftet "Japan Telecommunications Review", april 1973, side 101-110, kendes ganske vist allerede en rotationssynmetrisk Cassegrain-antenne, der i stedet for et drejeled til optagelse af antennens bevægelse omkring elevationsaksen gør brug af en 2-spejls. mikrobølgeleder.I denne kendte udførelsesform er den primærstråler, der beetråler det første spejl i 2-spejls mikrobølgelederen, ligeledes anbragt stationært i antennesoklen ved siden af sende/modtageapparatu-ret.. For at gøre dette muligt er antennens omdrejningsakse imidlertid forskudt i forhold til azimutaksen, hvilket vil sige, at de to akser i dette tilfælde ikke er beliggende i samme plan. Denne detalje medfører en overordentlig kompliceret konstruktion, der som følge af de særlige krav, der stilles til stabiliteten og til antennens maksimale omløbshastighed, i praksis kun kan realiseres i forbindelse med små antenner, der har en ringe vagt.Of course, from the journal "Japan Telecommunications Review", April 1973, pages 101-110, there is already known a rotationally symmetric Cassegrain antenna which uses a 2-mirror instead of a swivel to record the antenna's movement around the elevation axis. In this known embodiment, the primary beam which radiates the first mirror of the 2-mirror microwave conductor is also stationary in the antenna base adjacent to the transmitter / receiver apparatus. , that is, in this case, the two axes are not located in the same plane. This detail results in an exceedingly complicated construction which, in practice due to the special demands made on the stability and to the maximum circulation speed of the antenna, can in practice only be realized in connection with small antennas having a low guard.

141221 4141221 4

Ved den ifølge opfindelsen givne løsning, nemlig kombinationen af en 2-spejls mLkrobølgeleder og et mikrobølgedrejeled, realiseres et mikrobølgeføde-arrangement til Cassegrain-antenner af vilkårlig størrelse og med et stationært sende/modtageapparatur, der er de beskrevne kendte løsninger overlegen i et ikke ubetydeligt omfang.2-Spejls mikrobølgelederarrangementet ifølge opfindelsen sikrer en optimal antenneforstærkning på grund af meget små tab og på grund af et ringe justeringsarbejde i forbindelse med de to spejle som følge af den hermed opnåelige symmetri af strålingsfeltet. Det tillader også, at azimutaksen og antennens omdrejningsakse anbringes i ét plan, hvilket er af udslaggivende betydning for en gunstig mekanisk opbygning af antennekonstruktionen. Det som følge af det lille antal spejle og tilsvarende ringe antal af justeremekanismer reducerede pladskrav til fødesystemet har ligeledes en gunstig indvirkning på antennens mekaniske opbygning.In the solution provided according to the invention, namely the combination of a 2-mirror microwave conductor and a microwave rotary joint, a microwave feed arrangement for Cassegrain antennas of any size and with a stationary transmitting / receiving apparatus which are the known solutions described is realized in a not insignificant manner. Scope 2 - The microwave conductor arrangement according to the invention ensures an optimal antenna gain due to very small losses and due to poor adjustment work in connection with the two mirrors due to the symmetry of the radiation field thus obtained. It also allows the azimuth axis and the axis of rotation of the antenna to be placed in one plane, which is of decisive importance for a favorable mechanical construction of the antenna structure. The reduced space requirements for the feeding system due to the small number of mirrors and correspondingly small number of adjustment mechanisms also have a favorable effect on the mechanical construction of the antenna.

Det er hensigtsmæssigt at anbringe det første spejl i 2-spejls mikrobølgelederen i hornstrålerens nærfelt. Ved en foretrukken udførelsesform for 2-spejls mikrobølgelederarrangementet er hornstråleren udformet som et bølgehorn og det første spejl scm et ellipsoidespejl. Det andet spejl kan enten være krumt eller plant. Bølgelederstykket er herved samnensat af et krumt bølgelederstykke og et hertil sluttet lige bølgelederstykke.It is convenient to place the first mirror in the 2-mirror microwave conductor in the near field of the horn. In a preferred embodiment of the 2-mirror microwave conductor arrangement, the horn jet is designed as a wave horn and the first mirror is an ellipsoid mirror. The other mirror can be either curved or flat. The waveguide piece is hereby composed of a curved waveguide piece and a straight waveguide piece attached thereto.

For at opnå et så ringe tab som muligt inden for 2-spejls mikrobølgeleder-.arrangementet er det fordelagtigt at det lige bølgelederstykkes tværsnit er udvidet i forhold til et sådant bølgeledertværsnit, hvor kun hovedsvingningen kan udbrede sig. Overgangene til det krumme bølgelederstykke og til hornstråleren er herved indrettet således, at fremkomsten af højere svingningstyper bliver så lille som muligt.In order to achieve as small a loss as possible within the 2-mirror microwave conductor arrangement, it is advantageous to extend the cross-section of the straight waveguide piece relative to such a waveguide cross-section where only the principal oscillation can propagate. The transitions to the curved waveguide piece and to the horn beam are hereby arranged so that the appearance of higher vibration types becomes as small as possible.

Opfindelsen forklares nærmere nedenfor under henvisning til tegningen, hvor fig. 1 viser en rotationssymmetrisk Cassegrain-antenne af kendt art med to indbyrdes uafhængige omdrejningsakser for elevation og azimut, og hvor sende-modtageapparaturet befinder sig stationært i antennesoklen, og fig. 2 en modifikation ifølge opfindelsen af den i fig. 1 viste antenne.The invention is explained in more detail below with reference to the drawing, in which fig. Fig. 1 shows a rotationally symmetrical Cassegrain antenna of known type with two mutually independent rotational axes for elevation and azimuth, and the transmitting-receiving apparatus being stationary in the antenna base; 2 is a modification according to the invention of the embodiment of FIG. 1.

Ved den i fig. 1 viste kendte antenne er hovedreflektoren betegnet med 1, hjælpereflektoren med 2, hjælpereflektorstativet med 3, hovedreflektorens centrale fødeåbning med 4, mikrobølgefødearrangementet i form af en knækket homparabol med et rundt horntværsnit med 5, drejeleddet for antennens elevationsbevægelse, der hvor knækket i den knækkede hornparabol befinder sig, med 6, bølgeledertilgangen for den knækkede hornparabol i form af et krumt bølgelederstykke med 7, bølgelederdrejeleddet med 8, et kontrolrum med 9 og det i kon- . trolrummet anbragte sende-modtageapparatur med 10. Elevationsaksen og azimutaksen er betegnet med henholdsvis E og A.In the embodiment shown in FIG. 1, the main reflector is denoted by 1, the auxiliary reflector by 2, the auxiliary reflector stand by 3, the central reflector feed opening by 4, the microwave feed arrangement in the form of a broken home parabolic with a round horn cross section with 5, There is, with 6, the waveguide access for the broken horn parabola in the form of a curved waveguide piece of 7, the waveguide swivel of 8, a control room of 9 and the one in con. the spell space provided transmit-receiving apparatus with 10. The elevation axis and azimuth axis are denoted by E and A. respectively.

5 1412215 141221

Ved en bevægelse af antennen omkring azimutakeen A kompenseres den knækkede hornparabol 5's drejebevægelse af bølgelederdrejeleddet 8 oven for kontrolrummet 9's loft. Drejeleddet 6 ved hompårabolen 5's knæk, som ligger i elevationsaksen E, kompenserer for antennens bevægelse omkring elevationsaksen.By moving the antenna around the azimuthake A, the rotational movement of the cracked horn parabola 5 is compensated by the waveguide rotary joint 8 above the ceiling of the control room 9. The swivel 6 at the crack of the homing ball 5 located in the elevation axis E compensates for the antenna's movement around the elevation axis.

Som allerede nævnt giver den knækkede hornparabol 5 anledning til en vie usymmetri i strålingsfeltet omkring den centrale fødeåbning 4, der primært skyldes, at hornparabolen fødes med den ikke-rotationssymmetriske H^-hovedsvingning fra den runde bølgeleder. Den i det væsentlige omkring azimutaksen A spejlsymmetriske opbygning af totalkonstruktionen, tilvejebragt ved at anbringe azimutaksen og hovedreflektorens symmetriakse i- et fælles plan,muliggøres ved denne kendte konstruktion derved,at hornet i hornparabolen 5 i den nederste ende munder ud i det langs azimutaksen A anbragte bølgelederdrejeled via det krumme bølgelederstykke 7.As already mentioned, the cracked horn parabola 5 gives rise to a wide asymmetry in the radiation field around the central food aperture 4, which is primarily due to the horn parabola being fed with the non-rotationally symmetric H 2 head oscillation from the round waveguide. The essentially symmetrical structure of the total structure, about the azimuth axis A, provided by placing the azimuth axis and the axis of symmetry in a common plane, is enabled by this known construction, in that the horn of the horn parabola 5 at the lower end opens into the longitudinal azimuth. waveguide swivel joint via the curved waveguide piece 7.

Ifølge opfindelsen er, som vist i fig. 2, den knækkede hornparabol 5, som udgør mikrobølgefødearrangementet, erstattet af et 2-spejls mikrobølgelederarraige-ment. Til det krumme bølgelederstykke 7, som har et rundt tværsnit, og i den ende der vender bort fra mikrobølgedrejeleddet 8, er der sluttet et lige bølgelederstykke 11 med et eventuelt rundt tværsnit, som udmunder i hornstråleren 12. Hornstråleren 12 er et såkaldt bølgehom, eksempelvis af den art der er beskrevet i tidsskriftet "Microwaves", januar 1973 på * siderne 44-49. I et sådant bølgehorn frembringes hybride svingningstyper, der resulterer i et i høj grad symmetrisk strålingsfelt for en sådan hornstråler. Det krumme bølgelederstykke 7 fastlægger en strålingsretning for hornstråleren 12, som afviger fra azimutaksen A's retning.Hornstråleren 12 bestråler med sit strålingsfelt det første spejl 13 i 2-spejls mikrobølgelederen,der herved kan have en ellipsoideformet kontur.According to the invention, as shown in FIG. 2, the cracked horn parabola 5, which is the microwave feed arrangement, replaced by a 2-mirror microwave conductor arrangement. To the curved waveguide piece 7, which has a round cross-section, and at the end facing away from the microwave rotating link 8, is connected a straight waveguide piece 11 with a possible round cross-section, which opens into the horn radiator 12. The horn radiator 12 is a so-called wave hom, of the kind described in the journal "Microwaves", January 1973 on * pages 44-49. In such a wave horn, hybrid oscillation types are produced which result in a highly symmetric radiation field for such a horn. The curved waveguide piece 7 defines a radiation direction for the horn radiator 12 which differs from the azimuth axis A's direction. The horn radiator 12 irradiates, with its radiation field, the first mirror 13 in the 2-mirror microwave conductor, which may thereby have an ellipsoid contour.

Det første spejl 13 afbøjer strålingen i retning af elevationsaksen E på det andet spejl 14, der er anbragt i skæringspunktet imellem elevationsaksen og azimutaksen, og som i den her beskrevne udførelsesform kan være en let krummet konveks reflektor. Det andet spejl 14 afbøjer på sin side strålingen igennem hovedreflektoren l's centrale fødeåbning 4 og hen på hjælpereflektoren 2, således som de med stiplede linjer antydede pile viser. Som det endvidere fremgår af fig. 2,er hovedreflektoren i området omkring den centrale fødeåbning forsynet med et rørformet mundstykke 15, som herved udøver en skærmende funktion over for den i retning af hjælpereflektoren 2 ved det andet spejl 14 afbøjede stråling.The first mirror 13 deflects the radiation in the direction of the elevation axis E of the second mirror 14 located at the intersection of the elevation axis and the azimuth axis and which in the embodiment described herein may be a slightly curved convex reflector. The second mirror 14, in turn, deflects the radiation through the central feed opening 4 of the main reflector 1 and onto the auxiliary reflector 2, as the dotted lines indicate. Furthermore, as can be seen from FIG. 2, the main reflector in the region of the central feed opening is provided with a tubular nozzle 15, which thereby exerts a shielding function towards the radiation deflected in the direction of the auxiliary reflector 2 by the second mirror 14.

Det første spejl 13's ellipsoideformede kontur dimensioneres hensigtsmæssigt således, at ellipsoidens ene brændpunkt kommer til at ligge i hornstråleren 12's fasecentrum. Det andet virtuelle brændpunkt lægges således, at der,således som forløbet af strålegangen antyder, opnås et let konvergent strålebundt, hvorved tab som følge af overstråling af det andet spejl 14, som på grund af det i iMtåConveniently, the ellipsoidal contour of the first mirror 13 is dimensioned such that one focal point of the ellipsoid lies in the phase center of the horn radiator 12. The second virtual focal point is placed such that, as the course of the radiation passage suggests, a slightly convergent beam bundle is obtained, thereby causing losses due to the irradiation of the second mirror 14, as a result of the iMtå

Claims (2)

6 U1221 høj grad rotationssymmetriske tværfelt i sig selv nok kan holdes lille, reduceres endnu mere. Ved at anvende et strålebundt, der konvergerer i retningen fra reflektoren 13 mod reflektoren 14, skabes der yderligere mulighed for at gøre reflektoren 13 større end reflektoren 14. Herved kan man ikke blot reducere overstrålingstabene ved reflektoren 13 yderligere, men der består yderligere den konstruktivt gunstige mulighed at øge afstanden imellem bølgehornet 12 og reflektoren 13 og derved formindske længden af det forbindende bølgelederstykke 11. I fig. 2 er det andet spejl 14 plant. Såfremt der imidlertid i retningen mod hjælpereflektoren 2 skal udstråles et let konvergent strålebundt, tildeles spejlet 14 en passende let konkav form. Det lige bølgelederstykke 11 bevirker så på grund af dets længde uønskede tab, når dets tværsnit er således dimensioneret, at kun bølgelederens hovedsvingning kan udbrede sig heri. Disse tab lader sig let reducere væsentligt ved, at dets tværsnit udvides i forhold til ovennævnte tværsnit. For i dette tilfælde at undgå fremkomsten af højere svingningstyper så meget som muligt skal dets overgange til det krumme bølgelederstykke 7 og til hornstråleren 12 tilpasses. De bevægelsesforhold, der gælder for det i fig. 2 viste 2-spejls. mikrobølge-lederarrangement, svarer til dem,der gælder for den i fig. 1 viste knækkede hornparabol.Det samlede 2-spejls mikrobølgelederarrangement deltager i azimutbevægelsen, mens det kun er det andet spejl 14, der deltager i elevationsbevægelsen. Den i fig. 2 viste udførelsesform har i forhold til den i fig. 1 viste kendte konstruktion ikke blot fordelen af, at der er strålingssymmetri, men også den væsentlige fordel,at det i fig. 1 viste og som følge af dets store diameter forholdsvis kostbare HF-drejeled 6 kan undværes. Som det fremgår af fig. 2, er der i transmissionsvejen imellem det lige bølgelederstykke 11 og det krumme bølgelederstykke 7 anbragt endnu et tilpasningsled 13', der er nødvendig, såfremt antennen samtidigt skal benyttes til pejlingsformål.6 U1221 high-degree rotationally symmetrical cross-field itself can be kept small, reduced even more. By using a beam bundle that converges in the direction from the reflector 13 towards the reflector 14, it is further possible to make the reflector 13 larger than the reflector 14. This not only can further reduce the radiation losses at the reflector 13, but there is further the constructively favorable the possibility of increasing the distance between the wave horn 12 and the reflector 13, thereby reducing the length of the connecting waveguide piece 11. In FIG. 2 is the second mirror 14 plane. However, if a slightly convergent beam bundle is to be radiated in the direction of the auxiliary reflector 2, the mirror 14 is assigned a suitably slightly concave shape. The straight waveguide piece 11 then, because of its length, causes undesirable losses when its cross-section is dimensioned so that only the principal oscillation of the waveguide can propagate therein. These losses can easily be substantially reduced by expanding its cross-section relative to the above-mentioned cross section. In this case, to avoid the appearance of higher vibration types as much as possible, its transitions to the curved waveguide piece 7 and to the horn radiator 12 must be adapted. The conditions of movement applicable to the one shown in FIG. 2 shows the 2-mirror. microwave conductor arrangement, similar to those applicable to the one shown in FIG. 1 The broken 2-mirror microwave conductor arrangement participates in the azimuth movement, while only the second mirror 14 participates in the elevation motion. The FIG. 2 in relation to the embodiment shown in FIG. 1 shows not only the advantage of radiation asymmetry, but also the substantial advantage that in FIG. 1, and due to its large diameter, relatively expensive HF swivel joints 6 can be avoided. As shown in FIG. 2, in the transmission path between the straight waveguide piece 11 and the curved waveguide piece 7, another fitting link 13 'is needed, if the antenna is to be used simultaneously for bearing purposes. 1. Rotationssymmetrisk Cassegrain-antenne med to indbyrdes uafhængige omdrejningsakser for elevation og azimut, hvor sende/modtageapparaturet for informationssignalet er anbragt stationært i antennesoklen, hvor azimutaksen og hovedreflektorens omdrejningsakse er beliggende i ét plan, og hvor mikrobølgefødearran-gementet, via hvilket det stationære sende/modtageapparatur står i forbindelse med hovedreflektorens centrale fødeåbning, på sende/modtagesiden har et antennens azimutbevægelse optagende mikrobølgedrej eled (8)og på hovedreflektorsiden et antennens elevationsbevægelse optagende 2-spejlsarrangement, som omfatter et første uden for azimutaksen men på elevationsaksen anbragt spejl (13) og et andet i eleva-1. Rotationally symmetric Cassegrain antenna with two mutually independent rotational axes for elevation and azimuth, wherein the transmit / receive apparatus for the information signal is stationary in the antenna base, where the azimuth axis and the main reflector axis of rotation are located in one plane, and the microwave feed station transmitting, / receiving apparatus communicates with the central reflector central feed opening, on the transmit / receive side has an antenna azimuthal motion receiving microwave (8) and on the main reflector side an antenna elevation motion receiving 2-mirror arrangement which includes a first off azimuth axis but on elevation axis 13 and another in the eleva-
DK509575A 1974-12-23 1975-11-12 ROTATION SYMMETRIC CASSEGRAIN ANTENNA DK141221C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19742461283 DE2461283A1 (en) 1974-12-23 1974-12-23 OTATION-SYMMETRIC CASSEGRAIN ANTENNA
DE2461283 1974-12-23

Publications (3)

Publication Number Publication Date
DK509575A DK509575A (en) 1976-06-24
DK141221B true DK141221B (en) 1980-02-04
DK141221C DK141221C (en) 1980-07-21

Family

ID=5934488

Family Applications (1)

Application Number Title Priority Date Filing Date
DK509575A DK141221C (en) 1974-12-23 1975-11-12 ROTATION SYMMETRIC CASSEGRAIN ANTENNA

Country Status (10)

Country Link
JP (1) JPS5189371A (en)
BE (1) BE837012A (en)
DE (1) DE2461283A1 (en)
DK (1) DK141221C (en)
FR (1) FR2296280A1 (en)
GB (1) GB1532415A (en)
IE (1) IE42362B1 (en)
IT (1) IT1051413B (en)
LU (1) LU73599A1 (en)
NL (1) NL161627C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744302A (en) * 1980-08-28 1982-03-12 Mitsubishi Electric Corp Antenna device
US9812776B2 (en) 2012-04-02 2017-11-07 Furuno Electric Co., Ltd. Antenna device
CN103746187B (en) * 2013-12-23 2015-09-23 北京邮电大学 A kind of Cassegrain antenna detection system and method for designing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411396B2 (en) * 1973-07-20 1979-05-15

Also Published As

Publication number Publication date
IT1051413B (en) 1981-04-21
DK141221C (en) 1980-07-21
NL161627C (en) 1980-02-15
JPS5189371A (en) 1976-08-05
BE837012A (en) 1976-04-16
NL161627B (en) 1979-09-17
DK509575A (en) 1976-06-24
FR2296280A1 (en) 1976-07-23
LU73599A1 (en) 1976-06-11
FR2296280B1 (en) 1980-10-17
DE2461283A1 (en) 1976-07-01
GB1532415A (en) 1978-11-15
IE42362L (en) 1976-06-23
IE42362B1 (en) 1980-07-30
NL7514831A (en) 1976-06-25

Similar Documents

Publication Publication Date Title
US3845483A (en) Antenna system
US7786945B2 (en) Beam waveguide including Mizuguchi condition reflector sets
US5166698A (en) Electromagnetic antenna collimator
US6204822B1 (en) Multibeam satellite communication antenna
JPS5819162B2 (en) microwave antenna device
CN110444851A (en) Multi-beam off-set feed reflector antenna
US4525719A (en) Dual-band antenna system of a beam waveguide type
US3562753A (en) Casseyrain antenna system with rotatable main reflector for scanning
US10992041B2 (en) Dual-frequency feed source assembly and dual-frequency microwave antenna
DK141221B (en) ROTATION SYMMETRIC CASSEGRAIN ANTENNA
US4186402A (en) Cassegrainian antenna with beam waveguide feed to reduce spillover
US3133284A (en) Paraboloidal antenna with compensating elements to reduce back radiation into feed
US6859183B2 (en) Scanning antenna systems
US4214248A (en) Transreflector scanning antenna
US20190207308A1 (en) Effecient hybrid electronical and mechanical control beam poting vehicle antenna for satellite communication
CA1076696A (en) Aerial system
Venter et al. Electromagnetic analysis and preliminary commissioning results of the shaped dual-reflector 32-m Ghana radio telescope
US2695958A (en) Directive antenna system
US2520945A (en) Wave transmission apparatus
EP3886329B1 (en) Rotary joint with dielectric waveguide
Shu et al. A High-Gain Antenna with Dual Circular Polarization for W-band mmWave Wireless Communications
RU2795755C1 (en) Method for reducing the noise temperature of multibeam two-mirror antennas with a shifted focal axis
JPS6372202A (en) Large scale antenna which is supported on satellite with fixed main reflector and feeder and especially used for ultra-high frequency and satellite structure equipped with such antenna
Chu et al. An experimental broadband imaging feed
Leat et al. A ring-focus antenna design for simultaneous X and Ka band with monopulse tracking on both bands

Legal Events

Date Code Title Description
PBP Patent lapsed