DE4322533A1 - Process for producing superconducting ceramics and the ceramics themselves - Google Patents
Process for producing superconducting ceramics and the ceramics themselvesInfo
- Publication number
- DE4322533A1 DE4322533A1 DE4322533A DE4322533A DE4322533A1 DE 4322533 A1 DE4322533 A1 DE 4322533A1 DE 4322533 A DE4322533 A DE 4322533A DE 4322533 A DE4322533 A DE 4322533A DE 4322533 A1 DE4322533 A1 DE 4322533A1
- Authority
- DE
- Germany
- Prior art keywords
- metal
- powder
- metal alloy
- alloy powder
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000000919 ceramic Substances 0.000 title claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 66
- 239000002184 metal Substances 0.000 claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- 150000002739 metals Chemical class 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 238000007712 rapid solidification Methods 0.000 claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000000889 atomisation Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 239000012141 concentrate Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 239000011224 oxide ceramic Substances 0.000 claims 1
- 229910052574 oxide ceramic Inorganic materials 0.000 claims 1
- 229910052712 strontium Inorganic materials 0.000 claims 1
- 229910052716 thallium Inorganic materials 0.000 claims 1
- 229910052727 yttrium Inorganic materials 0.000 claims 1
- 238000010791 quenching Methods 0.000 abstract 1
- 230000000171 quenching effect Effects 0.000 abstract 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- 238000013021 overheating Methods 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- BTGZYWWSOPEHMM-UHFFFAOYSA-N [O].[Cu].[Y].[Ba] Chemical compound [O].[Cu].[Y].[Ba] BTGZYWWSOPEHMM-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- -1 ceramic Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/45—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
- C04B35/4504—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
- C04B35/4508—Type 1-2-3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/65—Reaction sintering of free metal- or free silicon-containing compositions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1042—Alloys containing non-metals starting from a melt by atomising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0772—Processes including the use of non-gaseous precursors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
Die Erfindung betrifft eine Verfahren für die Herstellung supraleitender Keramiken, sowie die nach dem Verfahren hergestellten supraleitenden Keramiken selbst.The invention relates to a method for the production superconducting ceramics, as well as those after the process manufactured superconducting ceramics themselves.
Als supraleitende Materialien waren bis vor kurzem lediglich Metalle, intermetallische Verbindungen, Legierungen und Halbleiter bekannt. Bei einigen dieser Materialien, z. B. Wolfram, sinkt der spezifische elektrische Widerstand beim Abkühlen unter eine kritische Temperatur auf einen Wert ab, der experimentell von Null nicht unterschieden werden kann. Die kritische - oder Übergangs- oder Sprungtemperatur trennt also den supraleitenden Zustand vom normalleitenden Zustand. Jedoch wird durch ein genügend starkes äußeres Magnetfeld diese Supraleitung wieder zerstört. Die mindestens erforderliche kritische oder Schwellenfeldstärke hängt dabei von der Temperatur ab.Until recently, superconducting materials were merely Metals, intermetallic compounds, alloys and Semiconductors known. Some of these materials, e.g. B. Tungsten, the specific electrical resistance drops when Cooling below a critical temperature to a value which cannot be distinguished experimentally from zero. The critical - or transition or step temperature separates the superconducting state from the normal conducting state. However, a sufficiently strong external magnetic field this superconductivity destroyed again. The least required critical or threshold field strength depends on the temperature.
Seit einiger Zeit ist bekannt, daß auch keramische Werkstoffe supraleitend werden können. Bemerkenswert ist hierbei, daß immer neue keramische Materialien gefunden werden, deren kritische Temperaturen relativ weit vom absoluten Temperatur- Nullpunkt entfernt sind.It has been known for some time that ceramic materials can become superconducting. It is remarkable that Always new ceramic materials are found, the critical temperatures relatively far from absolute temperature Zero point are removed.
Beispielsweise werden supraleitende Verbindungen des Tl-Ba-Ca- Cu-O-Systems angegeben, bei denen die Übergangstemperatur zwischen 80 K und 120 K liegt. Das Herstellverfahren dieser Verbindungen wie auch anderer keramischer, supraleitender Werkstoffe ist üblicherweise das folgende, daß z. B. bei der Herstellung von Y₁Ba₂Cu₃O6-7 die Ausgangsstoffe Yttriumoxid, Bariumkarbonat und Kupferoxid gemahlen, gemischt, gebrannt, gesintert und anschließend in einer Sauerstoffatmosphäre einer Wärmebehandlung unterworfen werden.For example, superconducting compounds of the Tl-Ba-Ca-Cu-O system are specified in which the transition temperature is between 80 K and 120 K. The manufacturing process of these compounds as well as other ceramic, superconducting materials is usually the following that, for. B. in the production of Y₁Ba₂Cu₃O 6-7 the starting materials yttrium oxide, barium carbonate and copper oxide ground, mixed, fired, sintered and then subjected to heat treatment in an oxygen atmosphere.
Die erste Stufe des Herstellens, nämlich das Mahlen, muß so intensiv sein, daß ein Teilchengröße von < 3 µm erzielt wird. Dies ist besonders wichtig, damit man nach dem Sintern ein homogenes Material erhält. Dennoch entstehen Porösitäten beim Sintern wegen der CO₂-Entwicklung aus dem restlichen Karbonat, so daß eine Dichte des Sinterkörpers erreicht wird, die höchstens 90% der theoretisch erreichbaren Dichte entspricht.The first stage of manufacturing, namely milling, must be like this be intense that a particle size of <3 microns is achieved. This is especially important so that one after sintering receives homogeneous material. Nevertheless, porosities arise in the Sintering due to the CO₂ development from the remaining carbonate, so that a density of the sintered body is reached, the corresponds to a maximum of 90% of the theoretically achievable density.
Unter Anwendung von Bariumoxid anstelle von Bariumkarbonat läßt sich zwar eine Dichte des Sinterkörpers von ca. 95% der theoretischen Dichte erreichen, doch treten bei der Wärmebe handlung unter Sauerstoffatmosphäre weitere Probleme auf. Bei der sogenannten Beladung des Sinterkörpers erfolgt die not wendige Sauerstoffdiffusion wegen des relativ heterogenen Aufbaus des Sinterkörpers sehr langsam. Die Folge ist, daß zwar die Außenschale des Sinterkörpers durch entsprechende Sauerstoffbeladung supraleitend ist, aber der Kern des Sinterkörpers nicht supraleitend bleibt. Der Sinterkörper ist um so schwieriger supraleitend zu machen, je größer er ist.Using barium oxide instead of barium carbonate can be a density of the sintered body of about 95% reach theoretical density, but occur when heat further problems in an oxygen atmosphere. At the so-called loading of the sintered body takes place agile oxygen diffusion because of the relatively heterogeneous The sintered body builds up very slowly. The result is that although the outer shell of the sintered body by appropriate Oxygen loading is superconducting, but the core of the Sintered body does not remain superconducting. The sintered body is to make superconducting more difficult the larger it is.
Um Sauerstoffverluste bei der Herstellung von Drähten zu vermeiden, ist es bekannt, ein feingemahlenes Pulver aus Yttrium-Barium-Kupfer-Oxid in ein Röhrchen aus Aluminium oder Edelstahl zu füllen und 20 bis 40% Silber oder Silberoxid beizufüllen, die gewissermaßen als Sauerstoffspeicher dienen (Applied Physics Letters, Bd. 54, S. 766). Die Röhrchen werden zunächst gewalzt und dann zu Drähten von 4 mm Durchmesser ausgezogen. Der supraleitende Kern ist dann nur 1,5 mm dick. Unabhängig vom Gehalt an Silber oder Silberoxid gehen diese Drähte bei einer Temperatur von 86 K (= -187°C) in den supraleitenden Zustand über. Für die Herstellung anderer supraleitender Körper als Drähte ist dieses Verfahren jedoch wenig geeignet.To reduce oxygen loss in the manufacture of wires avoid it is known to make a finely ground powder Yttrium barium copper oxide in a tube made of aluminum or Stainless steel fill and 20 to 40% silver or silver oxide to fill, which serve as a kind of oxygen storage (Applied Physics Letters, Vol. 54, p. 766). The tubes are first rolled and then to 4 mm diameter wires moved out. The superconducting core is then only 1.5 mm thick. These go regardless of the content of silver or silver oxide Wires at a temperature of 86 K (= -187 ° C) in the superconducting state over. For making others However, this method is superconducting body as wires not very suitable.
So ist bereits ein Verfahren zur Herstellung supraleitender Keramiken bekannt (DE 39 21 127), dessen Vorteil darin besteht, daß die betreffenden Metalle im flüssigen Zustand untereinander löslich sind, so daß die Herstellung einer homogenen Schmelze unproblematisch ist. Durch die entsprechende Wahl der Verdüsungsparameter kann ein sehr feinkörniges Pulver mit einer nahezu seigerungsfreien oder glasigen Struktur erreicht werden. So is already a process for the production of superconducting Ceramics known (DE 39 21 127), the advantage of it there is that the metals in question in the liquid state are mutually soluble, so that the production of a homogeneous melt is unproblematic. Through the appropriate choice of atomization parameters can be a very fine-grained powder with an almost segregation-free or glassy structure can be achieved.
Bei der Herstellung von Legierungspulvern nach dem in dem vorgenannten Patent beschriebenen Verfahren, hat sich mit Nachteil herausgestellt, daß bei bestimmten Legierungen, wie z. B. Y-Ba-Cu oder Ba-La-Cu die Schmelze wegen der vorhandenen Mischungslücke im Y-Ba-System stark überhitzt werden muß auf Temperaturen < 1800°C, um eine homogene Legierung vor der Verdüsung zu erhalten. Bei dieser starken Überhitzung sind die Verdampfungsverluste von Legierungselemente, vor allem von Barium, relativ hoch und somit sehr nachteilig.In the manufacture of alloy powders according to the in the The above-mentioned method described, has with Disadvantage pointed out that with certain alloys, such as e.g. B. Y-Ba-Cu or Ba-La-Cu the melt because of the existing Mix gap in the Y-Ba system must be overheated Temperatures <1800 ° C to ensure a homogeneous alloy before Get spraying. With this strong overheating they are Evaporation losses from alloying elements, especially from Barium, relatively high and therefore very disadvantageous.
Darüber hinaus ist die Formgebung der so hergestellten Oxid pulver zu Draht oder Band nahezu unmöglich. Nach dem heutigen Stand der Technik wird das Oxidpulver auf eine Unterlage, beispielsweise ein Silberband, aufgebracht und anschließend weiter verformt.In addition, the shape of the oxide so produced powder to wire or tape almost impossible. After today State of the art, the oxide powder is placed on a base, for example a silver band, applied and then further deformed.
Aufgabe der vorliegenden Erfindung ist es nun, eine homogene Schmelze vor der Verdüsung herzustellen, eine starke Überhitzung zu vermeiden und ferner ein Verfahren anzugeben, das die Herstellung von Draht, Band oder anderen Formkörpern ermöglicht.The object of the present invention is now a homogeneous Make melt before spraying, a strong one To avoid overheating and also to provide a procedure that is the production of wire, tape or other shaped bodies enables.
Diese Aufgabe wird gemäß den Merkmalen der Patentansprüche 1, 2 oder 3 gelöst.This object is achieved according to the features of patent claims 1, 2 or 3 solved.
Der mit der Erfindung erzielte Vorteil besteht insbesondere darin, daß die gewünschten Metalle zum einen im flüssigen Zustand untereinander löslich sind, so daß die Herstellung einer homogenen Schmelze unproblematisch ist und zum andern vorteilhafterweise eine Überhitzung der Schmelze vermieden wird. Darüber hinaus wird ein Verfahren angegeben, das mit Vorteil die Herstellung von Draht, Band oder anderen Formkörpern aus supraleitendem keramischem Oxidpulver beschreibt.The advantage achieved with the invention is in particular in the fact that the desired metals on the one hand in the liquid Condition are mutually soluble, so that the manufacture a homogeneous melt is unproblematic and the other advantageously avoided overheating of the melt becomes. In addition, a method is specified that with Advantage of the production of wire, tape or other Shaped bodies made of superconducting ceramic oxide powder describes.
Weitere Ausführungsmöglichkeiten und Merkmale sind in den Unteransprüchen näher beschrieben und gekennzeichnet.Other design options and features are in the Sub-claims described and characterized in more detail.
Die Erfindung läßt die verschiedensten Ausführungsmöglich keiten zu.The invention allows for a wide variety of designs to.
Im folgenden wird beispielhaft die Herstellung von supra leitenden Keramiken nach den erfindungsgemäßen Verfahren beschrieben.The following is an example of the production of supra conductive ceramics according to the inventive method described.
Zur Herstellung einer supraleitenden Keramik Y₁Ba₂Cu₃O6-7 werden zunächst zwei Metall-Legierungspulver Y₁Cu₁ und Ba₂Cu₂ auf pulvermetallurgischem Wege hergestellt, da die beiden binären Systeme keine Mischungslücke aufweisen. Anschließend werden die beiden Metall-Legierungspulver in den entsprechenden Mengen zu einem Metall-Legierungspulver Y₁Ba₂Cu₃ miteinander gemischt und unter Sauerstoffatmosphäre oxidiert, so daß man am Ende ein Oxidpulver der Zusammen setzung Y₁Ba₂Cu₃06-7 erhält.To produce a superconducting ceramic Y₁Ba₂Cu₃O 6-7 , two metal alloy powders Y₁Cu₁ and Ba₂Cu₂ are first produced by powder metallurgy, since the two binary systems have no mixture gap. Then the two metal alloy powders are mixed in the appropriate amounts to form a metal alloy powder Y₁Ba₂Cu₃ and oxidized under an oxygen atmosphere, so that at the end an oxide powder of the composition Y₁Ba₂Cu₃0 6-7 is obtained.
Eine Alternative zur Herstellung eines Oxidpulver Y₁Ba₂Cu₃O6-7 besteht in der Mischung eines Metall-Legierungspulvers mit einem Metalloxidpulver. Hierbei wird Ba₂Cu₃-Pulver mit Y₂O₃-Pulver gemischt, wobei bei der Herstellung der Pulver ebenfalls ein Rascherstarrungsverfahren angewendet wird. Das so erhaltene Pulver wird unter Sauerstoffatmosphäre geglüht, so daß ebenfalls keramisches Oxidpulver Y₁Ba₂Cu₃O6-7 entsteht.An alternative to producing an oxide powder Y₁Ba₂Cu₃O 6-7 is to mix a metal alloy powder with a metal oxide powder. Here, Ba₂Cu₃ powder is mixed with Y₂O₃ powder, a rapid solidification process also being used in the production of the powder. The powder thus obtained is annealed under an oxygen atmosphere, so that ceramic oxide powder Y₁Ba₂Cu₃O 6-7 is also formed.
Bei der Herstellung dünnwandiger Profile, wie z. B. Draht oder Band, wird bereits bei der Herstellung der Schmelze ein Matrix-Metall, vorzugsweise Silber, der Schmelze beigegeben und mitverdüst. Während der anschließenden Oxidation des Pulvers oxidiert das Silber nicht und bleibt vorteilhafter weise als Metall-Matrix erhalten.In the production of thin-walled profiles, such as. B. wire or Band is already involved in the manufacture of the melt Matrix metal, preferably silver, added to the melt and also atomized. During the subsequent oxidation of the Powder does not oxidize the silver and remains more advantageous received as a metal matrix.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4322533A DE4322533A1 (en) | 1993-07-07 | 1993-07-07 | Process for producing superconducting ceramics and the ceramics themselves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4322533A DE4322533A1 (en) | 1993-07-07 | 1993-07-07 | Process for producing superconducting ceramics and the ceramics themselves |
Publications (1)
Publication Number | Publication Date |
---|---|
DE4322533A1 true DE4322533A1 (en) | 1995-01-12 |
Family
ID=6492121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE4322533A Withdrawn DE4322533A1 (en) | 1993-07-07 | 1993-07-07 | Process for producing superconducting ceramics and the ceramics themselves |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4322533A1 (en) |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4272463A (en) * | 1974-12-18 | 1981-06-09 | The International Nickel Co., Inc. | Process for producing metal powder |
US4701301A (en) * | 1985-07-26 | 1987-10-20 | Japan Synthetic Rubber Co., Ltd. | Process for producing an internal-oxidized alloy or a shaped article thereof |
EP0265886A2 (en) * | 1986-10-27 | 1988-05-04 | Hitachi, Ltd. | Process for forming an ultrafine-particle film |
US4762553A (en) * | 1987-04-24 | 1988-08-09 | The United States Of America As Represented By The Secretary Of The Air Force | Method for making rapidly solidified powder |
EP0285960A1 (en) * | 1987-04-09 | 1988-10-12 | Siemens Aktiengesellschaft | Method of making high transition temperature superconductor materials |
US4778517A (en) * | 1987-05-27 | 1988-10-18 | Gte Products Corporation | Hydrometallurgical process for producing finely divided copper and copper alloy powders |
DE3810483A1 (en) * | 1987-03-27 | 1988-10-27 | Massachusetts Inst Technology | SUPER-CONDUCTING OXIDES AND OXIDE-METAL COMPOSITIONS |
EP0298893A2 (en) * | 1987-07-06 | 1989-01-11 | Lanxide Technology Company, Lp. | Methods for forming complex oxidation reaction products including superconducting articles |
DE3726037A1 (en) * | 1987-08-05 | 1989-02-16 | Julius J Prof Dr Nickl | Process for producing shaped articles from brittle materials |
US4826808A (en) * | 1987-03-27 | 1989-05-02 | Massachusetts Institute Of Technology | Preparation of superconducting oxides and oxide-metal composites |
EP0330196A1 (en) * | 1988-02-24 | 1989-08-30 | The Perkin-Elmer Corporation | Subathmospheric pressure plasma spraying of superconductive ceramic |
EP0334517A1 (en) * | 1988-03-21 | 1989-09-27 | AT&T Corp. | Growth of superconductor material in a fluxed melt, and article of manufacture |
US4885273A (en) * | 1987-03-20 | 1989-12-05 | Fujikura Ltd. | Method of producing a superconducting wire using alloy preform |
DE3830086A1 (en) * | 1988-07-25 | 1990-02-01 | Battelle Institut E V | Process for atomising a melt by means of a plasma jet |
US4956336A (en) * | 1989-02-10 | 1990-09-11 | University Of Houston - University Park | Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same |
US4968663A (en) * | 1989-02-27 | 1990-11-06 | Polytechnic University | Ductile, single phase-continuous super-conducting oxide conductors |
US5034373A (en) * | 1989-12-22 | 1991-07-23 | Inco Alloys International, Inc. | Process for forming superconductor precursor |
US5157016A (en) * | 1987-08-28 | 1992-10-20 | Sumitomo Electric Industries, Ltd. | Method for producing a superconducting article |
DE3921127C2 (en) * | 1989-06-28 | 1993-01-07 | Leybold Ag, 6450 Hanau, De | |
US5180707A (en) * | 1991-02-08 | 1993-01-19 | Massachusetts Institute Of Technology | Method for synthesis of high tc superconducting materials by oxidation and press coating of metallic precursor alloys |
-
1993
- 1993-07-07 DE DE4322533A patent/DE4322533A1/en not_active Withdrawn
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4272463A (en) * | 1974-12-18 | 1981-06-09 | The International Nickel Co., Inc. | Process for producing metal powder |
US4701301A (en) * | 1985-07-26 | 1987-10-20 | Japan Synthetic Rubber Co., Ltd. | Process for producing an internal-oxidized alloy or a shaped article thereof |
EP0265886A2 (en) * | 1986-10-27 | 1988-05-04 | Hitachi, Ltd. | Process for forming an ultrafine-particle film |
US4885273A (en) * | 1987-03-20 | 1989-12-05 | Fujikura Ltd. | Method of producing a superconducting wire using alloy preform |
US4826808A (en) * | 1987-03-27 | 1989-05-02 | Massachusetts Institute Of Technology | Preparation of superconducting oxides and oxide-metal composites |
DE3810483A1 (en) * | 1987-03-27 | 1988-10-27 | Massachusetts Inst Technology | SUPER-CONDUCTING OXIDES AND OXIDE-METAL COMPOSITIONS |
US5204318A (en) * | 1987-03-27 | 1993-04-20 | Massachusetts Institute Of Technology | Preparation of superconducting oxides and oxide-metal composites |
EP0285960A1 (en) * | 1987-04-09 | 1988-10-12 | Siemens Aktiengesellschaft | Method of making high transition temperature superconductor materials |
DE3711975A1 (en) * | 1987-04-09 | 1988-10-27 | Siemens Ag | METHOD FOR PRODUCING A CERAMIC SUPER LADDER MATERIAL WITH HIGH JUMP TEMPERATURE |
US4762553A (en) * | 1987-04-24 | 1988-08-09 | The United States Of America As Represented By The Secretary Of The Air Force | Method for making rapidly solidified powder |
US4778517A (en) * | 1987-05-27 | 1988-10-18 | Gte Products Corporation | Hydrometallurgical process for producing finely divided copper and copper alloy powders |
EP0298893A2 (en) * | 1987-07-06 | 1989-01-11 | Lanxide Technology Company, Lp. | Methods for forming complex oxidation reaction products including superconducting articles |
DE3726037A1 (en) * | 1987-08-05 | 1989-02-16 | Julius J Prof Dr Nickl | Process for producing shaped articles from brittle materials |
US5157016A (en) * | 1987-08-28 | 1992-10-20 | Sumitomo Electric Industries, Ltd. | Method for producing a superconducting article |
EP0330196A1 (en) * | 1988-02-24 | 1989-08-30 | The Perkin-Elmer Corporation | Subathmospheric pressure plasma spraying of superconductive ceramic |
EP0334517A1 (en) * | 1988-03-21 | 1989-09-27 | AT&T Corp. | Growth of superconductor material in a fluxed melt, and article of manufacture |
DE3830086A1 (en) * | 1988-07-25 | 1990-02-01 | Battelle Institut E V | Process for atomising a melt by means of a plasma jet |
US4956336A (en) * | 1989-02-10 | 1990-09-11 | University Of Houston - University Park | Oriented grained Y-Ba-Cu-O superconductors having high critical currents and method for producing same |
US4968663A (en) * | 1989-02-27 | 1990-11-06 | Polytechnic University | Ductile, single phase-continuous super-conducting oxide conductors |
DE3921127C2 (en) * | 1989-06-28 | 1993-01-07 | Leybold Ag, 6450 Hanau, De | |
US5034373A (en) * | 1989-12-22 | 1991-07-23 | Inco Alloys International, Inc. | Process for forming superconductor precursor |
US5180707A (en) * | 1991-02-08 | 1993-01-19 | Massachusetts Institute Of Technology | Method for synthesis of high tc superconducting materials by oxidation and press coating of metallic precursor alloys |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3881569T2 (en) | Devices and systems with a superconducting body and method for producing this body. | |
DE68915678T2 (en) | Dispersion hardened copper alloys and process for making these alloys. | |
DE69107230T2 (en) | Superconducting conductor. | |
DE69021848T2 (en) | Process for the production of superconductor raw materials. | |
DE69401992T2 (en) | Superconducting oxide wire and superconducting equipment with this wire | |
DE3851070T2 (en) | Process for producing an oxide connecting superconductor thread. | |
DE3810483A1 (en) | SUPER-CONDUCTING OXIDES AND OXIDE-METAL COMPOSITIONS | |
DE3855699T2 (en) | A method of manufacturing a superconducting article, and apparatus and systems using the article | |
DE3531769C2 (en) | ||
EP0035601B1 (en) | Process for making a memory alloy | |
EP0035602B1 (en) | Process for the production of a copper, zinc and aluminium base memory alloy by powder metallurgy technique | |
EP0396581B1 (en) | Process for manufacturing wire or strip from high-temperature superconductors and sheaths used for implementing said process | |
DE3921127C2 (en) | ||
DE1169593B (en) | High electron emission cathode | |
EP0285960A1 (en) | Method of making high transition temperature superconductor materials | |
EP0499049B1 (en) | Oxide ceramic superconducting composite device and fabrication method | |
DE69110328T2 (en) | Thallium oxide superconductor and process for its production. | |
DE4322533A1 (en) | Process for producing superconducting ceramics and the ceramics themselves | |
DE3877992T2 (en) | METHOD FOR PRODUCING A SUPRAL-CONDUCTIVE WIRE. | |
EP0296379A2 (en) | Method of making wire and/or tape shaped superconductors from sintered bulk ceramic material | |
DE3838670C1 (en) | ||
DE3718786C2 (en) | ||
DE2413446C2 (en) | Process for the production of a superconductor with a beta-tungsten structure | |
DE4421163C2 (en) | Method and device for producing a conductor with at least one textured, superconducting core | |
DE3889358T2 (en) | Process for making long functional items from oxide. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8139 | Disposal/non-payment of the annual fee |