DE836129C - Energy generation from water and solar heat - Google Patents

Energy generation from water and solar heat

Info

Publication number
DE836129C
DE836129C DEG4553A DEG0004553A DE836129C DE 836129 C DE836129 C DE 836129C DE G4553 A DEG4553 A DE G4553A DE G0004553 A DEG0004553 A DE G0004553A DE 836129 C DE836129 C DE 836129C
Authority
DE
Germany
Prior art keywords
water
gases
energy generation
solar heat
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEG4553A
Other languages
German (de)
Inventor
Hermann Geilenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HERMANN GEILENBERG
Original Assignee
HERMANN GEILENBERG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HERMANN GEILENBERG filed Critical HERMANN GEILENBERG
Priority to DEG4553A priority Critical patent/DE836129C/en
Application granted granted Critical
Publication of DE836129C publication Critical patent/DE836129C/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • C01B3/045Decomposition of water in gaseous phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/005Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the working fluid being steam, created by combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/08Use of accumulators and the plant being specially adapted for a specific use
    • F01K3/10Use of accumulators and the plant being specially adapted for a specific use for vehicle drive, e.g. for accumulator locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Energiegewinnung aus Wasser und Sonnenwärme Die Grundstoffe des Wassers sind Wasserstoff und Sauerstoff. Das Mengenverhältnis der Gase ist 2 : i, das Gewichtsverhältnis 2 : 16. 1 1 Wasserstoff wiegt 0,o9 g, 1 1 Sauerstoff 1,43 g. Bei einem Mengenverhältnis von 2 : 1 wiegen 2 1 Wasserstoff und 1 1 Sauerstoff (3 1 Knallgas) o,18 -i- 1,43 = 1,61 g. 1,61 g sind gleich 1,61 ccm Wasser. Mithin ergeben 1,61 ccm Wasser 3 1 Knallgas, das ist etwa die 2000fache Menge Gas.Energy generation from water and solar heat The basic materials of water are hydrogen and oxygen. The quantity ratio of the gases is 2: i, the weight ratio 2: 16. 1 liter of hydrogen weighs 0.09 g, 1 liter of oxygen weighs 1.43 g. With a quantity ratio 2: 1 weighs 2 1 hydrogen and 1 1 oxygen (3 1 oxyhydrogen) o, 18 -i 1.43 = 1.61 g. 1.61 g is equal to 1.61 cc of water. So 1.61 ccm of water result in 3 1 Oxyhydrogen is about 2000 times the amount of gas.

Wenn eine Fläche von ioo qm durch Sonnenbestrahlung um 25" C erwärmt und diese Wärme auf einen Punkt von i qdcm konzentriert wird, dann erhöht sich die Wärme auf die ioooofach verkleinerte Fläche auf 25oooo° C. Da diese theoretisch errechnete Konzentration nicht proportional der Erwärmung eines Körpers ist, müssen die in der Praxis auftretenden Wärmeverluste bei der Gestaltung des Brennpunktkörpers berücksichtigt werden.When an area of 100 square meters is warmed by 25 "C by solar radiation and this heat is concentrated on a point of i qdcm, then the increases Heat on the iooooof-fold reduced area to 25oooo ° C. Since this theoretically calculated concentration is not proportional to the warming of a body, must the heat losses that occur in practice when designing the focal point body must be taken into account.

Zur Zerlegung des Wassers in seine Grundstoffe Wasserstoff und Sauerstoff werden rund 4000"C benötigt. Zur Zerlegung genügt also theoretisch die Fläche von i,60 qm. In der Praxis wird diese Fläche nicht genügen, denn es treten Wärmeverluste ein. Diese lassen sich aber durch Vergrößerung der EinStrahlungsfläche und durch Isolierung des Einstrahlungskörpers vermindern.To break down water into its basic substances, hydrogen and oxygen around 4000 "C are required. Theoretically, the area of is sufficient for the decomposition i, 60 sqm. In practice, this area will not be sufficient because there is heat loss a. However, these can be achieved by enlarging the irradiation area and through Reduce the insulation of the radiation body.

Zur Konzentrierung der Sonnenwärme sind Hohlspiegel oder Brennlinsen geeignet, die bei guter und geeigneter Oberfläche die auf die Spiegel-oder Linsenfläche gefallenen Sonnenstrahlen im Brennpunkt konzentrieren. In diesem Brennpunkt steht der Einstrahlungskörper (Zerlegungsapparatur), dem Wasser unter regulierbarem Druck zugeführt und von dem die Gase abgeführt werden.Concave mirrors or focal lenses are used to concentrate the heat of the sun suitable that with a good and suitable surface on the mirror or lens surface focus fallen sun rays in focus. In this focal point stands the radiation body (decomposition apparatus), the water under adjustable pressure supplied and from which the gases are discharged.

Die gewonnenen Gase werden unmittelbar nach der Vergasung durch eine geschlossene Rohrleitung einer Trennungsapparatur (bekannte Einrichtung) zugeführt, deren Zweck es ist, die beiden Gase wegen unerwünschter Knallgasexplosionen voneinander zu trennen. Die nunmehr getrennten Gase werden durch je eine Rohrleitung in getrennt aufgestellte Gasometer (bekannte Einrichtung) geleitet. Die Lagerung der Gase in diesen Gasometern ist erforderlich, um Ausfälle in der sonnenlosen Zeit zu überbrücken. Bis in die Gasometer erfolgt der Fluß der Gase unter dem Druck des nachströmenden Wassers bzw. der nachdrückendenGase. Von den Gasometern strömen die Gase unter dem Gewicht des Behälterinhalts durch je eine Rohrleitung zu einer Verbrennungsmaschine (Explosionsmotor oder Turbine - bekannte Einrichtungen), in der die wieder gemischten Gase als Knallgas durch Verbrennung (Explosion) zur Arbeitsleistung kommen. Die Arbeitsleistung wirkt sich auf einen Dynamo aus, der elektrische Kraft erzeugt. Der Zufluß des Wasserstoffgases erfolgt beim Wasserstoffgasometer unmittelbar über der Bodenfläche, der Abfluß unterhalb des Deckels. Der Einfluß des Sauerstoffs erfolgt unterhalb des Deckels, der Abfluß unmittelbar über dem Boden des Sauerstoffgasometers.The gases obtained are immediately after the gasification by a closed pipeline fed to a separation apparatus (known device), the purpose of which is to separate the two gases from each other because of undesirable oxyhydrogen explosions to separate. The now separated gases are separated by a pipe in each case installed gasometer (known device). The storage of the gases in These gasometers are required to bridge failures in the sunless time. Up to the gasometer the flow of the gases takes place under the pressure of the following Water or the pressurizing gases. The gases flow from the gasometers under the Weight of the container contents through one pipe each to an internal combustion engine (Explosion engine or turbine - known facilities) in which the re-mixed Gases come to work as oxyhydrogen through combustion (explosion). the Work performance affects a dynamo that generates electrical power. In the case of the hydrogen gasometer, the hydrogen gas flows in directly from above the bottom surface, the drain below the lid. The influence of oxygen takes place below the lid, the drain just above the bottom of the oxygen gasometer.

Bei einer Vergrößerung der theoretischen Einstrahlungsfläche von i,6o qm auf eine praktische Größe von 3,2o qm und einer Verkleinerung des Brennpunktes von io qdcm auf eine ausnutzbare Größe von nur 3 cm Durchmesser muß es möglich sein, die benötigte Brennpunktwärme von 4000° C im tropischen und subtropischen Klima zu erreichen. Bei dem großen Vergasungswert des Wassers (2ooofach) ist diese kleine Vergasungsapparatur mit einem ausnutzbaren Durchmesser von nur 3 cm ausreichend, kleine und größte Kraftwerke tnit den erforderlichen Verbrennungsstoffen zu speisen. Hierfür folgende Berechnung: Wenn i 1 Wasser je Minute vergast wird, so beträgt der Gasanfall je Minute 2 cbm, je Stunde 120 cbm und bei einer täglichen Sonnenauswertung von nur Stunden 6oo cbm Knallgas. Die Gaskapazität eines Großkraftwerkes beträgt bei zehn aufgestellten Spiegeln demnach 6ooo cbm Knallgas täglich. Im tropischen und subtropischen Gebiet muß es mit dieser Erfindung möglich sein, aus Sonne und Wasser eine Energiegewinnung einzuführen, die das gesamte Äquatorgebiet bis hinauf und hinunter zu den 40. Breitengraden technisch und wirtschaftlich weitgehend beeinflußt. Diese Energiegewinnung wird für die Erschließung unentwickelter Gebiete von ausschlaggebender Bedeutung sein. Hierüber hinaus besteht die Möglichkeit, aus diesem Energieraum, z. B. Mittelmeergebiet, elektrische Kraft in die gemäßigte Zone zu entsenden.With an increase in the theoretical irradiation area of 1.6o square meters to a practical size of 3.2o square meters and a reduction in the focal point from io qdcm to a usable size of only 3 cm in diameter, it must be possible the required focal point heat of 4000 ° C in tropical and subtropical climates to reach. With the large gasification value of the water (2oo times) this is small Gasification apparatus with a usable diameter of only 3 cm is sufficient, To feed small and large power plants with the necessary combustion fuels. For this the following calculation: If i 1 water is gasified per minute, then is the gas volume per minute 2 cbm, per hour 120 cbm and with a daily sun evaluation from only hours 6oo cbm of oxyhydrogen. The gas capacity of a large power plant is with ten mirrors set up, this means 6,000 cbm of oxyhydrogen per day. In the tropical and subtropical area it must be possible with this invention, from sun and Water to introduce an energy production that goes up the entire equatorial area and down to the 40th parallel largely influenced technically and economically. This energy generation is crucial for the development of undeveloped areas Be meaning. In addition, there is the possibility of this energy space, z. B. Mediterranean area to send electrical power to the temperate zone.

Die Vorteile dieser Energiegewinnung gegenüber der jetzigen bestehen darin: i. daß die Grundstoffe des Wassers und Sonnenwärme fast überall im tropischen und subtropischen Gebiet in unerschöpflicher Menge zur Verfügung stehen, 2. daß ihre Verwertung nur einen Bruchteil der heutigen Energiegewinnungskosten und -mühen betragen und 3. daß die Kraftwerke nicht landgebunden sind, sondern auch als schwimmende Einrichtungen auf dem Wasser errichtet werden können.The advantages of this energy generation compared to the current one exist therein: i. that the basic substances of water and solar heat almost everywhere in the tropical and subtropical areas are available in inexhaustible quantities, 2. that their utilization is only a fraction of today's energy generation costs and efforts and 3. that the power plants are not land-based, but also floating Facilities can be erected on the water.

Bekannt ist die Energieauswertung des Wassers in der Dampfmaschine und durch die Fallwirkung auf Wasserräder und Turbinen. Bei diesen Energiearten wird die Energiekraft des Wassers nur oberflächlich ausgenutzt. Die volle Ausnutzung dieser im Wasser vorhandenen Kraft wird durch meine Erfindung erstmalig dadurch erreicht, daß die Grundstoffe des Wassers in den Dienst der Energiegewinnung gestellt werden und hierzu Sonnenwärme auf die zweckmäßigste und billigste Art ausgenutzt wird.The energy evaluation of the water in the steam engine is known and by the falling effect on water wheels and turbines. With these types of energy the energy of the water is only used superficially. The full utilization This power present in the water is for the first time due to my invention achieves that the basic materials of water are used to generate energy and for this purpose solar heat is used in the most expedient and cheapest way will.

Claims (2)

PATENTANSPRÜCHE: i. Energiegewinnung aus Wasser und Sonnenwärme, dadurch gekennzeichnet, daß durch Konzentrierung der .Sonnenwärme Wasser in seine Grundstoffe Wasserstoff und Sauerstoff zerlegt wird und diese Gase über Verbrennungsmaschinen in elektrische Kraft umgewandelt werden. PATENT CLAIMS: i. Energy generation from water and solar heat, characterized in that by concentrating the .Sonnenwärme water is broken down into its basic materials hydrogen and oxygen and these gases are converted into electrical power by combustion engines. 2. Verfahren nach Anspruch i, dadurch gekennzeichnet, daß mit diesen Gasen Fahrzeuge betankt werden, die mit einem Brennkraftmotor ausgerüstet sind. Angezogene Druckschriften: G m e 1 i n -Kraut : Handbuch der anorganischen Chemie Bd. I, Abt. i, 1907, S. i 15 bis i 16. U 11 m a n n: Enzyklopädie der technischen Chemie, io. Bd. 1932, 2. Aufl., S. 3o8.2. The method according to claim i, characterized in that that these gases are used to fuel vehicles equipped with an internal combustion engine are. Printed publications: G m e 1 i n -kraut: manual of the inorganic Chemistry Vol. I, Abt. I, 1907, pp. I 15 to i 16. U 11 m a n n: Encyclopedia of technical Chemistry, io. Vol. 1932, 2nd edition, p. 3o8.
DEG4553A 1950-11-14 1950-11-14 Energy generation from water and solar heat Expired DE836129C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEG4553A DE836129C (en) 1950-11-14 1950-11-14 Energy generation from water and solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEG4553A DE836129C (en) 1950-11-14 1950-11-14 Energy generation from water and solar heat

Publications (1)

Publication Number Publication Date
DE836129C true DE836129C (en) 1952-04-10

Family

ID=7117444

Family Applications (1)

Application Number Title Priority Date Filing Date
DEG4553A Expired DE836129C (en) 1950-11-14 1950-11-14 Energy generation from water and solar heat

Country Status (1)

Country Link
DE (1) DE836129C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1200611B (en) * 1960-04-07 1965-09-09 United Aircraft Corp Device for converting solar energy into electrical energy
FR2287023A1 (en) * 1974-10-04 1976-04-30 Carden Peter METHOD AND DEVICE FOR CAPTURING SOLAR ENERGY
EP0004565A1 (en) * 1978-03-14 1979-10-17 Licentia Patent-Verwaltungs-GmbH Process and installation for the production of hydrogen, and exploitation of said installation
DE3006014A1 (en) * 1980-02-18 1981-08-20 Reinhard Klaus Ing.(grad.) 1000 Berlin Hager Solar power unit including mirrors with focal line - irradiates sea-water boiler moving together with mirrors, and steam used for power and salt as by=product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1200611B (en) * 1960-04-07 1965-09-09 United Aircraft Corp Device for converting solar energy into electrical energy
FR2287023A1 (en) * 1974-10-04 1976-04-30 Carden Peter METHOD AND DEVICE FOR CAPTURING SOLAR ENERGY
EP0004565A1 (en) * 1978-03-14 1979-10-17 Licentia Patent-Verwaltungs-GmbH Process and installation for the production of hydrogen, and exploitation of said installation
DE3006014A1 (en) * 1980-02-18 1981-08-20 Reinhard Klaus Ing.(grad.) 1000 Berlin Hager Solar power unit including mirrors with focal line - irradiates sea-water boiler moving together with mirrors, and steam used for power and salt as by=product

Similar Documents

Publication Publication Date Title
DE19714512C2 (en) Maritime power plant with manufacturing process for the extraction, storage and consumption of regenerative energy
Holdren et al. Environmental aspects of renewable energy sources
Karady et al. Electrical energy conversion and transport: an interactive computer-based approach
Bockris et al. A solar-hydrogen economy for USA
DE836129C (en) Energy generation from water and solar heat
DE102009056596B4 (en) Wave power station
Ragheb Solar thermal power and energy storage historical perspective
DE202006002444U1 (en) Zero-emission-power plant for combustion of fossil fuel to extract carbon dioxide, has pipeline to transport carbon dioxide into ravine, where carbon dioxide is deposited in specific water depth and power plant is in form of floating island
Neiburger The role of meteorology in the study and control of air pollution
DE10156975A1 (en) Hydrocarbon production comprises producing hydrocarbons from atmospheric carbon dioxide and water
Energy Hydrogen in air transportation. Feasibility study for Zurich airport, Switzerland
Kowalski Alternative energy sources
JP2020089248A (en) Power generation considering long-term storage of surface-derived energy
DE2935183C2 (en) Process for storing the energy obtained through the use of solar energy
DE102021002114A1 (en) tri-energy engine
EP4148104A1 (en) A method of producing climate-neutral fuel, and a system for carrying out said method
DE19521289A1 (en) Energy recovery and irrigation system producing hydrogen and oxygen
DE2438949A1 (en) Methane conversion with steam using concentrated solar energy - to produce carbon nonoxide and hydrogen
DE10063490A1 (en) Electrolytic production of hydrogen from water comprises use of plant supplied by solar or wind energy, optionally liquefying hydrogen produced
Netschert Air pollution and electric power
Vural Renewable energy potential and production of Turkey: 2023 vision
Bromley Energies of the future
EP0073840A1 (en) Hydro-electric plant for the conversion of wind and solar energy
Mitchell Environmental restraints on energy conversion
Isendahl A New Parseval Airship