DE4440658A1 - Earth orbiting, sun following satellite - Google Patents

Earth orbiting, sun following satellite

Info

Publication number
DE4440658A1
DE4440658A1 DE4440658A DE4440658A DE4440658A1 DE 4440658 A1 DE4440658 A1 DE 4440658A1 DE 4440658 A DE4440658 A DE 4440658A DE 4440658 A DE4440658 A DE 4440658A DE 4440658 A1 DE4440658 A1 DE 4440658A1
Authority
DE
Germany
Prior art keywords
satellite
sun
earth
oriented
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4440658A
Other languages
German (de)
Inventor
Amnon Dipl Ing Ginati
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OHB OPTO ELEKTRONIK HYDRAULIK
Original Assignee
OHB OPTO ELEKTRONIK HYDRAULIK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OHB OPTO ELEKTRONIK HYDRAULIK filed Critical OHB OPTO ELEKTRONIK HYDRAULIK
Priority to DE4440658A priority Critical patent/DE4440658A1/en
Publication of DE4440658A1 publication Critical patent/DE4440658A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/32Guiding or controlling apparatus, e.g. for attitude control using earth's magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/34Guiding or controlling apparatus, e.g. for attitude control using gravity gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • B64G1/443Photovoltaic cell arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/283Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using reaction wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/46Arrangements or adaptations of devices for control of environment or living conditions
    • B64G1/50Arrangements or adaptations of devices for control of environment or living conditions for temperature control
    • B64G1/503Radiator panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The includes a reduced number of solar panels with various sides used for different purposes. Satellite sides are available for various instruments, such as aerials, drive units, adaptors etc.. The free sides without solar cells can be used for waste heat radiation.The satellite comprises simple accommodation of foldable solar panels without complex aligning and follower mechanisms. It uses a gravity gradient stabilisation for the yaw and pitch axes. The panel aligning is carried out by magnetic coils.

Description

Jeder Satellit benötigt für den Betrieb seiner Nutzlast und Untersysteme Energie, die bei erdnahen bzw. sonnennahen Missionen gewöhnlich von Solarzellen bereitgestellt wird. Je nach Anforderungen der Nutzlasten und der Missionsparameter wird eine entsprechende Energielieferung durch diese Solarzellen benötigt. Im allgemeinen ist die Leistungsfähigkeit von Satelliten, in Bezug auf die Energie, eingeschränkt.Each satellite requires energy to operate its payload and subsystems near-earth or near-sun missions are usually provided by solar cells. Depending on The requirements of the payloads and the mission parameters will be corresponding Energy supply required by these solar cells. In general, the performance from satellites, in terms of energy.

Zur Kostenreduzierung bietet sich folgendes Satellitenkonzept an, bei dem mit wenig Aufwand eine optimale große Energieausbeute erzielt werden kann:The following satellite concept can be used to reduce costs, with little effort an optimal large energy yield can be achieved:

Das Satellitenkonzept besteht aus:The satellite concept consists of:

  • - Einem erdorientierten Satelliten (Ausrichtung der Antennen zur Erde) mit Massenausleger (Stab mit kompakter Masse an seinem Ende). Der Massenausleger stabilisiert dabei die Roll- und Nick-Achse passiv (Schwerkraft­ gradientenstabilisierung). Der Massenausleger kann in Richtung Erde oder in die umgekehrte Richtung zeigen.- An earth-oriented satellite (alignment of the antennas to earth) with Mass boom (rod with compact mass at its end). Of the Mass booms passively stabilize the roll and pitch axes (gravity gradient stabilization). The mass boom can be in the earth or in the show reverse direction.

In Abb. 1 ist die Satellitenkonfiguration im Orbit dargestellt. Fig. 1 shows the satellite configuration in orbit.

  • - Vier Solarpanele, wobei zwei Solarpanel um einen Winkel α ausgeklappt sind. Der Winkel der Solar-Panele α wird so gewählt, daß möglichst eine hohe mittlere Energieausbeute für die jeweilige Mission vorliegt (z. B.: α = 45°).
    Im Orbit werden die ausklappbaren Solar-Panele in die gewünschte Winkelstellung gebracht und fest arretiert.
    - Four solar panels, with two solar panels unfolded by an angle α. The angle of the solar panels α is chosen so that the highest possible energy yield is available for the respective mission (e.g. α = 45 °).
    In orbit, the fold-out solar panels are brought into the desired angular position and locked in place.
  • - Die vier Solarpanele werden während der Sonnenphasen - durch Gier-Achsen- Kontrolle - stets in Richtung der Sonne orientiert (Sonnennachführung).
    Die Variation des Gier-Achsen-Winkels ist von der Wanderung des aufsteigenden Knotens abhängig, die z. B. bei einer Umlaufbahn von 1300 km mit 83° Inklination beträgt.
    - The four solar panels are always oriented in the direction of the sun during the sun phases - by yaw-axis control (sun tracking).
    The variation in the yaw axis angle is from the migration of the ascending knot depending on the z. B. with an orbit of 1300 km with 83 ° inclination is.
  • - Die automatische Gier-Achsen-Kontrolle wird durch Magnet-Spulen bewerkstelligt. Dabei liefern Sonnensensoren und Magnetometer die notwendigen Winkelinformationen.- The automatic yaw axis control is done by solenoid coils accomplished. Sun sensors and magnetometers deliver that necessary angle information.

Abb. 2 zeigt die Anordnung der Magnet-Spulen (einschließlich der Option mit Reaktionsrädern) im erdorientierten, sonnennachführbaren Satelliten und in Abb. 3 ist die orbitale Dynamik dieser Satellitenkonfiguration dargestellt. Fig. 2 shows the arrangement of the magnetic coils (including the option with reaction wheels) in the earth-oriented, sun-tracking satellite, and Fig. 3 shows the orbital dynamics of this satellite configuration.

In Abb. 4 ist die Drehbewegung des Satelliten um die Gier-Achse dargestellt, um die Solarzellenflächen während der sonnenzugewandten Phase optimal in Richtung Sonne auszurichten. Fig. 4 shows the rotation of the satellite around the yaw axis in order to optimally align the solar cell surfaces towards the sun during the phase facing the sun.

Zum Vergleich der Energieausbeute ist dieser erdorientierte, sonnennachführbare Satellit mit einer konventionellen Satellitenkonfiguration, bei der alle Seitenflächen mit Solarzellen belegt sind, in Abb. 5 dargestellt. Beide Satelliten haben die gleichen Abmessungen und Solarpanel-Charakteristiken. To compare the energy yield, this earth-oriented, sun-tracking satellite with a conventional satellite configuration, in which all side surfaces are covered with solar cells, is shown in Fig. 5. Both satellites have the same dimensions and solar panel characteristics.

Liste der AbbildungenList of pictures

  • 1) Konfiguration des erdorientierten, sonnennachführbaren Satelliten im Orbit.1) Configuration of the earth-oriented, sun-tracking satellite in orbit.
  • 2) Anordnung der Magnet-Spulen (sowie auch als Option mit Reaktionsrädern) im erdorientierten, sonnennachführbaren Satelliten.2) Arrangement of the magnetic coils (as well as an option with reaction wheels) in the earth-oriented, sun-tracking satellite.
  • 3) Darstellung der Dynamik des erdorientierten, sonnennachführbaren Satelliten im Orbit.3) Representation of the dynamics of the earth-oriented, sun-tracking satellite in orbit.
  • 4) Darstellung einer typischen Drehrate des erdorientierten, sonnennachführbaren Satelliten um die Gier-Achse bei einem Winkel zwischen Sonne und Orbitalebene von 135°.4) Representation of a typical rotation rate of the earth-oriented, sun trackable Satellite around the yaw axis at an angle between the sun and orbital plane of 135 °.
  • 5) Vergleich der Energieausbeute zwischen einem erdorientierten, sonnennachführbaren Satelliten und einer Standard-Satellitenkonfiguration.5) Comparison of the energy yield between an earth-oriented, sun trackable Satellites and a standard satellite configuration.
  • 6) Zusammenfassung der wichtigsten Ergebnisse aus der Energie-Betrachtung.6) Summary of the most important results from the energy analysis.

Claims (1)

Das Konzept für einen erdorientierten, sonnennachführbaren Satelliten ist dadurch gekennzeichnet, daß
  • - mit geringem Aufwand die maximale Energieausbeute mit einem erdorientierten Satelliten in jedem Orbit (variabler aufsteigender Knoten) erreicht wird.
  • - Dadurch eine Reduzierung der Anzahl von Solar-Panelen und Solarzellen erfolgt.
  • - Folglich weitere Satellitenseiten für andere Instrumente (z. B. Antennen, Adapter, Triebwerke) zur Verfügung stehen.
  • - Diese nicht von Solarzellen belegten, freien Seiten können auch als thermale Abstrahlflächen genutzt werden (passive Thermalregelung).
  • - Diese Satellitenkonfiguration ist im Aufbau gekennzeichnet durch:
  • - einfache Bauweise im Vergleich zu Satelliten mit Solarpanel-Dreh-Mechanismen (BAPTA, einfache, kostengünstige Herstellung durch einfache Realisierbarkeit, keine aufwendigen Ausfahr-/Ausklappmechanismen, keine komplexen Ausrichtungen und Nachführungseinrichtungen notwendig)
  • - einfache Unterbringung und Akkommodation der ausklappbaren Solar-Panele.
  • - Eine Stabilisierung des Satelliten erfolgt passiv mittels Massenausleger (Schwerkraft­ gradientenstabilisierung) für die Roll- und Nick-Achse.
  • - Zur Ausrichtung der Panele auf die Sonne (Regelung um die Gier-Achse) wird eine aktive Kontrolle mittels Magnet-Spulen herangezogen (optional können auch Reaktionsrädern verwendet werden, um die Ausrichtgenauigkeit zu steigern).
  • - Die aktive Regelung um Roll- und Nick-Achse erfolgt ebenfalls durch die Magnet-Spulen, wobei wieder optionale Reaktionsräder die Ausrichtgenauigkeit steigern.
The concept for an earth-oriented, sun-tracking satellite is characterized in that
  • - With little effort, the maximum energy yield is achieved with an earth-oriented satellite in every orbit (variable ascending node).
  • - This results in a reduction in the number of solar panels and solar cells.
  • - As a result, additional satellite sites for other instruments (e.g. antennas, adapters, engines) are available.
  • - These free sides not occupied by solar cells can also be used as thermal radiation surfaces (passive thermal control).
  • - The structure of this satellite configuration is characterized by:
  • - Simple design in comparison to satellites with solar panel rotation mechanisms (BAPTA, simple, inexpensive manufacture due to simple feasibility, no complex extension / folding mechanisms, no complex alignments and tracking devices necessary)
  • - Easy accommodation and accommodation of the fold-out solar panels.
  • - The satellite is stabilized passively by means of a mass boom (gravity gradient stabilization) for the roll and pitch axes.
  • - For the alignment of the panels towards the sun (regulation around the yaw axis) an active control by means of magnetic coils is used (reaction wheels can optionally be used to increase the alignment accuracy).
  • - The active control around the roll and pitch axes is also carried out by the magnetic coils, with optional reaction wheels again increasing the alignment accuracy.
DE4440658A 1994-11-14 1994-11-14 Earth orbiting, sun following satellite Withdrawn DE4440658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4440658A DE4440658A1 (en) 1994-11-14 1994-11-14 Earth orbiting, sun following satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4440658A DE4440658A1 (en) 1994-11-14 1994-11-14 Earth orbiting, sun following satellite

Publications (1)

Publication Number Publication Date
DE4440658A1 true DE4440658A1 (en) 1996-05-15

Family

ID=6533296

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4440658A Withdrawn DE4440658A1 (en) 1994-11-14 1994-11-14 Earth orbiting, sun following satellite

Country Status (1)

Country Link
DE (1) DE4440658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851330A2 (en) * 1996-12-12 1998-07-01 ICO Services Ltd. Satellite operating system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851330A2 (en) * 1996-12-12 1998-07-01 ICO Services Ltd. Satellite operating system and method
EP0851330A3 (en) * 1996-12-12 1998-10-21 ICO Services Ltd. Satellite operating system and method
US6017003A (en) * 1996-12-12 2000-01-25 Ico Services Ltd Satellite operating system and method

Similar Documents

Publication Publication Date Title
DE4434109B4 (en) Three-axis stabilized satellite with low orbit geocentric orientation with single-axis solar generator
DE69111437T2 (en) METHOD FOR CONTROLLING THE NICKLE ANGLE OF A SATELLITE BY MEANS OF SUN WIND PRESSURE AND SATELLITE FOR IMPLEMENTING THE SAME.
DE69022203T2 (en) Method for controlling the inclination of a satellite with respect to the roll and yaw axis.
DE69630989T2 (en) Universal position control system for spacecraft
DE2642061C2 (en) Position control and orbit change method for a three-axis stabilizable satellite, in particular for a geostationary satellite and device for carrying out the method
DE69729538T2 (en) Method and system for reducing mechanical disturbances in energy storage flywheels
DE69004460T2 (en) Method and system for positioning an aircraft in space.
EP0583307A1 (en) Device for adjusting the position of satellites by means of solar pressure torques.
DE68910501T2 (en) DEVICE AND METHOD FOR CHANGING THE ORBIT OF AN ARTIFICIAL SATELLITE.
DE69632997T2 (en) Method for systematic calibration of the vectorial momentum momentum control of a satellite
US4079904A (en) Module exchanger systems
DE69630767T2 (en) Position control for spacecraft using gimbaled engines
EP0134288B1 (en) Satellite system with variable configuration
DE2558354B2 (en) Spacecraft
DE69312033T2 (en) Position control system with magnetic torque
DE60301117T2 (en) Method and device for dynamic compensation with reaction wheels during a longer deployment of a large reflector
DE69304415T2 (en) Small-scale, geodetic satellite with speed aberration correction for retroreflector
DE3201997C2 (en) Method for decreasing the nutation of a spacecraft and system for carrying out the method
DE69401189T2 (en) Geostationary satellite with electric accumulator cells
DE60006773T2 (en) Position and power control system for satellites
DE3918832A1 (en) AIRPORT CONTROL ARRANGEMENT
DE69813663T2 (en) Device and method for straightening solar cell modules on an agile, rotating spacecraft
DE2313606A1 (en) DEVICE FOR COMPENSATING THE TORQUE EXECUTED BY THE RADIATION PRESSURE OF THE SUN ON A SPACE BODY
DE69103542T2 (en) Essentially passive process for reversing the direction of orientation of a twin-spin spacecraft.
DE4440658A1 (en) Earth orbiting, sun following satellite

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee