DK1068773T4 - Apparatus and method for combining audio compression and feedback suppression in a hearing aid - Google Patents

Apparatus and method for combining audio compression and feedback suppression in a hearing aid Download PDF

Info

Publication number
DK1068773T4
DK1068773T4 DK99914175.7T DK99914175T DK1068773T4 DK 1068773 T4 DK1068773 T4 DK 1068773T4 DK 99914175 T DK99914175 T DK 99914175T DK 1068773 T4 DK1068773 T4 DK 1068773T4
Authority
DK
Denmark
Prior art keywords
hearing aid
compression
feedback
signal
feedback suppression
Prior art date
Application number
DK99914175.7T
Other languages
Danish (da)
Other versions
DK1068773T3 (en
Inventor
James M Kates
John L Melanson
Original Assignee
Gn Resound As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/165,825 external-priority patent/US6434246B1/en
Application filed by Gn Resound As filed Critical Gn Resound As
Publication of DK1068773T3 publication Critical patent/DK1068773T3/en
Application granted granted Critical
Publication of DK1068773T4 publication Critical patent/DK1068773T4/en

Links

Landscapes

  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Description

DESCRIPTION BACKGROUND OF THE INVENTION FIELD OF THE INVENTION: [0001] The present invention relates to apparatus for combining audio compression and feedback cancellation in audio systems such as hearing aids. DESCRIPTION OF THE PRIOR ART: [0002] Mechanical and acoustic feedback limits the maximum gain that can be achieved in most hearing aids. System instability caused by feedback is sometimes audible as a continuous high-frequency tone or whistle emanating from the hearing aid. Mechanical vibrations from the receiver in a high-power hearing aid can be reduced by combining the outputs of two receivers mounted back-to-back so as to cancel the net mechanical moment; as much as 10 dB additional gain can be achieved before the onset of oscillation when this is done. But in most instruments, venting the BTE earmold or ITE shell establishes an acoustic feedback path that limits the maximum possible gain to less than 40 dB for a small vent and even less for large vents. The acoustic feedback path includes the effects of the hearing aid amplifier, receiver, and microphone as well as the vent acoustics.
[0003] The traditional procedure for increasing the stability of a hearing aid is to reduce the gain at high frequencies. Controlling feedback by modifying the system frequency response, however, means that the desired high-frequency response of the instrument must be sacrificed in order to maintain stability. Phase shifters and notch filters have also been tried, but have not proven to be very effective.
[0004] A more effective technique is feedback cancellation, in which the feedback signal is estimated and subtracted from the microphone signal. One particularly effective feedback cancellation scheme is disclosed in Patent Application Serial Number 08/972,265, entitled "Feedback Cancellation Apparatus and Methods," incorporated herein by reference.
[0005] Another technique often used in hearings aids is audio compression of the input signal. Both single band and multiband dynamic range compression is well known in the art of audio processing. Roughly speaking, the purpose of dynamic range compression is to make soft sounds louder without making loud sounds louder (or equivalently, to make loud sounds softer without making soft sounds softer). Therefore, one well known use of dynamic range compression is in hearing aids, where it is desirable to boost low level sounds without making loud sounds even louder.
[0006] The purpose of multiband dynamic range compression is to allow compression to be controlled separately in different frequency bands. Thus, high frequency sounds, such as speech consonants, can be made louder while loud environmental noises - rumbles, traffic noise, cocktail party babble - can be attenuated.
[0007] Patent Application Serial Number 08/540,534, entitled "Digital Signal Processing Hearing Aid," gives an extended summary of multiband dynamic range compression techniques with many references to the prior art.
[0008] Patent Application Serial Number 08/870,426, entitled "Continuous Frequency Dynamic Range Audio Compressor," teaches another effective multiband compression scheme.
[0009] US-A-5 027 410 discloses signal processing and filtering in hearing aids, including compensation for acoustic feedback and signal compression.
[0010] EP-A-0 415 677 discloses a hearing aid having compensation for acoustic feedback which models physical acoustic feedback and includes compression in the form of automatic gain control.
[0011] A need remains in the art for apparatus and methods to combine audio compression and feedback cancellation in audio systems such as hearing aids.
SUMMARY OF THE INVENTION
[0012] The primary objective of the combined audio compression and feedback cancellation processing of the present invention is to eliminate "whistling" due to feedback in an unstable hearing aid amplification system, while make soft sounds louder without making loud sounds louder, in a selectable manner according to frequency.
[0013] The feedback cancellation element of the present invention uses one or more filters to model the feedback path of the system and thereby subtract the expected feedback from the audio signal before hearing aid processing occurs. The hearing aid processing includes audio compression, for example multiband compression.
[0014] As features of the present invention, the operation of the audio compression element is responsive to information gleaned from the feedback cancellation element.
[0015] A hearing aid according to the present invention comprises a microphone for converting sound into an audio signal, feedback cancellation means including means for estimating a physical feedback signal of the hearing aid, and means for modelling a signal processing feedback signal to compensate for the estimated physical feedback signal, subtracting means, connected to the output of the microphone and the output of the feedback cancellation means, for subtracting the signal processing feedback signal from the audio signal to form a compensated audio signal, a hearing aid processor including audio compression means, connected to the output of the subtracting means, for processing the compensated audio signal, and a speaker, connected to the output of the hearing aid processor, for converting the processed compensated audio signal into a sound signal.
[0016] The feedback cancellation means provides information to the compression means, and the compression means adjusts its operation in accordance with this information. The feedback cancellation means includes a zero filter, the hearing aid includes means for calculating a norm of a vector of coefficients of the feedback cancellation means zero filter and the compression means modifies a gain value based on the norm.
[0017] The compression means may provide information, for example input signal power levels at various frequencies, to the feedback cancellation means, and the feedback cancellation element adjusts its operation in accordance with this information. For example, the feedback cancellation adaptation constant can be adjusted based upon the power level of one or more of the frequency bands of the audio compressor. For example, the adaptation time constant of the feedback cancellation element could be adjusted based on the output of one of the compression bands or a weighted combination of two or more bands.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018]
Figure 1 (prior art) is a flow diagram showing a hearing aid incorporating multiband audio compression.
Figure 2 (prior art) is a block diagram showing a hearing aid incorporating feedback cancellation.
Figure 3 is a block diagram showing a hearing aid, incorporating compression and feedback cancellation.
Figure 4 is a block diagram showing a hearing aid according to the present invention, incorporating compression and feedback cancellation, wherein the compression element modifies its operation according to information from the feedback cancellation.
Figure 5 is a block diagram showing a hearing aid incorporating compression and feedback cancellation, wherein the feedback cancellation element modifies its operation according to information from the compression element.
Figure 6 is a flow diagram showing a hearing aid according to the present invention, incorporating compression and feedback cancellation, wherein the compression element modifies its operation according to information from the feedback cancellation, and the feedback cancellation element modifies its operation according to information from the compression element.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0019] Figure 1 (prior art) is a flow diagram showing an example of a hearing aid 10 incorporating multiband audio compression 40. This invention is described in detail in Patent Application Serial Number 08/870,426, entitled "Spectral Sampling Multiband Audio Compressor." An audio input signal 52 enters microphone 12, which generates input signal 54. Signal 54 is converted to a digital signal by analog to digital converter 15, which outputs digital signal 56. This invention could be implemented with analog elements as an alternative. Digital signal 56 is received by filter bank 16, which is implemented as a Short Time Fourier Transform system, where the narrow bins of the Fourier Transform are grouped into overlapping sets to form the channels of the filter bank. However, a number of techniques for constructing filter banks in the frequency domain or in the time domain, including Wavelets, FIR filter banks, and MR filter banks, could be used as the foundation forfilter bank design.
[0020] Filter bank 16 filters signal 56 into a large number of heavily overlapping bands 58. Each band 58 is fed into a power estimation block 18, which integrates the power of the band and generates a power signal 60. Each power signal 60 is passed to a dynamic range compression gain calculation block, which calculates a gain 62 based upon the power signal 60 according to a predetermined function.
[0021] Multipliers 22 multiply each band 58 by its respective gain 62 in order to generate scaled bands 64. Scaled bands 64 are summed in adder 24 to generate output signal 68. Output signal 68 may be provided to a receiver (not shown) in hearing aid 10 or may be further processed.
[0022] Figure 2 (prior art) is a block diagram showing a hearing aid incorporating feedback cancellation. This invention is described in detail in Patent Application Serial Number 081972,265, entitled "Feedback Cancellation Apparatus and Methods. Feedback path modelling 250 includes the running adaptation of the zero filter coefficients. The series combination of the frozen pole filter 206 and the zero filter 212 gives a model transfer function G(z) determined during start-up. The coefficients of the pole model filter 206 are kept at values established during start-up and no further adaptation of these values-takes place during normal hearing aid operation. Once the hearing aid processing is turned, on zero model filter 212 is allowed to continuously adapt in response to changes in the feedback path as will occur, for example, when a telephone handset is brought up to the ear.
[0023] During the running processing shown in Figure 2, no separate probe signal is used, since it would be audible to the hearing aid wearer. The coefficients of zero filter 212 are updated adaptively while the hearing aid is in use. The output of hearing aid processing 240 is used as the probe. In order to minimize the computational requirements, the LMS adaptation algorithm is used by block 210. The adaptation is driven by error signal e(n) which is the output of the summation 208. The inputs to the summation 208 are the signal from the microphone 202, and the feedback cancellation signal produced by the cascade of the delay 214 with the all-pole model filter 206 in series with the zero model filter 212. The zero filter coefficients are updated using LMS adaptation in block 210.
[0024] Figure 3 is a block diagram showing a hearing aid 300, incorporating compression 340 and feedback cancellation 350. Other types of hearing aid processing, for example direction sensitivity or noise suppression, could also be incorporated into block 340. An example of a compression scheme which could be used is shown in block 40 of Figure 1, but the invention is by no means limited to this particular compression scheme. Many kinds of compression could be used. Similarly, an example of feedback cancellation is shown in block 250 of Figure 2, but many other types of feedback cancellation could be used instead, including algorithms operating in the frequency domain as well as in the time domain.
[0025] Microphone 202 converts input sound 100 into an audio signal. Though this is not shown, the audio signal would generally be converted into a digital signal prior to processing. Feedback cancellation means 350 estimates a physical feedback signal of hearing aid 300, and models a signal processing feedback signal to compensate for the estimated physical feedback signal. Subtracting means 208, connected to the output of microphone 202 and the output of feedback cancellation means 350, subtracts the signal processing feedback signal from the audio signal to form a compensated audio signal. Compression processor 340 is connected to the output of subtracting means 208, for processing the compensated audio signal. Speaker 220, connected to amplifier 218 at the output of hearing aid processor 340, converts the processed compensated audio signal into a sound signal. If the processed compensated audio signal is a digital signal, it is converted back to analog (not shown).
[0026] Figure 4 is a block diagram showing a hearing aid 400 which is very similar to hearing aid 300 of Figure 3, except that compression element 440 modifies its operation according to information from feedback cancellation 450. Depending upon the type of feedback cancellation, the types of information available and useful to compression block 440 will vary. Taking as an example a feedback cancellation block 450 identical to 250 of Figure 2, the coefficients of zero model 212 will change with time as feedback cancellation 350 attempts to compensation for feedback.
[0027] Testing one or more of these coefficients to determine whether they are outside expected ranges in magnitude, or are changing faster than expected, gives a clue as to whether feedback cancellation 350 is having difficulty compensating for the feedback. For example, an increase in the magnitude of the zero coefficient vector might indicate the presence of an incoming sinusoid.
[0028] If it appears that feedback compensation 450 is having trouble compensating for feedback, signal 406 would indicate to compression block 440 to lower gain at low levels, either for all frequencies or for selected frequencies. Thus, if compression block 440 is identical to compression block 100 of Figure 1, signal 406 would be used to generate a control signal for one or more gain calculation blocks 20. For example, the gain for frequencies between 1.5 KFIz and 3 KFIz might be lowered temporarily, as these are often the frequencies at which hearing aids are unstable. As another example, the kneepoint between the linear amplification function of compression 440 and the compression function at higher signal levels could be moved to a higher signal level. Once the zero model coefficients begin behaving normally, the gain applied by compression 440 can be partially or completely restored to normal. As a third example, the attack and/or release times of the compression 440 could be modified in response to changes in the zero model coefficients. The compressor release time, for example, can be increased when the magnitude of the zero filter coefficient vector increases and returned to its normal value when the magnitude of the zero coefficient vector decreases, thus ensuring that the compression stays at lower gains for a longer period of time when the magnitude of the zero coefficient vector is larger than normal.
[0029] Figure 5 is a block diagram showing a hearing aid 500 which is very similar to hearing aid 300 of Figure 3, except that feedback cancellation element 550 modifies its operation according to information from compression element 540. For example, the adaptation time constant of feedback cancellation 550 could be adjusted based on the output of one of the compression bands.
[0030] The adaptive filter (zero model 212 in Figure 2) used for feedback cancellation 550 adapts more rapidly and converges to a more accurate solution when the hearing aid input signal is broadband (e.g. White noise) than when it is narrowband (e.g. A tone). Better feedback cancellation system performance can be obtained by reducing the rate of adaptation when a narrowband input signal is detected. The rate of adaptation is directly proportional to the parameter (in the LMS update equation below. The spectral analysis performed by the multiband compression can be used to determine the approximate bandwidth of the incoming signal. The rate of adaptation for the adaptive feedback cancellation filter weight updates is then decreased ((made smaller) as the estimated input signal bandwidth decreases.
[0031] As another example, the magnitude of the step size used in the LMS adaptation 210 (see Figure 2) can be made inversely proportional to the power in one or more compression bands, for example as determined by power estimation blocks 18 (see Figure 1). In this particular example,, the adaptive update of the zero filter weights becomes:
where bk(n+1) is the kth zero filter coefficient at time n+1, e(n) is the error signal provided by subtraction means 208, d(n-k) is the input to the adaptive filter at time n delayed by k samples, and sx2 (n) is the estimated power at time n from compression 540 [0032] In particular, the filtered hearing aid input power can be obtained from one of the frequency bands of compression 540 (from one of power estimation blocks 18 shown in Figure 1, for example). This adaptation approach offers the advantage of reduced computational requirements, since the power estimate is already available from compression 540, while giving much faster adaptation at lower signal levels than is possible with a system which does not use power normalization 506. Feedback compensation 550 will also adjust faster when normalized based on compression 540 input power rather than feedback compensation 550 input power, because the latter signal has been compressed, raising the level of less intense signals and thus reducing the adaptation step size after power normalization.
[0033] Another example of adjusting feedback compensation 550 operation based upon information from compression 540 is the following. The cross correlation calculation used in LMS adapt block 210 (see Figure 2) can overflow the accumulator if the input signal to hearing aid 500 is too high. By testing the power level of the input signal to compression 540, it is possible to determine whether the input signal is high enough to make such an overflow likely, and freeze the filter coefficients until the high input signal level drops to normal.
[0034] The test used is whether: 9Ρσ*ίη)<6, where sx2(n) is the estimated power at time n of the hearing aid input signal, g is the gain in the filter band used to estimate power, q is the gain in pole filter 206, and q is the maximum safe power level to avoid overflow
If this test is not satisfied, the adaptive filter update is not performed for that data block. Rather, the filter coefficients are frozen at their current level until the high input signal level drops to normal.
[0035] As another example, the magnitude of the step size used in the LMS adaptation 210 (see Figure 2) can be made dependent on the envelope fluctuations detected in one or more compression bands. A sinusoid will have very little fluctuation in its signal envelope, while noise will typically have large fluctuations. The envelope fluctuations can be estimated by detecting the peaks and valleys of the signal and taking the running difference between these two values. The adaptation step size can then be made smaller as the detected envelope fluctuations decrease.
[0036] Figure 6 is a flow diagram showing a hearing aid 600 which is very similar to hearing aid 300 of Figure 3, except that feedback cancellation element 650 modifies its operation according to information from compression element 640, and compression element 640 modifies its operation according to information from feedback cancellation 650.
[0037] An example of this is a combination of the processing described in conjunction with Figure 4 with that described in conjunction with Figure 5. The power estimated by the compressor or the detected envelope fluctuations in one or more bands is used to adjust the adaptive weight update, and the magnitude of the zero filter coefficient vector is used to adjust the compression gain or the compression attack and/or release times.
[0038] While the exemplary preferred embodiments of the present invention are described herein with particularity, those skilled in the art will appreciate various changes, additions, and applications other than those specifically mentioned, which are within the spirit of this invention. In particular, the present invention has been described with reference to a hearing aid, but the invention would equally applicable to public address systems, telephones, speaker phones, or any other electroacoustical amplification system where feedback is a problem.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO08972265A [00641
• WQ08S40534A fOOPTI • WQ08870426A ΙΌΟΟΟΙ ΙΌ019Ί • US5027410A ΓΟΟΟΘΙ • WQ081972265A f06221

Claims (9)

1. Et høreapparat, der omfatter en mikrofon (202) til at konvertere lyd til et audiosignal, tilbagekoblingsundertrykkelsesorgan (250, 350), der indbefatter organer til at estimere et fysisk tilbagekoblingssignal for høreapparatet og organer til at modellere et signalbehandlingstilbagekoblingssignal til at kompensere for det estimerede fysiske tilbagekoblingssignal, subtraktionsorgan (208), der er forbundet til mikrofonens udgang og tilbagekoblingsundertrykkelsesorganets udgang, til at subtrahere signalbehandlingstilbagekoblingssignalet fra audiosignalet for at danne et kompenseret audiosignal, høreapparatbehandlingsorgan (240, 340), der er forbundet til subtraktionsorganets udgang, til behandling af det kompenserede audiosignal, og højttalerorgan (220), der er forbundet til høreapparatbehandlingsorganets udgang, til konvertering af det behandlede, kompenserede audiosignal til et lydsignal, hvori tilbagekoblingsundertrykkelsesorganet danner en tilbagekoblingsvej fra udgangen af høreapparatbehandlingsorganet til indgangen for subtraktionsorganet, og hvori høreapparatbehandlingsorganet indbefatter kompressionsorgan (40) til udførelse af audiokompression, idet høreapparatet yderligere omfatter organer (406) til tilvejebringelse af information fra tilbagekoblingsundertrykkelsesorganet til kompressionsorganet, og hvori kompressionsorganet justerer sin funktion baseret på information fra tilbagekoblingsundertrykkelsesorganet, og hvori tilbagekoblingsundertrykkelsesorganet indbefatter et nulfilter (212), idet høreapparatet indbefatter organer til beregning af en koefficientvektornorm for tilbagekoblingsundertrykkelsesorganets nulfilter, og kompressionsorganet modificerer en forstærkningsværdi baseret på koeff icientvektornormen.A hearing aid comprising a microphone (202) for converting audio to an audio signal, feedback suppression means (250, 350) including means for estimating a physical feedback signal for the hearing aid and means for modeling a signal processing feedback signal to compensate for it. estimated physical feedback signal, subtraction means (208) connected to the microphone output, and the feedback suppression means to subtract the signal processing feedback signal from the audio signal to form a compensated audio signal, the output of the hearing aid processing means (240, 340) compensated audio signal, and speaker means (220) connected to the output of the hearing aid processing means for converting the processed compensated audio signal into an audio signal in which the feedback suppression means forms a feedback path from the output of the hearing aid. the hearing aid processing means for the input of the subtraction means, and wherein the hearing aid processing means includes compression means (40) for performing audio compression, the hearing aid further comprising means (406) for providing information from the feedback suppression means to the compression means and the compression means based on the compression means and the compression means. the feedback suppression means includes a zero filter (212), the hearing aid including means for calculating a coefficient vector norm for the feedback suppression means zero filter, and the compression means modifying a gain value based on the coefficient vector norm. 2. Et høreapparat ifølge krav 1, og som yderligere omfatter organer (506) til tilvejebringelse af information fra kompressionsorganet til tilbagekoblingsundertrykkelsesorganet, og hvori tilbagekoblingsundertrykkelsesorganet justerer sin funktion baseret på information fra kompressionsorganet.A hearing aid according to claim 1, further comprising means (506) for providing information from the compression means to the feedback suppression means, and wherein the feedback suppression means adjusts its function based on information from the compression means. 3. Et høreapparat ifølge krav 1 eller 2, hvori kompressionsorganet og tilbagekoblingsundertrykkelsesorganet opererer i tidsdomænet.A hearing aid according to claim 1 or 2, wherein the compression means and the feedback suppression means operate in the time domain. 4. Et høreapparat ifølge krav 1 eller 2, hvori kompressionsorganet og tilbagekoblingsundertrykkelsesorganet opererer i frekvensdomænet.A hearing aid according to claim 1 or 2, wherein the compression means and the feedback suppression means operate in the frequency domain. 5. Et høreapparat ifølge krav 1 eller 2, hvori kompressionsorganet opererer i tidsdomænet og tilbagekoblingsundertrykkelsesorganet opererer i frekvensdomænet.A hearing aid according to claim 1 or 2, wherein the compression means operates in the time domain and the feedback suppression means operates in the frequency domain. 6. Et høreapparat ifølge krav 1 eller 2, hvori kompressionsorganet opererer i frekvensdomænet og tilbagekoblingsundertrykkelsesorganet opererer i tidsdomænet.A hearing aid according to claim 1 or 2, wherein the compression means operates in the frequency domain and the feedback suppression means operates in the time domain. 7. Et høreapparat ifølge krav 2, hvori kompressionsorganet indbefatter organer (16) til at separere det kompenserede audiosignal i frekvensbånd og organer til at beregne mindst ét effektniveau for frekvensbåndene, og tilbagekoblingsundertrykkelsesorganet modificerer en adapteringstrinstørrelse i overensstemmelse med mindst ét beregnet effektniveau tilvejebragt af kompressionsorganet.A hearing aid according to claim 2, wherein the compression means includes means (16) for separating the compensated audio signal into frequency bands and means for calculating at least one power level of the frequency bands, and the feedback suppression means modifies an adapter power level according to at least one calculated power level. 8. Et høreapparat ifølge krav 2, hvori kompressionsorganet indbefatter organer (16) til at separere det kompenserede audiosignal i frekvensbånd og organer til at beregne mindst ét forhold mellem signalindhyllingstop og - bund for frekvensbåndene, og tilbagekoblingsundertrykkelsesorganet modificerer en adapteringstrinstørrelse i overensstemmelse med mindst ét beregnet forhold mellem signalindhyllingstop og -bund, hvilket forhold er tilvejebragt af kompressionsorganet.A hearing aid according to claim 2, wherein the compression means includes means (16) for separating the compensated audio signal into frequency bands and means for calculating at least one signal envelope peak and bottom ratio of the frequency bands, and the feedback suppression means modifies an adapter size according to signal envelope top to bottom ratio, which ratio is provided by the compression means. 9. Et høreapparat ifølge krav 2, hvori kompressionsorganet indbefatter organer (16) til at separere det kompenserede audiosignal i frekvensbånd, organer til at beregne et effektniveau for mindst ét frekvensbånd, og organer til at beregne et forhold mellem signalindhyllingstop og -bund for mindst ét frekvensbånd, og tilbagekoblingsundertrykkelsesorganet modificerer en adapteringstrinstørrelse i overensstemmelse med mindst et beregnet effektniveau og mindst ét beregnet forhold mellem signalindhyllingstop og - bund, hvilket effektniveau og forhold er tilvejebragt af kompressionsorganet.A hearing aid according to claim 2, wherein the compression means includes means (16) for separating the compensated audio signal into frequency bands, means for calculating a power level for at least one frequency band, and means for calculating a ratio of signal envelope top and bottom for at least one frequency band, and the feedback suppressor modifies an adaptation step size according to at least one calculated power level and at least one calculated signal envelope peak and bottom ratio, which power level and ratio is provided by the compression means.
DK99914175.7T 1998-04-01 1999-03-26 Apparatus and method for combining audio compression and feedback suppression in a hearing aid DK1068773T4 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US8037698P 1998-04-01 1998-04-01
US09/165,825 US6434246B1 (en) 1995-10-10 1998-10-02 Apparatus and methods for combining audio compression and feedback cancellation in a hearing aid
PCT/US1999/006642 WO1999051059A1 (en) 1998-04-01 1999-03-26 Apparatus and methods for combining audio compression and feedback cancellation in a hearing aid
EP99914175.7A EP1068773B2 (en) 1998-04-01 1999-03-26 Apparatus and methods for combining audio compression and feedback cancellation in a hearing aid

Publications (2)

Publication Number Publication Date
DK1068773T3 DK1068773T3 (en) 2005-05-09
DK1068773T4 true DK1068773T4 (en) 2017-10-02

Family

ID=34527412

Family Applications (1)

Application Number Title Priority Date Filing Date
DK99914175.7T DK1068773T4 (en) 1998-04-01 1999-03-26 Apparatus and method for combining audio compression and feedback suppression in a hearing aid

Country Status (1)

Country Link
DK (1) DK1068773T4 (en)

Also Published As

Publication number Publication date
DK1068773T3 (en) 2005-05-09

Similar Documents

Publication Publication Date Title
EP1068773B1 (en) Apparatus and methods for combining audio compression and feedback cancellation in a hearing aid
EP1228665B1 (en) Feedback cancellation apparatus and methods utilizing an adaptive reference filter
US6072884A (en) Feedback cancellation apparatus and methods
EP1080606B1 (en) Feedback cancellation improvements
US6498858B2 (en) Feedback cancellation improvements
US6831986B2 (en) Feedback cancellation in a hearing aid with reduced sensitivity to low-frequency tonal inputs
US7933424B2 (en) Hearing aid comprising adaptive feedback suppression system
EP2002690B2 (en) Hearing aid, and a method for control of adaptation rate in anti-feedback systems for hearing aids
JP2003032780A (en) Howling detecting and suppressing device, acoustic device provided therewith and howling detecting and suppressing method
AU2010200444A1 (en) Hearing device with adaptive feedback suppression
WO2006063624A1 (en) Hearing aid with feedback model gain estimation
US9628923B2 (en) Feedback suppression
US9712908B2 (en) Adaptive residual feedback suppression
EP2869600B1 (en) Adaptive residual feedback suppression
DK1068773T4 (en) Apparatus and method for combining audio compression and feedback suppression in a hearing aid
KR100363252B1 (en) Adaptive feedback cancellation apparatus and method for multi-band compression hearing aids
WO2024115548A1 (en) A hearing aid system and a method of operating a hearing aid system