DE4342297A1 - Method for selectively reducing nitrogen oxide(s) present in the flue gas of incineration plants - Google Patents

Method for selectively reducing nitrogen oxide(s) present in the flue gas of incineration plants

Info

Publication number
DE4342297A1
DE4342297A1 DE4342297A DE4342297A DE4342297A1 DE 4342297 A1 DE4342297 A1 DE 4342297A1 DE 4342297 A DE4342297 A DE 4342297A DE 4342297 A DE4342297 A DE 4342297A DE 4342297 A1 DE4342297 A1 DE 4342297A1
Authority
DE
Germany
Prior art keywords
membrane
hydrogen
interface
nitrogen oxides
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4342297A
Other languages
German (de)
Other versions
DE4342297C2 (en
Inventor
Martha Dr Maly-Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Priority to DE4342297A priority Critical patent/DE4342297C2/en
Publication of DE4342297A1 publication Critical patent/DE4342297A1/en
Application granted granted Critical
Publication of DE4342297C2 publication Critical patent/DE4342297C2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A process and apparatus reduces the nitrogen oxide components in the flue gas from incineration plants by the addition of hydrogen, in the presence of a catalyst located in the flue pipe (1). A membrane (3), effective as a catalyst, and through which hydrogen can pass, is provided in the flue pipe (1). The flue gas impinges on one side of the membrane and nitrogen oxide (NOx) is adsorbed on this 1st interface (A). On the opposite membrane interface (B), hydrogen is adsorbed and subsequently absorbed. The nitrogen oxides (NOx) are then reduced to nitrogen by the hydrogen at the 1st interface (A).

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Verminderung der im Abgas von Verbrennungsanlagen enthaltenen Stickoxide gemäß dem Oberbegriff des Hauptanspruchs.The invention relates to a method and an apparatus for Reduction in the waste gas from combustion plants Nitrogen oxides according to the preamble of the main claim.

Aus der US-PS 39 86 350 ist eine Brennkraftmaschine bekannt, in deren Abgasleitung ein Katalysator zur Umwandlung von Stick­ oxiden angeordnet ist. Stromauf des Katalysators kann mittels einer Leitung zur Bildung einer reduzierenden Atmosphäre Wasser­ stoffgas in die Abgasleitung eingebracht werden.From US-PS 39 86 350 an internal combustion engine is known in whose exhaust pipe is a catalyst for converting stick oxide is arranged. Upstream of the catalyst can be by means of a pipe to form a reducing atmosphere water Substance gas are introduced into the exhaust pipe.

Nachteilig ist bei dieser Anordnung, daß der Wasserstoff gemeinsam mit dem Abgas zum Katalysator transportiert wird. Daher können Konkurrenzreaktionen, beispielsweise mit dem Restsauerstoff im Abgas nicht verhindert werden.The disadvantage of this arrangement is that the hydrogen is transported to the catalytic converter together with the exhaust gas. Therefore, competitive reactions, for example with the Residual oxygen in the exhaust gas cannot be prevented.

Die Aufgabe der Erfindung besteht darin, ein Verfahren und eine Vorrichtung zu schaffen, mit der die im Abgas enthaltenen Stickoxide mit hoher Selektivität durch den Wasserstoff am Katalysator umgewandelt werden.The object of the invention is a method and To create a device with which the contained in the exhaust gas Nitrogen oxides with high selectivity due to the hydrogen on Catalyst to be converted.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The object is achieved by the characterizing Features of claim 1 solved.

Dadurch, daß die Stickoxide und der Wasserstoff erst in Gegen­ wart des katalytischen Materials in Kontakt kommen, können Konkurrenzreaktionen weitestgehend vermieden und somit die Selektivität für die gewünschte Reaktion erheblich verbessert werden. Außerdem liegt der Wasserstoff in der Membran nicht in gasförmiger, sondern in gespaltener Form vor, so daß eine ver­ besserte Umwandlungsrate erreicht werden kann.Because the nitrogen oxides and the hydrogen only in counter were able to come into contact with the catalytic material Competitive reactions largely avoided and thus the Selectivity for the desired reaction significantly improved become. In addition, the hydrogen is not in the membrane  gaseous, but in split form, so that a ver better conversion rate can be achieved.

Weitere Vorteile und Ausgestaltungen gehen aus den Unteran­ sprüchen und der Beschreibung hervor. Die Erfindung ist nachstehend anhand einer Zeichnung näher beschrieben, wobeiFurther advantages and configurations can be found in the lower sub sayings and the description. The invention is described below with reference to a drawing, wherein

Fig. 1 ein mit Wasserstoffgas beaufschlagter Membranreaktor zur selektiven katalytischen Reduktion von in Abgasen enthaltenen Stickoxiden, Fig. 1 is a acted upon with hydrogen gas membrane reactor for the selective catalytic reduction of nitrogen oxides contained in exhaust gases,

Fig. 2 eine Prinzipdarstellung der beim Ausführungsbeispiel gemäß Fig. 1 ablaufenden Reaktionen, Fig. 2 is a schematic representation of the running in the embodiment of Fig. 1 reactions,

Fig. 3 ein zweites Ausführungsbeispiel eines erfindungsgemäßen Membranreaktors, in dem der zur Reduktion benötigte Wasserstoff durch Elektrolyse aus Wasser gewonnen wird, und Fig. 3 shows a second embodiment in which the need for reduction, hydrogen is produced by electrolysis of water of a membrane reactor according to the invention, and

Fig. 4 eine Prinzipdarstellung der beim Ausführungsbeispiel gemäß Fig. 3 ablaufenden Reaktionen zeigt. FIG. 4 shows a basic illustration of the reactions taking place in the exemplary embodiment according to FIG. 3.

Fig. 1 zeigt eine Abgasleitung 1 einer nicht dargestellten Ver­ brennungsanlage, beispielsweise einer Diesel-Brennkraftmaschine. In der Abgasleitung 1 ist ein Membranreaktor 2 angeordnet. Der aus einer Membran 3 gebildete Membranreaktor 2 weist eine ge­ schlossene zylindrische Form auf und wird über eine Zuleitung 4 mit Wasserstoffgas H₂ beaufschlagt. Die Membran 3 besteht aus einem für Wasserstoff H durchlässigen Material, welches für die Reduktion der Stickoxide NOx mittels Wasserstoff H eine kataly­ tische Wirkung besitzt. Beispielsweise kann hierzu eine Legie­ rung aus Palladium mit 25 Atomprozenten Silber verwendet werden. Denkbar ist aber auch die Verwendung anderer Pd-Legierungen mit Ag, Cu oder Sb oder auch von V-, Ti- oder Zr-Legierungen. Grund­ sätzlich kann hierbei auch auf andere Werkstoffe, die bei der Speicherung von Wasserstoff in Metallhydriden Verwendung finden, zurückgegriffen werden. Da die Membran 3 aber auch die Fähigkeit besitzen muß, Stickoxide NOx zu adsorbieren, wird vorzugsweise ein Composite aus den genannten Materialien und einem Zeolith, das diese Fähigkeit besitzt, verwendet. Fig. 1 shows an exhaust pipe 1 of a combustion system, not shown, for example a diesel internal combustion engine. A membrane reactor 2 is arranged in the exhaust line 1 . The membrane reactor 2 formed from a membrane 3 has a closed cylindrical shape and is supplied with hydrogen gas H₂ via a feed line 4 . The membrane 3 consists of a material permeable to hydrogen H, which has a catalytic effect for the reduction of nitrogen oxides NO x by means of hydrogen H. For example, an alloy made of palladium with 25 atom percent silver can be used. However, it is also conceivable to use other Pd alloys with Ag, Cu or Sb or also V, Ti or Zr alloys. In principle, other materials that are used in the storage of hydrogen in metal hydrides can also be used. However, since the membrane 3 must also have the ability to adsorb nitrogen oxides NO x , a composite of the materials mentioned and a zeolite which has this ability is preferably used.

In Fig. 2 ist die Funktion der Membran 3 schematisch darge­ stellt. Das Wasserstoffgas H₂ trifft auf eine Grenzfläche B der Membran 3. Die Membran 3 enthält Metalle oder intermetallische Verbindungen, die in der Lage sind, die Spaltung und anschließende Adsorption des Wasserstoffs H durch die Membran katalytisch zu beschleunigen. An der anderen Grenzfläche A der Membran 3 werden Stickoxide NOx aus dem Abgas adsorbiert. Der aktive Wasserstoff H diffundiert aufgrund des Konzentrations­ gradienten durch die Membran 3 und trifft im Bereich der Grenz­ fläche A auf die adsorbierten Stickoxide NOx. Dort werden die Stickoxide NOx durch den Wasserstoff H nach einer bekannten SCR- Methode (Selective Catalytic Reduction) zu Stickstoff N₂ und Wasserdampf H₂O reduziert, wobei die Endprodukte in den vorbei­ strömenden Abgasstrom entweichen. Dieses Verfahren hat den Vor­ teil, daß die Stickoxide NOx erst unmittelbar in der Nähe des katalytischen Materials mit dem Reduktionsmittel Wasserstoff H in Kontakt kommen. Dadurch können Konkurrenzreaktionen des Wasserstoffs H, beispielsweise mit dem Restsauerstoff in den Abgasen, weitestgehend vermieden und eine besonders hohe Selektivität für die NOx-Reduktion erreicht werden.In Fig. 2 the function of the membrane 3 is shown schematically Darge. The hydrogen gas H₂ meets an interface B of the membrane 3rd The membrane 3 contains metals or intermetallic compounds which are able to catalytically accelerate the cleavage and subsequent adsorption of the hydrogen H through the membrane. At the other interface A of the membrane 3 , nitrogen oxides NO x are adsorbed from the exhaust gas. The active hydrogen H diffuses through the concentration gradient through the membrane 3 and hits the adsorbed nitrogen oxides NO x in the area of the interface A. There, the nitrogen oxides NO x are reduced by the hydrogen H according to a known SCR method (Selective Catalytic Reduction) to nitrogen N₂ and water vapor H₂O, the end products escaping into the exhaust gas stream flowing past. This method has the part before that the nitrogen oxides NO x come only in the vicinity of the catalytic material with the reducing agent hydrogen H in contact. As a result, competitive reactions of the hydrogen H, for example with the residual oxygen in the exhaust gases, can be largely avoided and a particularly high selectivity for the NO x reduction can be achieved.

Im zweiten Ausführungsbeispiel, welches in Fig. 3 und 4 darge­ stellt ist, wird der atomare Wasserstoff H durch Elektrolyse aus Wasser H₂O gewonnen. Der Membranreaktor 2 ist als Wasser­ reservoir 5 ausgeführt, dem über die Zuleitung 4 Wasser H₂O zugeführt wird. Im Bereich der Längsachse des Membranreaktors 2 ist eine Elektrode 6 angeordnet. Die Membran 2 wird gegenüber der Elektrode 6 auf ein negatives Potential gelegt. Durch die angelegte Spannung wird das Wasser H₂O elektrolytisch zersetzt, wobei der Wasserstoff H an der auf negativem Potential liegenden Membran 2 adsorbiert und der Sauerstoff O₂ an der Anode 6 abge­ schieden wird. Zur Abfuhr des Sauerstoffs O₂ ist eine Abström­ leitung 7 vorgesehen. Die Reduktion der Stickoxide NOx erfolgt entsprechend dem ersten Ausführungsbeispiel in der Membran 3.In the second embodiment, which is shown in Fig. 3 and 4 Darge, the atomic hydrogen H is obtained by electrolysis from water H₂O. The membrane reactor 2 is designed as a water reservoir 5 , to which water H 2 O is supplied via the feed line 4 . An electrode 6 is arranged in the region of the longitudinal axis of the membrane reactor 2 . The membrane 2 is placed at a negative potential with respect to the electrode 6 . Due to the applied voltage, the water H₂O is decomposed electrolytically, the hydrogen H being adsorbed on the membrane 2 lying at negative potential and the oxygen O₂ being separated on the anode 6 . To discharge the oxygen O₂ an outflow line 7 is provided. The nitrogen oxides NO x are reduced in the membrane 3 in accordance with the first exemplary embodiment.

Claims (7)

1. Verfahren und Vorrichtung zur Verminderung der im Abgas von Verbrennungsanlagen enthaltenen Stickoxidanteile, wobei die Stickoxide unter Zugabe von Wasserstoff an einem in einer Abgasleitung angeordneten Katalysator zu Stickstoff reduziert werden, dadurch gekennzeichnet,
  • - daß in der Abgasleitung (1) eine katalytisch wirkende und für den Wasserstoff (H) durchlässige Membran (3) vorgesehen ist,
  • - daß die Membran (3) auf einer Seite mit Abgas beaufschlagt ist, wobei an dieser ersten Grenzfläche (A) Stickoxide (NOx) adsorbiert werden,
  • - daß an der gegenüberliegenden Grenzfläche (B) der Membran (3) der Wasserstoff (H) adsorbiert und anschließend absorbiert wird, und
  • - daß die Stickoxide (NOx) an der ersten Grenzfläche (A) der Membran (3) durch den Wasserstoff (H) reduziert werden.
1. A method and device for reducing the nitrogen oxide portions contained in the exhaust gas from combustion plants, the nitrogen oxides being reduced to nitrogen with the addition of hydrogen over a catalyst arranged in an exhaust gas line ,
  • - That in the exhaust pipe ( 1 ) a catalytically active and permeable to hydrogen (H) membrane ( 3 ) is provided,
  • - That the membrane ( 3 ) is exposed to exhaust gas on one side, nitrogen oxides (NO x ) being adsorbed at this first interface (A),
  • - That at the opposite interface (B) of the membrane ( 3 ) the hydrogen (H) is adsorbed and then absorbed, and
  • - That the nitrogen oxides (NO x ) at the first interface (A) of the membrane ( 3 ) are reduced by the hydrogen (H).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Membran (3) mit Wasserstoffgas (H₂) beaufschlagt wird, wobei die Membran (3) die Eigenschaft besitzt, das Wasserstoff­ gas (H₂) zu spalten und den atomaren Wasserstoff (H) zu absorbieren.2. The method according to claim 1, characterized in that the membrane ( 3 ) with hydrogen gas (H₂) is applied, the membrane ( 3 ) having the property of splitting the hydrogen gas (H₂) and the atomic hydrogen (H) absorb. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Membran (3) mit einem Wasserreservoir (5) in Kontakt steht, daß eine gegenüber der Membran (3) positiv geladene Elektrode (6) im Wasserreservoir (5) vorgesehen ist und daß der bei der Elektrolyse des Wassers (H₂O) entstehende Wasserstoff (H) von der Membran (3) absorbiert wird.3. The method according to claim 1, characterized in that the membrane ( 3 ) is in contact with a water reservoir ( 5 ), that an electrode ( 6 ) positively charged with respect to the membrane ( 3 ) is provided in the water reservoir ( 5 ) and that in the electrolysis of water (H₂O) hydrogen (H) is absorbed by the membrane ( 3 ). 4. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß als Membran (3) ein Composite aus Zeolith und einer Pd- Legierung mit Ag, Cu oder Sb besteht.4. A device for performing the method according to claim 1, characterized in that there is a composite of zeolite and a Pd alloy with Ag, Cu or Sb as the membrane ( 3 ). 5. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß als Membran (3) ein Composite aus Zeolith und einer V-, Ti- oder Zr-Legierung besteht.5. A device for performing the method according to claim 1, characterized in that the membrane ( 3 ) consists of a composite of zeolite and a V, Ti or Zr alloy. 6. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 2, dadurch gekennzeichnet, daß die Membran (3) zu einem geschlossenen zylindrischen Membranreaktor (2) ausgeformt ist, der in der Abgasleitung (1) angeordnet ist und dem über eine Zuleitung (4) das Wasserstoff­ gas (H₂) zugeführt wird.6. A device for performing the method according to claim 2, characterized in that the membrane ( 3 ) is formed into a closed cylindrical membrane reactor ( 2 ) which is arranged in the exhaust pipe ( 1 ) and which via a feed line ( 4 ) the hydrogen gas (H₂) is supplied. 7. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 3, dadurch gekennzeichnet, daß die Membran (3) auf negatives Potential gelegt ist, daß im Bereich der Zylinderlängsachse des Membranreaktors (2) eine positiv geladene Elektrode (5) angeordnet ist und daß eine Abströmleitung (7) zur Abfuhr des bei der Elektrolyse entstehenden Sauerstoffs (O₂) in die Abgasleitung (1) oder an die Umgebung vorgesehen ist.7. The device for performing the method according to claim 3, characterized in that the membrane ( 3 ) is set to negative potential, that in the region of the cylinder longitudinal axis of the membrane reactor ( 2 ) a positively charged electrode ( 5 ) is arranged and that an outflow line ( 7 ) is provided for removing the oxygen (O₂) generated in the electrolysis into the exhaust line ( 1 ) or to the environment.
DE4342297A 1993-12-11 1993-12-11 Method and device for reducing the nitrogen oxide content contained in the exhaust gas from combustion plants Expired - Lifetime DE4342297C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4342297A DE4342297C2 (en) 1993-12-11 1993-12-11 Method and device for reducing the nitrogen oxide content contained in the exhaust gas from combustion plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4342297A DE4342297C2 (en) 1993-12-11 1993-12-11 Method and device for reducing the nitrogen oxide content contained in the exhaust gas from combustion plants

Publications (2)

Publication Number Publication Date
DE4342297A1 true DE4342297A1 (en) 1995-06-22
DE4342297C2 DE4342297C2 (en) 1998-01-29

Family

ID=6504757

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4342297A Expired - Lifetime DE4342297C2 (en) 1993-12-11 1993-12-11 Method and device for reducing the nitrogen oxide content contained in the exhaust gas from combustion plants

Country Status (1)

Country Link
DE (1) DE4342297C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527693C1 (en) * 1995-07-28 1996-10-10 Dornier Gmbh Nitrogen oxide redn. from vehicle exhaust gases without use of ammonia
WO2001083088A1 (en) 2000-05-02 2001-11-08 Volvo Teknisk Utveckling Ab Device and method for reduction of a gas component in an exhaust gas flow of a combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644090A1 (en) * 1986-12-23 1988-07-07 Bbc Brown Boveri & Cie Process and apparatus for purifying exhaust gases
EP0566071A1 (en) * 1992-04-14 1993-10-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for reducing nitrogen oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644090A1 (en) * 1986-12-23 1988-07-07 Bbc Brown Boveri & Cie Process and apparatus for purifying exhaust gases
EP0566071A1 (en) * 1992-04-14 1993-10-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for reducing nitrogen oxides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527693C1 (en) * 1995-07-28 1996-10-10 Dornier Gmbh Nitrogen oxide redn. from vehicle exhaust gases without use of ammonia
WO2001083088A1 (en) 2000-05-02 2001-11-08 Volvo Teknisk Utveckling Ab Device and method for reduction of a gas component in an exhaust gas flow of a combustion engine
US8065870B2 (en) 2000-05-02 2011-11-29 Volvo Technology Corporation Device and method for reduction of a gas component in an exhaust gas flow of a combustion engine

Also Published As

Publication number Publication date
DE4342297C2 (en) 1998-01-29

Similar Documents

Publication Publication Date Title
DE3877229T2 (en) METHOD FOR REMOVING NOX FROM FLUID FLOWS.
EP1395351B1 (en) Exhaust gas purification unit with reducing agent supply
DE3606316C2 (en)
DE69205669T2 (en) Catalytic converter for cleaning exhaust gases.
DE2350498C3 (en) Process for removing sulfur and nitrogen oxides or just nitrogen oxides from exhaust gases
DE69532419T2 (en) REGENERATION OF A CATALYST / ABSORBER
DE69108648T2 (en) Catalyst for the removal of gaseous hydrides.
DE2313040B2 (en) Multi-layer catalyst carrier
DE3735151A1 (en) METHOD FOR PURIFYING EXHAUST GAS
DE3933206A1 (en) METHOD FOR THE RESIDUAL REMOVAL OF NITRITES AND NITRATES FROM AN AQUEOUS SOLUTION
DE2335403C3 (en) Method for monitoring the content of nitrogen oxides in exhaust gases, in particular in motor vehicle exhaust gases, and a sensor for carrying out the method
DE1667555A1 (en) Process for the separation of impurities from noble gases
DE3229314C2 (en)
DE3644090A1 (en) Process and apparatus for purifying exhaust gases
EP0609401B1 (en) PROCESS FOR PREPARING HYDROXYLAMINE FROM NO x?-CONTAINING FLUE GASES
DE4342297C2 (en) Method and device for reducing the nitrogen oxide content contained in the exhaust gas from combustion plants
DE3606317C2 (en)
DE3802871A1 (en) Use of a catalyst based on modified zeolite, charged with one or more metals from the group consisting of Fe, Cu, Ni and Co, in the SCR process
DE2617649C2 (en) Process for removing hydrogen sulfide and sulfur dioxide from exhaust gases
DE3918190C2 (en)
DE19800449A1 (en) Process for the catalytic destruction of ammonia and hydrogen cyanide from coke oven emissions
DE2433479C2 (en) Process for the reductive removal of nitrogen oxides from gases
EP1317668B1 (en) Method for the pyrolysis of mercuric chloride for the subsequent analysis of the mercury
EP1296751A1 (en) Method and device for the catalytic conversion of a substance
EP0043401A1 (en) Process and apparatus for removing tritium from a gaseous mixture

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DAIMLERCHRYSLER AG, 70567 STUTTGART, DE

8330 Complete renunciation