DE932137C - Process for the direct conversion of the chemical energy of carbon or combustible gases into electrical energy by electro-chemical means - Google Patents

Process for the direct conversion of the chemical energy of carbon or combustible gases into electrical energy by electro-chemical means

Info

Publication number
DE932137C
DE932137C DER8946A DER0008946A DE932137C DE 932137 C DE932137 C DE 932137C DE R8946 A DER8946 A DE R8946A DE R0008946 A DER0008946 A DE R0008946A DE 932137 C DE932137 C DE 932137C
Authority
DE
Germany
Prior art keywords
carbon
chemical
energy
direct conversion
electrical energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DER8946A
Other languages
German (de)
Inventor
Eduard Dr Justi
Herbert Dr Spengler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruhrchemie AG
Original Assignee
Ruhrchemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrchemie AG filed Critical Ruhrchemie AG
Priority to DER8946A priority Critical patent/DE932137C/en
Application granted granted Critical
Publication of DE932137C publication Critical patent/DE932137C/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/143Fuel cells with fused electrolytes with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die auf Grund des Patents 899 aia konstruierten Brennstoffelemente zeigen ohne Entnahme von Strom eine elektromotorische Kraft, die bis zu 9&°/o des theoretisch möglichen Wertes beträgt. Damit ist gemäß den allgemeinen Gesetzen der Thermodynamik ein gleich hoher Wirkungsgrad für die Umwandlung der chemischen) Bindungsenergie Sauerstoff—Kohle bzw. Sauerstoff—Brenngase in elektrische Energie gegeben. In der Praxis kommt es aber darauf an, nicht nur hohe Spannungen zu erhalten, sondern auch laufend Leistung zu entnehmen, also möglichst große Stromstärken zu erzielen. Um Verluste durch die Entwicklung von Joulescher Wärme im Element möglichst klein zu halten, muß der innere Widerstand soweit wie möglich verringert werden.The constructed on the basis of the patent 899 aia Without drawing electricity, fuel elements show an electromotive force that can be up to 9% of the theoretically possible value. This is in accordance with the general laws of thermodynamics an equally high degree of efficiency for the conversion of the chemical) binding energy Oxygen — coal or oxygen — fuel gases in given electrical energy. In practice, however, it is important not only to have high voltages but also to continuously draw power, i.e. to achieve the highest possible current strengths. In order to minimize losses due to the development of Joule heat in the element hold, the internal resistance must be reduced as much as possible.

Eingehende Messungen über die verschiedenen Anteile des inneren Widerstandes-, wie sie durch die Ausbreitungsswiderstände in der Kohle, im festen Elektrolyt und im Material der Sauerstoffelektrode (wie ζ. B. Fe3 O4) gegeben sind, haben gezeigt, daß diese Widerstände durch geeignete Wahl der Werkstoffe auf einen verhältnismäßig geringen Anteil des gesamten inneren Widerstandes vermindert werden können. Ein wesentlicher Anteil desi inneren Widerstandes ist gegeben durch die Kontaktwiderstände zwischen den Kohlekörnern untereinander, den Bestandteilen der Sauerstoff elektrode untereinander sowie zwischen die'sen genannten Teilchen und dem Diaphragma und den Elektroden.In-depth measurements of the various proportions of the internal resistance, as given by the expansion resistances in the carbon, in the solid electrolyte and in the material of the oxygen electrode (such as Fe 3 O 4 ), have shown that these resistances by suitable Choice of materials can be reduced to a relatively small proportion of the total internal resistance. A substantial part of the internal resistance is given by the contact resistances between the carbon grains with one another, the components of the oxygen electrode with one another and between the mentioned particles and the diaphragm and the electrodes.

Es ist bekannt, daß der Kontaktwiderstand zwischen zwei aufeinanderliegenden Stücken durch äußeren Druck vermindert werden kann, weil durch eine äußere Last die effektiven Kontaktflächen der nicht ganz starren' Werkstoffe vergrößert werden. Bekanntlich beruht hierauf die Wirkungsweise des Kohlemikrophons.It is known that the contact resistance between two superposed pieces by external pressure can be reduced because the effective contact areas of the not completely rigid 'materials can be enlarged. As is well known, the mode of action of the Carbon microphones.

Es wurde nun gefunden, daß das Verfahren zur direkten Umwandlung der chemischen Energie! 'des Kohlenstoffs oder brennbarer Gase, wie Wasserstoff, Methan, Kohlenoxyd oder deren Mischungen, in elektrische Energie auf elektrochemischem Wege unter Umsetzung der Kohle oder Gase in Form einer Brennstoff kette unter Verwendung eines porösen keramischen Körpers, der mit einem Elektrolyt getränkt ist, oder eines· aus einem elektrolytisch leitenden Material bestehenden Körpers unter wesentlicher Verbesserung der Stromausbeute durchgeführt werden kann, wenn die Kontaktwiderstände der einzelnen Bestandteile durch passende mechanische Belastung vermindert werden undIt has now been found that the method for the direct conversion of chemical energy! 'of Carbon or flammable gases such as hydrogen, methane, carbon oxide or their mixtures in electrical energy in an electrochemical way with conversion of the coal or gases in the form a fuel chain using a porous ceramic body filled with an electrolyte is impregnated, or a body consisting of an electrolytically conductive material with significant improvement in current efficiency can be done if the contact resistances the individual components can be reduced by appropriate mechanical stress and

somit der innere Widerstand der Brennsitoffkette gesenkt wird.hence the internal resistance of the fuel chain is lowered.

Eine allgemeine Abhängigkeit der erzielbaren Steigerung der Stromausbeute von der medianischen Belastung der Kohle- bzw. Oxydkörner läßt sich nicht angeben, da diese wesentlich von dem verwendeten Material, insbesondere der Kohlensorteij, wie auch von der Temperatur abhängt. In günstigen Fällen läßt sich der innere Widerstand durch einen Druck auf die Kohle von etwa 1 kg/qcm bis auf 20 bis 25 % des ohne Belastung gemessenen Wertes verringern.A general dependence of the achievable increase in the current yield on the median The load on the carbon or oxide grains cannot be specified, as these are essentially dependent on the material used, in particular the type of coal, as well as depends on the temperature. In favorable cases, the internal resistance by a pressure on the charcoal of about 1 kg / qcm up to 20 to 25% of that measured without load Reduce the value.

Die Zeichnung zeigt schematisch, in welcher Weise diese Belastung vorgenommen werden kann, ohne daß dieses Ausführungsbeispiel eine Begrenzung des mit dieser Erfindung beanspruchten Schutzrechtes darstellt. In der Zeichnung stellt 1 den aus zunderlbeständigem Material bestehenden Mantel mit dem Zuführungsrohr <2> für den iSlauerstoff dar. 3 ist ein, aus z. B. Alkalikarbonat bestehender Zylinder, der den Elektrolyt des- Elementes bildet. Der Zylinder 3 ist mit Kohle 4 gefüllt, die als negative Elektrode wirkt, während der Zwischenraum zwischen dem Elektrolytzylinder 3 und dem Stahlmantel 1 mit dem die positive Elektrode bildenden Metalloxyd gefällt ist. Auf die Kohle 4 drückt ein mit der Feder 5 belasteter Stempel 6. Die Federspannung ist durch die Schraube 7 zu regulieren und wird so eingestellt, daß eine weitere Anspannung keine wesentliche Verringerung des inneren Widerstandes mehr bringt. Damit positive und negative Elektrode nicht kurzgeschlossen werden, sind diese durch den aus Isolationsmaterial, z. B. Porzellan, bestehenden Ring 8 voneinander getrennt.The drawing shows schematically in which way this load can be made without this embodiment representing a limitation of the property right claimed with this invention. In the drawing, 1 represents the jacket made of scale-resistant material with the supply pipe <2> for the oxygen. B. Alkali carbonate existing cylinder, which forms the electrolyte of the element. The cylinder 3 is filled with carbon 4, which acts as a negative electrode, while the space between the electrolyte cylinder 3 and the steel jacket 1 is precipitated with the metal oxide forming the positive electrode. A plunger 6 loaded with the spring 5 presses on the carbon 4. The spring tension can be regulated by the screw 7 and is set so that further tension no longer brings about any significant reduction in the internal resistance. So that positive and negative electrodes are not short-circuited, they are made of insulating material, e.g. B. porcelain, existing ring 8 separated from each other.

Claims (1)

PATENTANSPRUCH:PATENT CLAIM: Verfahren zur direkten Umwandlung der chemischen Energie des Kohlenstoff s oder brennbarer Gase, wie Wasserstoff, Methan, Kohlenoxyd oder deren Mischungen, in elektrische Energie auf elektrochemischem Wege unter Umsetzung der Kohle oder Gase in Form einer Brennstoffkette und unter Verwendung eines porösen keramischen Körper®, der "mit einem Elektrolyt getränkt wurde, ale Festleiter nach Patent 8992112, dadurch gekennzeichnet, daß zwecksi Senkung des: inneren Widerstandes der Barennstoffkette die Kontaktwiderstände der einzelnen körnigen Bestandteile durch mechanische Belastung vermindert werden.Process for the direct conversion of the chemical energy of carbon s or combustible Gases such as hydrogen, methane, carbon oxide or their mixtures are converted into electrical energy by electrochemical means Implementation of the coal or gases in the form of a fuel chain and using a porous ceramic body®, which was "impregnated with an electrolyte, ale solid conductors Patent 8992112, characterized in that, for the purpose of lowering the: internal resistance of the Bar fuel chain the contact resistance of the individual granular components through mechanical Load can be reduced.
DER8946A 1951-06-04 1952-05-03 Process for the direct conversion of the chemical energy of carbon or combustible gases into electrical energy by electro-chemical means Expired DE932137C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DER8946A DE932137C (en) 1951-06-04 1952-05-03 Process for the direct conversion of the chemical energy of carbon or combustible gases into electrical energy by electro-chemical means

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE722130X 1951-06-04
DER8946A DE932137C (en) 1951-06-04 1952-05-03 Process for the direct conversion of the chemical energy of carbon or combustible gases into electrical energy by electro-chemical means

Publications (1)

Publication Number Publication Date
DE932137C true DE932137C (en) 1955-08-25

Family

ID=25946982

Family Applications (1)

Application Number Title Priority Date Filing Date
DER8946A Expired DE932137C (en) 1951-06-04 1952-05-03 Process for the direct conversion of the chemical energy of carbon or combustible gases into electrical energy by electro-chemical means

Country Status (1)

Country Link
DE (1) DE932137C (en)

Similar Documents

Publication Publication Date Title
DE3019870C2 (en)
DE1483273C3 (en) Process for improving the galvanic properties of an aluminum alloy suitable for the production of sacrificial electrodes or galvanic elements
CH280174A (en) Process for the production of carbon electrodes.
DE2603785C2 (en) Sensor for carbon monoxide and / or hydrocarbons in exhaust gases
DE932137C (en) Process for the direct conversion of the chemical energy of carbon or combustible gases into electrical energy by electro-chemical means
DE1671764B1 (en) PROCESS FOR REPLACING SODIUM IONS BY POTASSIUM IONS IN A CRYSTALLINE STRUCTURE, WHICH A STRUCTURAL GRID AND SODIUM IONS, WE
DE469917C (en) Electrodes for accumulators with alkaline electrolytes
DE102020104964A1 (en) Process for the electrolytic generation of hydrogen from water at room temperature and normal pressure
DE2554997A1 (en) PROCESS FOR ESTABLISHING A BOND BETWEEN METALS AND SOLID ELECTROLYTIC MATERIALS
DE1596099A1 (en) Electrolyte for fuel elements
DE2341256B2 (en) Measuring cell
DE1671826A1 (en) Fuel electrode for a fuel element
DE2554999A1 (en) PROCESS FOR ESTABLISHING A BOND BETWEEN METALS AND SOLID ELECTROLYTIC MATERIALS
DE2756569C3 (en) Process and electrolysis cell for the production of hydrogen and oxygen
DE2947454C2 (en) Process for the separation of the gases evolved in a fused flux electrolysis and a fused flux electrolysis device
DE957491C (en) Process for the direct conversion of the chemical energy of combustible gases into electrical energy by electrochemical means
AT208606B (en) Solid conductor and process for its manufacture
DE953450C (en) Process for the manufacture of electrical heating elements
DE1952155A1 (en) Nickel anodes for high temp fuel cells
DE560549C (en) Kerr cell
DE2446052A1 (en) RADIO ELECTROCHEMICAL ENERGY CONVERTER
DE721887C (en) Process for the production of porous nickel bodies
DE2136393C3 (en) Rhodium-tungsten compound and process for its preparation
Özer A new inductive-annealing dual electrochemical cell for crystal alloy and thin-film electrode voltammetry
DE1671959C3 (en) Fuel element