DE922795C - Thickness measurement with gamma rays - Google Patents

Thickness measurement with gamma rays

Info

Publication number
DE922795C
DE922795C DEL14868A DEL0014868A DE922795C DE 922795 C DE922795 C DE 922795C DE L14868 A DEL14868 A DE L14868A DE L0014868 A DEL0014868 A DE L0014868A DE 922795 C DE922795 C DE 922795C
Authority
DE
Germany
Prior art keywords
thickness
radiation
gamma rays
angle
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEL14868A
Other languages
German (de)
Inventor
Rudolf Dr Berthold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratorium Prof Dr Rudolf Berthold GmbH and Co KG
Original Assignee
Laboratorium Prof Dr Rudolf Berthold GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratorium Prof Dr Rudolf Berthold GmbH and Co KG filed Critical Laboratorium Prof Dr Rudolf Berthold GmbH and Co KG
Priority to DEL14868A priority Critical patent/DE922795C/en
Priority to BE526595A priority patent/BE526595A/en
Priority to FR1106290D priority patent/FR1106290A/en
Application granted granted Critical
Publication of DE922795C publication Critical patent/DE922795C/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

Es ist bekannt, Bleche, Bänder, Rohre u. dgl. mit Gammastnahlen radioaktiver es toffe zu.ldurchstraWlen und die hinter dem Prüfling austretende Strahlenintensität als Maß der durchstrahlten Wanddicke zu benutzen. Als Nachweisgeräte dienen meist Zählrohre oder Szintillationszähler, seltener FLuoreszenzschirme mit Photozellen oder Ionisationskammern. It is known that sheets, strips, pipes and the like are more radioactive with gamma-ray numbers the penetration and the radiation intensity emerging from behind the test specimen to be used as a measure of the penetrated wall thickness. Mostly serve as detection devices Counter tubes or scintillation counters, less often fluorescent screens with photocells or ionization chambers.

Die Meßgenauigkeit dieses Verfahrens ist jedoch begrenzt, derart, daß sie nur für große Prüfdiicken ausreicht. Der Grund ist folgender: Unabhängig von der durchstrahlten Dicke wird beispielsweise die Gammastrahlung von Kobalt 60 durch 25 mm zusätzliche Stahldicke auf die Hälfte geschwächt; das bedeutet, daß man mit der praktisch erreichbaren Ablesegenauigkeit Dickenunterschiede von + 0,5 mm eben nachweisen kann, und zwar wiederum unabhängig von der absoluten Dicke. Bei 50 mm dickem Stahl ist dies eine Meßgenauigkeit von + 1 0/, bei 10 mm dickem Stahl nur von + 5 ozon Um auch bei kleineren Dicken höhere Meßgenauigkeiten zu erzielen, hat man deshalb auch radioaktive Präparate benutzt, die weichere GammastraMung aussenden als Kobalt 69 Zum Beispiel wird die Gammastrahlung von Iridium 192 schon durch etwa I5 mm Stahl auf die Hälfte geschwächt, und man erreicht eine Meßgenauigkeit von etwa + 0,25 mm. Leider beträgt die Halbwertzeuit von Iridium 192 nur 70 Tage; das bedeutet eine dauernde Nacheichung unter Berücksichtigung der veränederten Strahlenintensität. Überhaupt existiert zur Zeit kein radioaktives Präparat, das lange Haltbtwertzeiten mit weicher Strahlung und hoher Strahlenleistung je Volumeinheit verkn pft. The measurement accuracy of this method is limited, however, in such a way that that it is only sufficient for large test thicknesses. The reason is this: Independent The gamma radiation from cobalt 60, for example, becomes of the irradiated thickness weakened by 25 mm additional steel thickness by half; It means that one with the practically achievable reading accuracy differences in thickness of +0.5 mm can be proven, again regardless of the absolute thickness. at For 50 mm thick steel, this is a measurement accuracy of + 1 0 /, for 10 mm thick steel only from + 5 ozone In order to achieve higher measuring accuracy even with smaller thicknesses, That is why radioactive preparations were used that emit softer gamma rays as cobalt 69 For example, the gamma radiation from iridium 192 is already through about 15 mm steel weakened by half, and a measurement accuracy of about + 0.25 mm. Unfortunately, the half-life of Iridium 192 is only 70 days; the means a permanent recalibration taking into account the changed radiation intensity. At the moment there is no radioactive preparation at all with a long shelf life associated with soft radiation and high radiation output per unit of volume.

Deshalb benutzt man für Stahlbleche zwischen I und 20 mm Dicke Röntgenapparate an Stelle von Gammapräparaten. Damit erreicht man durch Anpassen der Röhrenspannung an die Solldicke bis herunter unter o,I mm durchweg mindestens + I Meßgenauigkeit; wegen der hohen Strahlenintensität kommt man auch zu hohen Meßgeschwindigkeiten. Nachteilig bleibt aber die Kostspieligkeit einer solchen Röntgeneinrichtung, so daß die künstlich radioaktive Strahlenquelle immer wünschenswert bleibt. This is why X-ray machines are used for steel sheets between 1 and 20 mm thick instead of gamma preparations. This is achieved by adjusting the tube voltage to the nominal thickness down to below 0.1 mm consistently at least + I measurement accuracy; because of the high radiation intensity, one also comes to high measuring speeds. However, the cost of such an X-ray device remains disadvantageous, see above that the artificially radioactive radiation source always remains desirable.

Um deshalb auch bei Verwendung künstlich radioaktiver Strahlendie Meßgenauigkeit bei kleinen Dicken zu steigern, wird erfin,dungsgemäß vorgeschlagen, die Durchstrahlaingsrichtung nicht, wie bisher allein üblich, senkrecht zum Blech zu wählen, sondern unter einem Winkel, der wesentlich kleiner ist als 900. Wählt man beispielsweise die Durchstrahlungsrichtung so, daß sie mit der Blechebene 300 bildet, so wind die Blechdicke in der Durch strahlungsrichtung doppelt so groß wie vorher, und diese vergrößerte Dicke kann man nach wie vor auf l 0,5 mm genau messen. Das bedeutet aber, bezogen auf 10 mm absolute Blechdicke (= 20 mm durch<strahlte Blechdicke), eine Meßgenauigkeit von + 2,5 statt 5°/o. Durch weiteres Verkleinern des Strahlungswinkels erreicht man noch höhere Meß genauigkeiten. Therefore, even when using artificially radioactive rays To increase the measurement accuracy for small thicknesses, it is proposed according to the invention, the direction of the radiation is not perpendicular to the sheet metal, as has been the case up to now to choose, but at an angle that is much smaller than 900. Choose for example, the direction of irradiation is such that it coincides with the sheet metal plane 300 forms, the sheet thickness in the direction of radiation is twice as great as before, and this increased thickness can still be measured to an accuracy of 1 0.5 mm. However, this means, based on 10 mm absolute sheet thickness (= 20 mm through <radiated Sheet thickness), a measurement accuracy of + 2.5 instead of 5%. By further zooming out of the radiation angle, even higher measuring accuracies can be achieved.

Es wäre aber betriebsmäßig ungünstig, immer mit möglichst kleinem Winkel und infolgedessen höchsterreichbarer Meßgenauigkeit zu arbeiten; denn die Schrägdurchstrahlung (größere durch strahlte Dicke) hat ja zur Folge, daß bei gleicher Präparatstärke die in die Meßeinrichtung fallende Intensität gegenüber der senkrechten Durchstrahlung verringert wird. Dies wiederum bedeutet ein Herabsetzen der Meßgeschwindibkeit; denn um beispielsweise # I% Anzeigegenauigkeit zu erreichen, muß nach Gesetzen der Statistik über I0000 regellos einfallende Quantenstöße gemittelt werden (mittlere Schwankung = # # 10 000 ). Je kleiner die auf das Meßorgan fallende Strahlenintensität ist, desto länger muß man also messen, um über I0000 Quantenstöße registrieren zu können. But it would be operationally unfavorable to always use the smallest possible Working angle and consequently the highest possible measuring accuracy; because the Inclined radiation (greater through radiated thickness) has the consequence that with the same Preparation strength the intensity falling into the measuring device compared to the vertical one Radiation is reduced. This in turn means a reduction in the measurement speed; because in order to achieve, for example, # I% display accuracy, according to the laws of Statistics over 10000 randomly incident quantum collisions can be averaged (mean Fluctuation = # # 10 000). The smaller the radiation intensity falling on the measuring element is, the longer one has to measure in order to register over 10,000 quantum collisions can.

Infolgedessen wird man die zu durchistrahlende Dicke und damit den Durchstrahlungswinkel so wählen, daß die bei der Sollidicke geforderte Meßgenauigkeit eben erreicht wird. Dies ist durch Veränderung des Durchstrahlungswinkels leicht möglich. As a result, one becomes the thickness to be radiated through and thus the Select the radiation angle so that the measurement accuracy required for the nominal thickness is just achieved. This is easy by changing the angle of radiation possible.

In der Zeichnung ist das Verfahren schematisch dargestellt. I bedeutet das Prüfgut in Form eines Bleches, 2 ist die Strahlungsquelle, 3 eine Meßkammer. Strahlenquelle und Meßkammer sind gegen Streustrahlung abgeschirmt durch die Bleihüllen 4. -Das mechanisch miteinander fest verbundene System Präparat-Meßkammer dreht sich um die Achse 5. The process is shown schematically in the drawing. I means the test material in the form of a metal sheet, 2 is the radiation source, 3 is a measuring chamber. The radiation source and measuring chamber are shielded from scattered radiation by the lead sleeves 4. -The mechanically firmly interconnected system preparation-measuring chamber rotates around the axis 5.

Claims (2)

P A T E N T A N S P R Ü C H E: I. Verfahren zur Dickenmessung von Blechen, Bändern, Rohren u. dgl. mit Hilfe der Absorption von Gammastrahlen radioaktiver Präparate und empfindlichen Strahlungsmeßgeräten, dadurch gekennzeichnet, daß die Achse der Durchstrahlungsrichtung mit der Blechebene einen Winkel Nldet, der wesentlich kleiner ist als 90°. P A T E N T A N S P R Ü C H E: I. Method for measuring the thickness of Sheets, strips, pipes and the like become more radioactive with the help of the absorption of gamma rays Preparations and sensitive radiation measuring devices, characterized in that the Axis of the direction of irradiation with the plane of the sheet an angle Nldet, which is essential is less than 90 °. 2. Verfahren nach Anspruch I, dadurch gekennzeichnet, daß der Winkel zwischen der Durchstrahlungsrichtung und der Blechebene in Abhängigkeit von der Sollwanddicke so eingestellt wird, daß die gewünschte prozentuale Meßgenauigkeit eben erreicht wird. 2. The method according to claim I, characterized in that the angle between the direction of irradiation and the plane of the sheet depending on the Target wall thickness is set so that the desired percentage measurement accuracy is just achieved. Angezogene Druckschriften: Deutsche Patentschriften Nr. 885 490, 882 I50: Akustische Zeitschrift, Heft 5 (Oktober I943); W i dem an n, »Röntgen - Werkstückprüfung«, 1944, S. 220/22I. Attached publications: German patent specifications No. 885 490, 882 I50: Akustische Zeitschrift, Issue 5 (October 1943); W i to n, »X-ray - Workpiece test «, 1944, pp. 220/22 I.
DEL14868A 1953-03-05 1953-03-05 Thickness measurement with gamma rays Expired DE922795C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DEL14868A DE922795C (en) 1953-03-05 1953-03-05 Thickness measurement with gamma rays
BE526595A BE526595A (en) 1953-03-05 1954-02-18 Gamma ray thickness measurement process
FR1106290D FR1106290A (en) 1953-03-05 1954-03-02 Gamma ray thickness measurement process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEL14868A DE922795C (en) 1953-03-05 1953-03-05 Thickness measurement with gamma rays

Publications (1)

Publication Number Publication Date
DE922795C true DE922795C (en) 1955-01-24

Family

ID=7259947

Family Applications (1)

Application Number Title Priority Date Filing Date
DEL14868A Expired DE922795C (en) 1953-03-05 1953-03-05 Thickness measurement with gamma rays

Country Status (3)

Country Link
BE (1) BE526595A (en)
DE (1) DE922795C (en)
FR (1) FR1106290A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE971619C (en) * 1953-05-05 1959-02-26 Troester Maschf Paul Device for checking the walls in the manufacture of hoses and pipes using radioactive emitters
US3023312A (en) * 1957-10-03 1962-02-27 Tuboscope Company Radioactive pipe thickness measurement
US3125680A (en) * 1964-03-17 Sheet gauging head structure having universal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE882150C (en) * 1944-06-30 1953-07-06 Aeg Device for non-destructive material testing by means of ultrasound
DE885490C (en) * 1942-03-25 1953-08-06 Aeg Method and device for the detection of defects in workpieces by means of ultrasound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE885490C (en) * 1942-03-25 1953-08-06 Aeg Method and device for the detection of defects in workpieces by means of ultrasound
DE882150C (en) * 1944-06-30 1953-07-06 Aeg Device for non-destructive material testing by means of ultrasound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125680A (en) * 1964-03-17 Sheet gauging head structure having universal
DE971619C (en) * 1953-05-05 1959-02-26 Troester Maschf Paul Device for checking the walls in the manufacture of hoses and pipes using radioactive emitters
US3023312A (en) * 1957-10-03 1962-02-27 Tuboscope Company Radioactive pipe thickness measurement

Also Published As

Publication number Publication date
BE526595A (en) 1954-03-15
FR1106290A (en) 1955-12-16

Similar Documents

Publication Publication Date Title
Reines et al. Detection of the free antineutrino
DE2245851C3 (en) Geophysical method for determining the properties of earth formations surrounding a borehole
DE69420172T2 (en) Method and device for energy calibration of a detection unit for beta, X-ray and gamma radiation of a radioactive aerosol via the Compton distribution
US3786253A (en) Gamma and neutron scintillator
DE922795C (en) Thickness measurement with gamma rays
Peirson The γ-ray spectrum of fission products from slow neutron irradiation of uranium 235
Fields et al. Reaction p+ p→ π++ d in the 425-Mev Energy Region
Fulmer Total Reaction and Elastic Scattering Cross Sections for 22.8-MeV Protons on Uranium Isotopes
Bauminger et al. Natural radioactivity of V 50 and Ta 180
Spencer et al. The lead activation technique for high energy neutron measurement
D'angelo Excited Levels in Mn 56
Den Kamp et al. Gamma rays from thermal-neutron capture in natural and 39K enriched potassium
Zucker Protons and alpha-particles from the nitrogen bombardment of aluminium
Dixon et al. Absolute cross section of the K39 (n, p) A39 reaction for 2.5-MeV neutrons
Malmskog Gamma transitions in the decay of V52
Mandeville et al. Detection of Beta-Induced Scintillations from Crystals with a Photo-Sensitive Geiger-Mueller Counter
Recksiedler et al. Two-Step Cascades in Chlorine-36 and Cadmium-114 Neutron-Capture Gamma-Ray Spectra
DE2001129A1 (en) Method and apparatus for metering a highly active element by alpha spectrometry from a thick source
EP1131653B1 (en) Method and device for measuring the radioactive contamination of a test object
Clarke The spectrum of neutrons from the irradiation of uranium by 14-Mev neutrons
Manero et al. Total neutron cross sections of C, Ca and Fe between 8 and 14 MeV
Gupta On the Determination of the Electron Capture Decay Energy: 196Au
Hamermesh et al. Large NaI Scintillation Counter Study of the Neutron Capture Gamma Rays from Hydrogen
Alexander et al. Proton recoil measurements of the PuBe source neutron spectra
Simons et al. An Investigation into the Usefulness of" Figure of Merit" as a Criterion of a Collimating System