DE4420752A1 - Catalytic steam reformation process for methanol - Google Patents

Catalytic steam reformation process for methanol

Info

Publication number
DE4420752A1
DE4420752A1 DE4420752A DE4420752A DE4420752A1 DE 4420752 A1 DE4420752 A1 DE 4420752A1 DE 4420752 A DE4420752 A DE 4420752A DE 4420752 A DE4420752 A DE 4420752A DE 4420752 A1 DE4420752 A1 DE 4420752A1
Authority
DE
Germany
Prior art keywords
stage
methanol
reaction
reactor
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4420752A
Other languages
German (de)
Inventor
Dietmar Dipl Ing Heil
Uwe Dipl Ing Benz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Priority to DE4420752A priority Critical patent/DE4420752A1/en
Priority to DE59503581T priority patent/DE59503581D1/en
Priority to EP95107821A priority patent/EP0687648B1/en
Priority to US08/488,660 priority patent/US5672629A/en
Publication of DE4420752A1 publication Critical patent/DE4420752A1/en
Priority to US08/708,967 priority patent/US5753194A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0438Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00398Controlling the temperature using electric heating or cooling elements inside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/021Processes carried out in the presence of solid particles; Reactors therefor with stationary particles comprising a plurality of beds with flow of reactants in parallel
    • B01J2208/022Plate-type reactors filled with granular catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2454Plates arranged concentrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2462Heat exchange aspects the reactants being in indirect heat exchange with a non reacting heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2467Additional heat exchange means, e.g. electric resistance heaters, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2474Mixing means, e.g. fins or baffles attached to the plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2482Catalytically active foils; Plates having catalytically activity on their own
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2498Additional structures inserted in the channels, e.g. plates, catalyst holding meshes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

A process for the catalytic steam reformation of methanol. A steam/methanol mixture is supplied at a specified temperature. The process takes place in at least two steps. In at least a first step (1) the methanol is incompletely reacted at high temperature using an optimal heat transition process. In at least one later step (6) the methanol reaction is completed. Also claimed apparatus for carrying and the process.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur katalytischen Wasserdampfreformierung von Methanol gemäß dem Oberbegriff des Hauptanspruchs.The invention relates to a method and an apparatus for Catalytic steam reforming of methanol according to the Preamble of the main claim.

Aus dem JP-AB 63-166701 ist eine plattenförmige Vorrichtung zur Methanol-Reformierung bekannt, bei der durch die Anordnung von Platten mit dazwischenliegenden Abstandshaltern abwechselnd Reaktions- und Heizräume ausgebildet sind. Die Reaktionsräume sind mit einem Katalysatormaterial gefüllt, mit dessen Hilfe das eingeleitete Methanol unter Zufuhr von Wärme reformiert wird.From JP-AB 63-166701 is a plate-shaped device for Methanol reforming known by the arrangement of Alternating plates with spacers in between Reaction and boiler rooms are formed. The reaction rooms are filled with a catalyst material, with the help of which introduced methanol is reformed with the supply of heat.

Die Aufgabe der Erfindung besteht darin, ein Verfahren und eine Vorrichtung zur Methanol-Reformierung mit verringertem Platzbedarf zu schaffen.The object of the invention is a method and Reduced methanol reforming apparatus To create space.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The object is achieved by the characterizing Features of claim 1 solved.

Durch die zweistufige Reformierung ist es möglich, einen kompakten Reaktor mit ausreichender Ausbeute bereitzustellen. In der ersten Stufe, die hinsichtlich des Wärmeeintrags optimiert ist, wird der Reaktion möglichst isotherm die notwendige Energie zugeführt. Die Ausbeute wird dann in einer zweiten Stufe, die hinsichtlich des Umsatzes optimiert ist, vervollständigt. Da die zweite Stufe auch bei etwas niedrigeren Temperaturen betrieben werden kann ist es außerdem möglich, den CO-Anteil im Reformgas zu reduzieren.The two-stage reform process makes it possible to get one provide compact reactor with sufficient yield. In the first stage, which optimizes the heat input is the required energy of the reaction as isothermal as possible fed. The yield is then in a second stage, the is optimized in terms of sales. Since the second stage also operated at somewhat lower temperatures it is also possible to reduce the proportion of CO in the reformed gas to reduce.

Weitere Vorteile und Ausgestaltungen gehen aus den Unteransprü­ chen und der Beschreibung hervor. Die Erfindung ist nachstehend anhand einer Zeichnung näher beschrieben, wobeiFurther advantages and configurations result from the subclaims Chen and the description. The invention is as follows described in more detail with reference to a drawing, wherein

Fig. 1 den prinzipiellen Aufbau einer erfindungsgemäßen Vorrichtung, Fig. 1 shows the basic structure of a device according to the invention,

Fig. 2 ein Ausführungsbeispiel eines plattenförmigen Reaktors, Fig. 2 shows an embodiment of a plate-shaped reactor

Fig. 3 ein weiteres Ausführungsbeispiel eines plattenförmigen Reaktors, und Fig. 3 shows another embodiment of a plate-shaped reactor, and

Fig. 4 ein Ausführungsbeispiel für einen Rohrreaktor zeigt. Fig. 4 shows an embodiment for a tubular reactor.

Bei der katalytischen Wasserdampfreformierung wird ein Gemisch aus Methanol und Wasserdampf unter Zufuhr von Wärme an einem geeigneten Katalysator zu Wasserstoff umgesetzt, wobei gleichzeitig Kohlendioxid entsteht:Catalytic steam reforming is a mixture from methanol and water vapor with the supply of heat to one suitable catalyst converted to hydrogen, wherein at the same time carbon dioxide is generated:

CH₃OH + H₂O → 3 H₂ + CO₂CH₃OH + H₂O → 3 H₂ + CO₂

Diese Reaktion läßt sich aufteilen in die stark endotherme PyrolyseThis reaction can be divided into the strongly endothermic Pyrolysis

CH₃OH → 2 H₂ + COCH₃OH → 2 H₂ + CO

und in die schwach exotherme Shift-Reaktion:and into the weakly exothermic shift reaction:

CO + H₂O → CO₂ + H₂CO + H₂O → CO₂ + H₂

Bei mobilen Anwendungen, beispielsweise bei der Wasserdampf­ reformierung für Brennstoffzellen in Kraftfahrzeugen, ist es wichtig, daß die benötigte Ausbeute an Wasserstoffgas bei mög­ lichst geringem Platzbedarf und Gewicht bereitgestellt werden kann. Da die Reaktion nur unter Wärmezufuhr abläuft, ist die Ausbeute jedoch abhängig vom Wärmeeintrag. Daher sollte der Reaktor so ausgebildet sein, daß ein optimaler Wärmeübergang von einem bereitgestellten Wärmeträgermedium auf das Reformgas und auf das Katalysatormaterial gewährleistet wird. Hierzu werden im allgemeinen eine Vielzahl aufwendig gestalteter Heizkanäle benötigt, so daß sich der Anteil des mit Katalysator gefüllten Volumens am Gesamtvolumen verringert. Da die Ausbeute jedoch auch von der aktiven Katalysatormenge abhängt, bedeutet dies gleichzeitig wiederum eine Verringerung der Ausbeute. Somit ist es entscheidend, die Methanolreformierung hinsichtlich dieser beiden Faktoren zu optimieren.In mobile applications, such as water vapor reform for fuel cells in motor vehicles, it is important that the required yield of hydrogen gas possible as little space and weight as possible can. Since the reaction only takes place with the addition of heat, it is However, the yield depends on the heat input. Therefore, the Reactor be designed so that an optimal heat transfer from a provided heat transfer medium on the reform gas and on the catalyst material is guaranteed. For this purpose, in generally a variety of elaborately designed heating channels  needed so that the proportion of the filled with catalyst Volume of the total volume reduced. Since the yield, however also depends on the amount of active catalyst, this means at the same time again a reduction in the yield. So is it is crucial to reform the methanol with regard to this optimize both factors.

Fig. 1 zeigt eine zweistufige Vorrichtung zur Reformierung von Methanol, bestehend aus einem ersten Reaktor 1 und einem zweiten Reaktor 6. Dem ersten Reaktor 1 wird über eine Zuleitung 2 das Methanol/Wasserdampfgemisch zugeführt. Über eine erste Heiz­ leitung 3 wird dem Reaktor 1 außerdem ein Wärmeträgermedium zugeführt und nach dem Durchströmen des Reaktors 1 über eine erste Abströmleitung 4 wieder abgeführt. Nach dem Durchströmen des Reaktors 1 wird das Gasgemisch, welches noch Anteile nicht umgesetzter Edukte enthält, über eine Verbindungsleitung 5 zu einem zweiten Reaktor 6 weitergeleitet. Das bei der Reformierung entstandene Produktgas, vornehmlich ein Gemisch aus Wasserstoff und Kohlendioxid, wird anschließend über eine Auslaßleitung 7 abgeleitet. Dem zweiten Reaktor 6 kann über eine zweite Heiz­ leitung 8 ebenfalls ein Wärmeträgermedium zugeführt werden, welches anschließend über eine zweite Abströmleitung 9 wieder abgeführt wird. Prinzipiell können hierbei sowohl flüssige als auch gasförmige Wärmeträgermedien eingesetzt werden. Insbe­ sondere die zweite Reaktionsstufe 6 kann jedoch auch elektrisch beheizt werden. Der genaue Aufbau der beiden Reaktoren 1, 6 wird weiter unten anhand der Fig. 2 bis 4 näher beschrieben. Fig. 1 shows a two-stage device for reforming of methanol, comprising a first reactor 1 and second reactor 6. The methanol / water vapor mixture is fed to the first reactor 1 via a feed line 2 . Line via a first heater 3 to the reactor 1 is also fed to a heat transfer medium and removed again after flowing through the reactor 1 via a first discharge line. 4 After flowing through the reactor 1 , the gas mixture, which still contains portions of unreacted starting materials, is passed on to a second reactor 6 via a connecting line 5 . The product gas formed during the reforming, primarily a mixture of hydrogen and carbon dioxide, is then discharged via an outlet line 7 . The second reactor 6 can also be supplied via a second heating line 8 , a heat transfer medium, which is then discharged again via a second outflow line 9 . In principle, both liquid and gaseous heat transfer media can be used. In particular, the second reaction stage 6 can also be heated electrically. The exact structure of the two reactors 1 , 6 is described in more detail below with reference to FIGS. 2 to 4.

Mit Hilfe der oben beschriebenen Anordnung wird die Reformierung des Methanol/Wasserdampfgemisches in einem zweistufigen Prozeß durchgeführt. Die erste Stufe, die im ersten Reaktor 1 abläuft, ist hinsichtlich des Wärmeübergangs zwischen dem Wärmeträger­ medium und dem Katalysatormaterial beziehungsweise dem zu reformierenden Gas optimiert. Hierbei wird die Umsetzung des Methanols bei einer Temperatur von 250°-350° Celsius durch­ geführt, wobei der Umsetzungsgrad in dieser ersten Stufe vor­ zugsweise weniger als 90% beträgt. With the help of the arrangement described above, the reforming of the methanol / water vapor mixture is carried out in a two-stage process. The first stage, which takes place in the first reactor 1 , is optimized with regard to the heat transfer between the heat transfer medium and the catalyst material or the gas to be reformed. Here, the conversion of the methanol is carried out at a temperature of 250 ° -350 ° Celsius, the degree of conversion in this first stage preferably being less than 90%.

In der zweiten Stufe wird anschließend der Umsatz von Methanol vervollständigt. Hierzu sollte diese zweite Stufe 6 ein günstiges Verhältnis von Reaktormasse zu Katalysatormasse auf­ weisen. Außerdem kann die zweite Stufe 6 zur Verringerung des CO-Gehalts bei etwas niedrigeren Temperaturen und nur schwach beheizt oder adiabat betrieben werden. Für die zweite Stufe 6 wird ebenfalls ein Katalysator verwendet, wobei in den beiden Stufen 1, 6 unterschiedliche, für den jeweiligen Prozeß opti­ mierte Katalysatoren Verwendung finden können. Es ist prinzi­ piell auch möglich, beide Stufe in einer gemeinsamen Anordnung zu integrieren. Die gesamte Reaktion wird unter Druck, vorzugs­ weise 1-15 bar, betrieben.In the second stage, the conversion of methanol is then completed. For this purpose, this second stage 6 should have a favorable ratio of reactor mass to catalyst mass. In addition, the second stage 6 for reducing the CO content can be operated at slightly lower temperatures and only slightly heated or adiabatically. For the second stage 6 , a catalyst is also used, wherein in the two stages 1 , 6 different, optimized for the respective process catalysts can be used. In principle, it is also possible to integrate both stages in a common arrangement. The entire reaction is operated under pressure, preferably 1-15 bar.

Für die Kombination der beiden Stufen 1, 6 gibt es drei Möglich­ keiten, wobei prinzipiell die erste Stufe 1 bezüglich des Wärme­ eintrags und die zweite Stufe 6 bezüglich des Umsatzes optimiert wird. Die erste Möglichkeit besteht darin, in beiden Stufen 1, 6 die Wasserdampfreformierung bei 250°-350°C durchzuführen. Wei­ terhin kann die zweite Stufe 6 auch bei Temperaturen von 150°- 250°C betrieben werden, wobei hierbei die CO-Shift-Reaktion bevorzugt abläuft. Bei der dritten Möglichkeit wird in der ersten Stufe 1 ausschließlich die Pyrolyse bei 250°-350°C durchgeführt, wobei hierbei in der zweiten Stufe 6 wiederum die CO-Shift-Reaktion bei 150°-250°C bevorzugt durchgeführt wird.There are three possibilities for the combination of the two stages 1 , 6 , whereby in principle the first stage 1 is optimized in terms of heat input and the second stage 6 is optimized in terms of sales. The first possibility is to carry out steam reforming at 250 ° -350 ° C in both stages 1 , 6 . Furthermore, the second stage 6 can also be operated at temperatures of 150 ° to 250 ° C., the CO shift reaction preferably taking place here. In the third possibility, only the pyrolysis is carried out at 250 ° -350 ° C in the first stage 1 , the CO shift reaction at 150 ° -250 ° C being carried out in the second stage 6 .

Anhand der Fig. 2 und 3 wird nun der prinzipielle Aufbau eines plattenförmigen Reaktors 16 näher beschrieben, wobei jeweils nur eine Einzelzelle dargestellt ist. Der gesamte Plattenreaktor 16 kann aus einer Vielzahl solcher Einzelzellen aufgebaut werden. Im Ausführungsbeispiel gemäß Fig. 2 besteht der Plattenreaktor 16 aus mehreren Trennplatten 10, durch welche abwechselnd Reak­ tionskanäle 11 und Heizkanäle 12 ausgebildet werden. Im Reak­ tionskanal 11, dem über die Zuleitung 2 das Methanol/Wasser­ dampf-Gemisch zugeführt wird, ist eine Katalysatorschüttung 13 eingebracht. Zwischen den Trennplatten 10, die den Heizkanal 12 bilden, ist außerdem eine Stütz- beziehungsweise Strömungsleit­ struktur 14 eingebracht. Die Heizkanäle 12 werden über die Heizleitung 3, 8 mit dem Wärmeträgermedium versorgt.The basic structure of a plate-shaped reactor 16 will now be described in more detail with reference to FIGS. 2 and 3, only one single cell being shown in each case. The entire plate reactor 16 can be constructed from a large number of such individual cells. In the exemplary embodiment according to FIG. 2, the plate reactor 16 consists of several partition plates 10 , through which reaction channels 11 and heating channels 12 are alternately formed. In the reaction channel 11 , to which the methanol / water vapor mixture is fed via the feed line 2 , a catalyst bed 13 is introduced. Between the partition plates 10 , which form the heating channel 12 , a support or flow guide structure 14 is also introduced. The heating channels 12 are supplied with the heat transfer medium via the heating line 3 , 8 .

Fig. 3 zeigt ein weiteres Ausführungsbeispiel, wobei gleiche Teile gegenüber Fig. 2 mit gleichen Bezugszeichen gekennzeichnet sind. Im Unterschied zu Fig. 2 wird hierbei keine Katalysator­ schüttung 13 verwendet, sondern die den Reaktionskanälen 11 zu­ gewandten Innenseiten der Trennplatten 10 mit einem geeigneten Katalysatormaterial 13 beschichtet. Um die Stabilität der Vorrichtung zu gewährleisten und die Gasströmung zu verteilen ist bei dieser Anordnung auch in den Reaktionskanälen 11 eine Stütz- beziehungsweise Strömungsleitstruktur 14 eingebracht, wobei diese ebenfalls mit Katalysatormaterial 13 beschichtet werden kann. Es ist hierbei auch möglich, die Stütz- beziehungs­ weise Strömungsleitstruktur 14 für die Heizkanäle 12 und/oder die Reaktionskanäle 11 direkt in die Trennplatten 10 zu integrieren. Anstatt die Trennplatten 10 mit Katalysatormaterial 13 zu beschichteten ist es auch möglich, eine oder mehrere Katalysatormatten 13 zwischen die Trennplatten 10 einzubringen. Die Reaktionskanäle 11 werden dann entweder über separate Stütz­ beziehungsweise Strömungsleitstrukturen 14 gebildet oder beispielsweise durch Prägen oder Walzen direkt in die Katalysatormatten 13 eingearbeitet. FIG. 3 shows a further exemplary embodiment, the same parts being identified with the same reference numerals as in FIG. 2. In contrast to FIG. 2, no catalyst bed 13 is used here, but rather the inner sides of the separating plates 10 facing the reaction channels 11 are coated with a suitable catalyst material 13 . In order to ensure the stability of the device and to distribute the gas flow, in this arrangement a support or flow guide structure 14 is also introduced in the reaction channels 11 , which can also be coated with catalyst material 13 . It is also possible to integrate the support or flow guide structure 14 for the heating channels 12 and / or the reaction channels 11 directly into the separating plates 10 . Instead of coating the partition plates 10 with catalyst material 13 , it is also possible to insert one or more catalyst mats 13 between the partition plates 10 . The reaction channels 11 are then either formed via separate supports or flow guide structures 14 or are worked directly into the catalyst mats 13, for example by stamping or rolling.

Werden beide Stufen 1, 6 als plattenförmiger Reaktor ausge­ bildet, so können diese zur weiteren Reduzierung des Gewichts auch zwischen gemeinsamen Endplatten angeordnet werden.If both stages 1 , 6 are formed as a plate-shaped reactor, these can also be arranged between common end plates to further reduce the weight.

Fig. 4 zeigt schließlich einen als zweite Stufe einzusetzenden Rohrreaktor 17, der als einfacher Schüttreaktor ausgeführt ist. Das zylindrische Gehäuse 18 des Rohrreaktors 17 ist an den Stirnseiten mit der Verbindungsleitung 5 und der Auslaßleitung 7 verbunden. Innerhalb des Gehäuses 18 sind mehrere parallel ver­ laufende Umlenkstrukturen 19, die jeweils senkrecht zur Gehäuse­ längsachse angeordnet sind, vorgesehen. Die Umlenkstrukturen 19 können beispielsweise durch kreisförmige Platten, deren Umfänge jeweils am Gehäuse anliegen und bei denen jeweils auf gegenüber­ liegenden Seiten ein Kreisabschnitt ausgespart ist, gebildet werden. Dadurch ergibt sich für das Gasgemisch ein mäander­ förmiger Strömungsverlauf. Zur Zufuhr von Wärmeenergie kann zusätzlich eine oder mehrere Heizvorrichtungen 15, die aus einer mit Wärmeträger durchströmten Rohrwendel oder einer adäquaten elektrischen Heizung besteht, vorgesehen werden. Dieser Rohr­ reaktor 17 kann mit einem großem Durchmesser ausgebildet werden, so daß ein günstiges Verhältnis von Reaktormasse zu Katalysator­ masse erreicht wird. Fig. 4 shows a second stage to be used as tubular reactor 17, which is designed as a simple bulk reactor. The cylindrical housing 18 of the tubular reactor 17 is connected at the end faces to the connecting line 5 and the outlet line 7 . Within the housing 18 , a plurality of parallel deflecting structures 19 are provided , each of which is arranged perpendicular to the longitudinal axis of the housing. The deflecting structures 19 can be formed, for example, by circular plates, the circumferences of which each abut the housing and in which a circular section is recessed on opposite sides. This results in a meandering flow pattern for the gas mixture. To supply thermal energy, one or more heating devices 15 can additionally be provided, which consist of a tube coil through which the heat transfer medium flows or an adequate electrical heater. This tube reactor 17 can be formed with a large diameter, so that a favorable ratio of reactor mass to catalyst mass is achieved.

Claims (9)

1. Verfahren zur katalytischen Wasserdampfreformierung von Methanol, wobei das Wasserdampf/Methanolgemisch durch Zufuhr von Wärmeenergie auf einer vorgegebenen Temperatur gehalten wird, dadurch gekennzeichnet, daß mindestens zwei Reformierungsstufen (1, 6) vorgesehen sind, wobei in der zumindest einen ersten Stufe (1) das Methanol in einem wärmeübergangsoptimierten Prozeß bei höherer Temperatur unvollständig umgesetzt wird und wobei in der zumindest einen nachgeschalteten Stufe (6) eine den Methanolumsatz vervoll­ ständigende Reaktion durchgeführt wird.1. A process for the catalytic steam reforming of methanol, the steam / methanol mixture is maintained by supplying heat energy at a predetermined temperature, characterized in that at least two reforming stages (1, 6) are provided, wherein in the at least one first stage (1) the methanol is incompletely converted in a heat transfer-optimized process at a higher temperature, and a reaction which completes the methanol conversion is carried out in the at least one downstream stage ( 6 ). 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erste Stufe (1) bei einer Temperatur von 250°-350°C betrieben wird.2. The method according to claim 1, characterized in that the first stage ( 1 ) is operated at a temperature of 250 ° -350 ° C. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in der mindestens einen ersten Stufe (1) bevorzugt die pyrolytische Spaltung des Methanols durchgeführt wird.3. The method according to claim 1, characterized in that in the at least one first stage ( 1 ) preferably the pyrolytic cleavage of the methanol is carried out. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in der mindestens einen zweiten Stufe (6) bevorzugt eine CO-Shiftreaktion bei einer Temperatur von 150°-250°C durchgeführt wird. 4. The method according to claim 1, characterized in that in the at least one second stage ( 6 ) preferably a CO shift reaction is carried out at a temperature of 150 ° -250 ° C. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in der ersten und zweiten Stufe (1, 6) unterschiedliche, für die jeweilige Reaktion optimierte Katalysatoren (13) verwendet werden.5. The method according to claim 1, characterized in that in the first and second stage ( 1 , 6 ) different, optimized for the respective reaction catalysts ( 13 ) are used. 6. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß als erste Stufe (1) ein plattenförmiger Reformer (16) und als zweite Stufe (6) ein plattenförmiger Reformer (16) oder ein Reformer (17) in Rohr- oder Rohrböndelanordnung verwendet wird.6. Apparatus for performing the method according to claim 1, characterized in that as a first stage ( 1 ) a plate-shaped reformer ( 16 ) and as a second stage ( 6 ) a plate-shaped reformer ( 16 ) or a reformer ( 17 ) in tube or Tube bundle arrangement is used. 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet daß als zweite Stufe (6) ein Rohreaktor (17) verwendet wird, in dessen zylindrischem Gehäuse (18) senkrecht zur Längsachse Umlenkstrukturen (19) derart angeordnet sind, daß sich ein mäanderförmiger Strömungsverlauf ergibt.7. The device according to claim 6, characterized in that a tubular reactor ( 17 ) is used as the second stage ( 6 ), in the cylindrical housing ( 18 ) perpendicular to the longitudinal axis deflecting structures ( 19 ) are arranged such that there is a meandering flow pattern. 8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß als erste und zweite Stufe (1, 6) ein plattenförmiger Reformer (16) verwendet wird, wobei beide Stufen (1, 6) zwischen gemeinsamen Endplatten angeordnet sind.8. The device according to claim 6, characterized in that a plate-shaped reformer ( 16 ) is used as the first and second stage ( 1 , 6 ), wherein both stages ( 1 , 6 ) are arranged between common end plates. 9. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die benötigte Wärmeenergie über ein Wärmeträgermedium oder über eine elektrische Widerstandsheizung (15) zugeführt wird.9. The device according to claim 6, characterized in that the required thermal energy is supplied via a heat transfer medium or via an electrical resistance heater ( 15 ).
DE4420752A 1994-06-15 1994-06-15 Catalytic steam reformation process for methanol Withdrawn DE4420752A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE4420752A DE4420752A1 (en) 1994-06-15 1994-06-15 Catalytic steam reformation process for methanol
DE59503581T DE59503581D1 (en) 1994-06-15 1995-05-23 Two-stage methanol reforming
EP95107821A EP0687648B1 (en) 1994-06-15 1995-05-23 Two stages methanol reforming
US08/488,660 US5672629A (en) 1994-06-15 1995-06-08 Two-stage reforming of methanol
US08/708,967 US5753194A (en) 1994-06-15 1996-09-06 Two-stage reforming of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4420752A DE4420752A1 (en) 1994-06-15 1994-06-15 Catalytic steam reformation process for methanol

Publications (1)

Publication Number Publication Date
DE4420752A1 true DE4420752A1 (en) 1995-09-14

Family

ID=6520548

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4420752A Withdrawn DE4420752A1 (en) 1994-06-15 1994-06-15 Catalytic steam reformation process for methanol

Country Status (1)

Country Link
DE (1) DE4420752A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539648A1 (en) * 1995-10-25 1997-05-07 Daimler Benz Ag Reactor for oxidising carbon mon:oxide in hydrogen@-rich gas
EP0867962A1 (en) * 1997-03-29 1998-09-30 dbb fuel cell engines GmbH Two-stage reformer for steam reforming of methanol
DE19721751C1 (en) * 1997-05-24 1999-01-07 Dbb Fuel Cell Engines Gmbh Catalyst layer for the steam reforming of methanol
US5922291A (en) * 1996-06-15 1999-07-13 Daimler-Benz Ag Reforming reactor system and particle filter usable therefor
US5935277A (en) * 1996-06-15 1999-08-10 Daimler-Benz Ag Reforming reactor, particularly for the water vapor reforming of methanol
EP1116518A2 (en) * 2000-01-13 2001-07-18 XCELLSIS GmbH Stacked-type reforming reactor
EP1195193A1 (en) * 2000-10-05 2002-04-10 XCELLSIS GmbH Plate type reactor for heat exchange
US6696027B1 (en) 1997-03-29 2004-02-24 Ballard Power Systems Ag Reformation reactor with catalyst charging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088450A (en) * 1975-09-08 1978-05-09 Nissan Motor Company, Limited Hydrogen generator
US4670187A (en) * 1984-10-30 1987-06-02 Societe Chimique De La Grande Paroisse, Azote Products Chimiques Methanol reforming process and apparatus for practicing it
US4865624A (en) * 1987-06-29 1989-09-12 Nippon Sanso Kabushiki Kaisha Method for steam reforming methanol and a system therefor
EP0361648A1 (en) * 1988-07-22 1990-04-04 Imperial Chemical Industries Plc Hydrogen production including a shift reaction process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088450A (en) * 1975-09-08 1978-05-09 Nissan Motor Company, Limited Hydrogen generator
US4670187A (en) * 1984-10-30 1987-06-02 Societe Chimique De La Grande Paroisse, Azote Products Chimiques Methanol reforming process and apparatus for practicing it
US4865624A (en) * 1987-06-29 1989-09-12 Nippon Sanso Kabushiki Kaisha Method for steam reforming methanol and a system therefor
EP0361648A1 (en) * 1988-07-22 1990-04-04 Imperial Chemical Industries Plc Hydrogen production including a shift reaction process

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP 2-18302 A, In Patents Abstr. of Japan, Sect. C, Vol. 14 (1990) Nr. 146 (C-704) *
JP 5-43201 A, In Patents Abstr. of Japan, Sekt. C, Vol. 17 (1993) Nr. 342, (C-1076) *
JP 60-246202 A, In Patents Abstr. of Japan, Sect. C, Vol. 10 (1986) Nr. 120 (C-343) *
JP 61-183102 A, In Patents Abstr. of Japan, Sect. C, Vol. 11 (1987) Nr. 3 (C-395) *
JP 63-166701 A, In Patents Abstr. of Japan, Sect. C, Vol. 12 (1988) Nr. 444 (C-545) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539648C2 (en) * 1995-10-25 1998-02-26 Daimler Benz Ag Reactor for selective CO oxidation in H¶2¶-rich gas
DE19539648A1 (en) * 1995-10-25 1997-05-07 Daimler Benz Ag Reactor for oxidising carbon mon:oxide in hydrogen@-rich gas
US5922291A (en) * 1996-06-15 1999-07-13 Daimler-Benz Ag Reforming reactor system and particle filter usable therefor
US5935277A (en) * 1996-06-15 1999-08-10 Daimler-Benz Ag Reforming reactor, particularly for the water vapor reforming of methanol
US6696027B1 (en) 1997-03-29 2004-02-24 Ballard Power Systems Ag Reformation reactor with catalyst charging
EP0867962A1 (en) * 1997-03-29 1998-09-30 dbb fuel cell engines GmbH Two-stage reformer for steam reforming of methanol
DE19721751C1 (en) * 1997-05-24 1999-01-07 Dbb Fuel Cell Engines Gmbh Catalyst layer for the steam reforming of methanol
EP1116518A2 (en) * 2000-01-13 2001-07-18 XCELLSIS GmbH Stacked-type reforming reactor
EP1116518A3 (en) * 2000-01-13 2002-04-17 XCELLSIS GmbH Stacked-type reforming reactor
DE10001064A1 (en) * 2000-01-13 2001-08-02 Xcellsis Gmbh Compact steam reforming reactor, especially for generating hydrogen for a fuel cell, includes an exothermic reaction catalyst in the form of a coating
DE10001064B4 (en) * 2000-01-13 2004-03-11 Ballard Power Systems Ag Reforming reactor in layered construction
EP1195193A1 (en) * 2000-10-05 2002-04-10 XCELLSIS GmbH Plate type reactor for heat exchange
DE10049194A1 (en) * 2000-10-05 2002-04-11 Xcellsis Gmbh Ractor structure in heat exchanger layer stack construction
US6932949B2 (en) 2000-10-05 2005-08-23 Ballard Power Systems Ag Reactor structure as a heat exchanger layer stacking construction and method of making same

Similar Documents

Publication Publication Date Title
EP0687648B1 (en) Two stages methanol reforming
EP0887307B1 (en) Apparatus for the production of hydrogen rich gas and process for starting this apparatus
DE60025124T2 (en) Method and apparatus for hydrogen production by reforming
EP0787679B1 (en) Process and apparatus for the recovery of a gas rich in hydrogen and poor in carbon monoxide
EP1377370A1 (en) Device and method for the catalytic reformation of hydrocarbons or alcohols
DE2741852A1 (en) PROCESS FOR STEAM REFORMING OF HYDROCARBONS
EP0934772A2 (en) Reactor for carrying out catalytic chemical reactions, in particular a reactor for methanol reforming
DE19624435C1 (en) Mobile, economical, compact steam-methanol reformer
DE3922446A1 (en) METHOD AND REACTOR FOR REFORMING HYDROCARBON (DE)
WO2002040619A2 (en) Method and device for reducing the carbon monoxide content in a gas stream containing hydrogen and reformer system
DE4420752A1 (en) Catalytic steam reformation process for methanol
DE10001064B4 (en) Reforming reactor in layered construction
EP1427668B9 (en) Device for the generation of hydrogen
DE19833644C2 (en) Reactor unit in a system for generating a hydrogen-rich gas from a liquid raw fuel
DE10046692C2 (en) Device for evaporating a liquid
DE102016125641B4 (en) Reactor and process for producing a natural gas substitute from hydrogen-containing gas mixtures
DE102016107124A1 (en) NH3 synthesis configuration for large plants
DE19958404C2 (en) Device for the selective catalytic oxidation of carbon monoxide
DE19907665A1 (en) Device for use in the heat generated by a catalytic reaction
DE60118497T2 (en) Reactor for carrying out non-adiabatic reactions
DE4420753A1 (en) Methanol reformation
DE20321332U1 (en) Device for producing hydrogen has conversion stages and fine purification stage formed as hollow bodies having an annular chamber for receiving corresponding catalysts
DE10063647A1 (en) Reactor used for carrying out steam reforming of methanol has an active zone with a first temperature zone for introducing the heat of reaction separate from a first reaction zone for carrying out the reaction
DE102022204105A1 (en) Heat exchanger with integrated start-up heating
EP1651563A1 (en) Apparatus for producing hydrogen

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal