DE4321874A1 - Process and device for the open-loop and closed-loop control of process parameters in ultrasonic welding - Google Patents

Process and device for the open-loop and closed-loop control of process parameters in ultrasonic welding

Info

Publication number
DE4321874A1
DE4321874A1 DE4321874A DE4321874A DE4321874A1 DE 4321874 A1 DE4321874 A1 DE 4321874A1 DE 4321874 A DE4321874 A DE 4321874A DE 4321874 A DE4321874 A DE 4321874A DE 4321874 A1 DE4321874 A1 DE 4321874A1
Authority
DE
Germany
Prior art keywords
joining
speed
ultrasonic welding
path
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE4321874A
Other languages
German (de)
Inventor
Carsten Dr Ing Netze
Wolfgang Dipl Ing Korte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigung zur Foerderung des Instituts fuer Kunststoffverarbeitung in Industrie und Handwerk an Der Rhein
Original Assignee
Vereinigung zur Foerderung des Instituts fuer Kunststoffverarbeitung in Industrie und Handwerk an Der Rhein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigung zur Foerderung des Instituts fuer Kunststoffverarbeitung in Industrie und Handwerk an Der Rhein filed Critical Vereinigung zur Foerderung des Instituts fuer Kunststoffverarbeitung in Industrie und Handwerk an Der Rhein
Priority to DE4321874A priority Critical patent/DE4321874A1/en
Publication of DE4321874A1 publication Critical patent/DE4321874A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9221Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power
    • B29C66/92211Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power with special measurement means or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9231Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the displacement of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • B29C66/92441Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time
    • B29C66/92443Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • B29C66/9292Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams
    • B29C66/92921Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams in specific relation to time, e.g. pressure-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/932Measuring or controlling the joining process by measuring or controlling the speed by measuring the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93431Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93441Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

In ultrasonic welding, until now optimisation of the process has largely been carried out empirically. The interrelationships between the quality-relevant process parameters and the weld quality were until now described only partially and incompletely. However, it has been shown that the quality of the welded joint depends on which flow conditions exist in the polymer melt at the instant at which the welding time is ended. The flow movements of the polymer melt can be represented by the joining path curve or its time derivation (joining rate), in conjunction with the force curve. This makes it possible to keep a check on the weld quality. According to the invention, the machine is provided with a measuring and controlling system for the joining path and the joining force, in order to establish in a simple way when various flow states of the polymer melt are reached and in order to perform an open-loop or closed-loop control of the joining rate at various instants in the process or over a period of time in the process. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Steuern und Regeln von Prozeßparametern beim Ultraschallschweißen gemäß dem Oberbegriff des Patentanspruchs 1. Beim Ultra­ schallschweißen werden die Fügeteile in eine oszillierende lon­ gitudinale schwingende Bewegung versetzt und solange der Ultra­ schalleinwirkung ausgesetzt, bis der Werkstoff in der Berüh­ rungszone der beiden Fügeteile aufschmilzt und ein Ineinanderfließen im Berührungsbereich stattfinden kann. Danach wird der Ultraschall abgeschaltet, so daß beim Abkühlen eine stoffschlüssige Verbindung entstehen kann.The invention relates to a method and an apparatus for Control and regulation of process parameters in ultrasonic welding according to the preamble of claim 1. With the Ultra the parts to be welded are welded into an oscillating lon longitudinal oscillating movement offset and as long as the Ultra exposed to sound until the material in the contact melting zone of the two parts to be joined and melted Can flow into each other in the contact area. After that the ultrasound is switched off, so that a cohesive connection can arise.

Im Gegensatz zu anderen Kunststoffschweißverfahren, wie z. B. dem Heizelementschweißen, dem Rotationsreibschweißen und dem Vibrationsschweißen fallen beim Ultraschallschweißen die Erwär­ mungs- und die Fügephase, mit den dabei auftretenden Stoffverbin­ dungs- und Haftungsprozessen, zeitlich zusammen. Wobei sich die Erwärmungsmechanismen aus Hystereseverlusten im Kunststoff durch die zyklische Ultraschalleinwirkung und der zu Beginn des Prozes­ ses in gewissem Maße auftretenden Grenzflächenreibung zusammenset­ zen. Damit ergeben sich neue Prozeßbedingungen und Einflußfaktoren die, speziell für dieses Schweißverfahren, betrachtet werden müs­ sen.In contrast to other plastic welding processes, such as. B. the Heating element welding, rotary friction welding and the Vibration welding is the main reason for ultrasonic welding and the joining phase, with the resulting composite liability and liability processes, in time. Whereby the Heating mechanisms from hysteresis losses in the plastic cyclic ultrasound exposure and that at the beginning of the process It combines to some extent occurring interface friction Zen. This results in new process conditions and influencing factors which, especially for this welding process, must be considered sen.

Zur Erzielung eines definierten Aufschmelzens in der Fügeebene müssen beim Ultraschallschweißen spezielle Fügenahtgeometrien vorgesehen werden. Man unterscheidet hier Energierichtungsgeber- und Quetschnahtgeometrien (Fig. 1). Insbesondere beim Ultra­ schallschweißen mit Energierichtungsgebergeometrie läßt sich der Ultraschallschweißprozeß in verschiedene Prozeßphasen unterteilen. Diese lassen sich anhand des zeitabhängigen Fügewegverlaufs ver­ deutlichen (Fig. 2a). Die verschiedenen Prozeßphasen des Ultra­ schallschweißprozesses korrelieren dabei mit der Erzielung be­ stimmter Schweißnahtqualitätsniveaus. Aber auch beim Ultra­ schallschweißen von Quetschnahtgeometrien ist der Fügewegverlauf entscheidend für die erzielbaren Schweißnahtqualitäten. Hier ist jedoch eine Einteilung des Schweißprozesses in verschiedene Phasen aufgrund der komplexeren nahtgeometrischen Voraussetzungen nicht immer möglich. Doch auch hier korrelieren die Verbin­ dungseigenschaften mit dem Verlauf des Fügewegs bzw. der -geschwindigkeit. So daß auch hier die Fügegeschwindigkeit als Regelgröße während des Schweißprozesses zur Erzielung bestimmter Verbindungsqualitäten herangezogen werden kann. In Fig. 2b ist exemplarisch ein Fügewegverlauf beim Schweißen einer Quetschnahtgeometrie dargestellt.In order to achieve a defined melting in the joining plane, special joining seam geometries must be provided for ultrasonic welding. A distinction is made here between energy direction sensor and pinch seam geometries ( FIG. 1). The ultrasonic welding process can be divided into different process phases, particularly in the case of ultra sound welding with energy direction sensor geometry. These can be clarified using the time-dependent path of the joining path ( Fig. 2a). The various process phases of the ultrasonic welding process correlate with the achievement of certain weld seam quality levels. But also when ultrasonically welding squeeze seam geometries, the path of the joining path is decisive for the achievable weld seam qualities. Here, however, it is not always possible to divide the welding process into different phases due to the more complex seam geometry requirements. But here, too, the connection properties correlate with the course of the joining path or the speed. So that the joining speed can also be used as a control variable during the welding process to achieve certain connection qualities. In Fig. 2b, a Fügewegverlauf is shown in welding a Quetschnahtgeometrie example.

Man unterscheidet beim Ultraschallschweißen die Parameter Füge­ kraft, aus der sich der Fügedruck ergibt, sowie den Fügeweg, der sich aus der Abschmelzbewegung der Fügeteile in Fügerichtung er­ gibt. Beide Parameter sind zeitabhängig. Die Fügekraft wird in der Regel konstant gehalten. Der zeitliche Verlauf des Fügewegs der beiden Fügeteile ergibt sich dagegen aus der geometrischen Gestalt der Fügeebene sowie aus den vorliegenden Prozeßbedingungen wie Schwingungsamplitude, Schwingungsfrequenz, Fügedruck und Schweißzeit.A distinction is made between joining parameters in ultrasonic welding force from which the joining pressure results, and the joining path, the from the melting movement of the parts to be joined in the direction of joining gives. Both parameters are time-dependent. The joining force is in the Usually kept constant. The time course of the joining path of the the two parts to be joined, however, result from the geometric shape the joining level and from the existing process conditions such as Vibration amplitude, vibration frequency, joining pressure and Welding time.

Um feste Verbindungen zu erzielen, muß der Werkstoff ausreichend aufgeschmolzen werden und muß ein entsprechender Fügedruck vorhan­ den sein, damit eine Homogenisierung und Vermischung der Schmel­ zeströme stattfinden kann. In der Praxis wird diesen Forderungen oft dadurch Rechnung getragen, daß ein Mindestfügeweg eingehalten wird. Dieses Vorgehen kann jedoch lediglich bei einfachen Fügeteilgeometrien, die mit äußerst geringen Toleranzen behaftet sind, zum Ziel führen.In order to achieve firm connections, the material must be sufficient be melted and there must be a corresponding joining pressure be so that homogenization and mixing of the melt zestream can take place. In practice, these demands often taken into account by complying with a minimum joining path becomes. However, this procedure can only be used for simple Joining part geometries with extremely low tolerances are leading to the goal.

Bei im Spritzgießverfahren hergestellten Fügeteilen weisen diese meist unvermeidbare Fertigungstoleranzen auf, so daß hier eine Qualitätssicherung während des Schweißprozesses durch die Vorgabe eines Mindestfügewegs nicht mehr möglich ist oder dieser zu große Werte annehmen muß, um alle Verbindungen mit hoher Qualität zu fertigen. Neben den geometrischen Fertigungstoleranzen hat auch das innere Gefüge der spritzgegossenen Fügeteile eine Auswirkung auf den Prozeßverlauf beim Ultraschallschweißen. Infolge unterschiedlicher Spritzgießherstellbedingungen kann das innere Gefüge der Fügeteile sehr stark differieren, so daß bei gleichen Schweißfertigungsparametern unterschiedliche Schweißergebnisse resultieren.In the case of joining parts produced by injection molding, these have usually inevitable manufacturing tolerances, so that here Quality assurance during the welding process through the specification a minimum joining path is no longer possible or this is too great Must take values in order to get all connections with high quality manufacture. In addition to the geometric manufacturing tolerances the internal structure of the injection molded parts to be impacted on the course of the process in ultrasonic welding. As a result  different injection molding conditions, the interior The structure of the parts to be joined differ greatly, so that the same Welding production parameters different welding results result.

Weiterhin wurde bisher die Vorgabe einer bestimmten, vom Ultra­ schallgenerator, während des Schweißprozesses abgegebenen Energie als Kriterium für eine gute Verbindungsqualität herangezogen. Wie Untersuchungen jedoch gezeigt haben, korreliert die vom Generator abgegebene Energie nicht mit der Schweißnahtqualität. So daß auch die Vorgabe einer bestimmten Schweißenergie nicht zur Qualitäts­ sicherung während des Schweißprozesses geeignet ist.Furthermore, the specification of a specific Ultra sound generator, energy given off during the welding process used as a criterion for good connection quality. As Studies, however, have shown that the generator correlates energy delivered not with the weld quality. So that too the specification of a certain welding energy does not lead to quality fuse during the welding process.

Entscheidend für die Qualität einer Verbindung sind die Fließverhältnisse in der Fügeebene beim Schweißen und die anschließenden Temperatur- und Druckverhältnisse mit den resul­ tierenden Fließverhältnissen der abkühlenden Schmelze in der fol­ genden Haltephase. Die Wirtschaftlichkeit des Prozesses aber auch die qualitätsbestimmenden Parameter werden durch die möglichst effektive und der Fügeaufgabe angepaßte Energieeinleitung und Umwandlung bestimmt. Wichtige Fertigungsparameter sind hier die Amplitude der Ultraschallschwingung und die Fügekraft bzw. bei Bezug auf die Fügeebenenfläche der Fügedruck. Unter der Vorausset­ zung einer während des Prozesses weitgehend konstanten Amplitude wird die Nahtqualität von der Realisierung einer bestimmtem Fügegeschwindigkeit bei einer bereichsweise vorgegebenen Fügekraft bzw. einem Fügedruck bestimmt.They are decisive for the quality of a connection Flow conditions in the joining plane when welding and the subsequent temperature and pressure conditions with the resul flow conditions of the cooling melt in the fol holding phase. But the process is also economical the quality-determining parameters are determined by the effective energy input adapted to the joining task and Conversion determined. Important manufacturing parameters are here Amplitude of the ultrasonic vibration and the joining force or at Relation to the joint plane surface of the joint pressure. Under the prerequisite an amplitude that is largely constant during the process the seam quality is of the realization of a certain one Joining speed with a given joining force in some areas or a joining pressure determined.

Aus der EP 0 421 019 A1 ist ein Verfahren und eine Vorrichtung zum Fügen von Kunststoffteilen durch Ultraschall, insbesondere Schweißen, Nieten, Bördeln oder Verformen, bekannt, bei dem entsprechend einer vorgegebenen Absenkgeschwindigkeit eine Materialverformung erreicht wird, dadurch gekennzeichnet, daß die Absenkgeschwindigkeit der Sonotrode in Abhängigkeit von der sich im Kunststoffteil aufbauenden Kraft gesteuert oder geregelt wird. Weiterhin wird die Möglichkeit betrachtet, daß zur Realisierung eines gewünschten Kraftverlaufs die Absenkgeschwindigkeit der Sonotrode als Zeitprofil vorgegeben wird bzw. das vorgegebene Kraftprofil über Regelung der Absenkgeschwindigkeit der Sonotrode unter Berücksichtigung der Verformung der Fügeteile stets beibehalten wird.EP 0 421 019 A1 describes a method and an apparatus for Joining plastic parts by ultrasound, in particular Welding, riveting, flanging or shaping, known in which according to a predetermined lowering speed Material deformation is achieved, characterized in that the Lowering speed of the sonotrode depending on the is controlled or regulated in the plastic part building force. Furthermore, the possibility is considered that for the realization of a desired force curve the lowering speed of the Sonotrode is specified as the time profile or the specified Force profile via regulation of the lowering speed of the sonotrode  always taking into account the deformation of the parts to be joined is maintained.

Die Aufgabe der Erfindung hier ist es demgegenüber den Verlauf der Fließgeschwindigkeit in der Fügeebene und bestimmte Fügewegver­ läufe der Fügeteile über die Größen Fügekraft und Sonotrodenab­ sinkgeschwindigkeit zu beeinflussen.In contrast, the object of the invention here is the course of the Flow speed in the joining plane and certain joining paths The joining parts run over the sizes joining force and sonotrode influence sink rate.

Hieraus ergibt sich die der Erfindung zugrundeliegende Aufgabe, ein Verfahren sowie eine Vorrichtung anzugeben, mit der die Parameter beim Ultraschallschweißen so gewählt werden können, daß gute Verbindungseigenschaften resultieren und feste Verbindungen reproduzierbar hergestellt werden können. Das Verfahren und die Vorrichtung müssen hierbei auf alle Fügeteilgeometrien und Fügeteilwerkstoffe anwendbar sein.This results in the object on which the invention is based, to specify a method and an apparatus with which the Parameters in ultrasonic welding can be selected so that good connection properties result and firm connections can be produced reproducibly. The procedure and the In this case, the device must match all geometries of the parts to be joined and Joining part materials can be used.

Die genannte Aufgabe ist bei dem erfindungsgemäßen Verfahren mit den Merkmalen im Patentanspruch 1 gelöst. Vorteilhafte Weiterbil­ dung des Verfahrens sowie eine erfindungsgemäße Vorrichtung sind in weiteren Ansprüchen gekennzeichnet.The stated object is involved in the method according to the invention solved the features in claim 1. Advantageous training extension of the method and a device according to the invention characterized in further claims.

Im folgenden wird beispielhaft für das Ultraschallschweißen einer Energierichtungsgebergeometrie der Prozeßverlauf und die sich daraus ergebenden Möglichkeiten der Beeinflussung der Schweißnahtqualität dargestellt.The following is an example of ultrasonic welding The geometry of the process and the process itself resulting possibilities of influencing the Weld quality shown.

Der zeitliche Verlauf der eingangs erwähnten Parameter Fügeweg bzw. Fügegeschwindigkeit unterteilt den Ultraschallschweißprozeß beim Schweißen mit Energierichtungsgebergeometrie in vier unter­ schiedliche Prozeßphasen (Fig. 2a), hierbei ist vorausgesetzt, daß die Fügekraft und die Schwingungsamplitude der Sonotrode wäh­ rend des Schweißvorgangs annähernd konstant sind:The course of the parameters of the joining path or joining speed mentioned at the outset divides the ultrasonic welding process when welding with energy direction sensor geometry into four different process phases ( FIG. 2a), here it is assumed that the joining force and the vibration amplitude of the sonotrode are approximately constant during the welding process:

  • 1. Phase:
    Anschmelzen des Energierichtungsgebers durch Grenzflä­ chenreibung und Hystereseverluste infolge der Schwin­ gungsdeformation. Die Abschmelzgeschwindigkeit fällt stetig aufgrund der sich verbreiternden Energierich­ tungsgeberfläche und des folglich abnehmenden Fügedrucks.
    1st phase:
    Melting of the energy direction sensor by interfacial friction and hysteresis losses due to the vibration deformation. The melting speed drops steadily due to the widening area of the energy direction and the consequently decreasing joining pressure.
  • 2. Phase:
    Ankopplung zwischen Ober- und Unterteil. Die Ab­ schmelzgeschwindigkeit ist für eine gewisse Zeit kon­ stant. Dabei wird das Material, welches durch den Kon­ takt mit den kalten Oberflächen seitlich des Ener­ gierichtungsgebers erkaltet ist, erneut aufgeschmolzen. Die Folge ist ein erneuter Anstieg der Abschmelz­ geschwindigkeit.
    2nd phase:
    Coupling between the upper and lower part. The melting rate is constant for a certain time. The material that has cooled due to contact with the cold surfaces on the side of the energy direction sensor is melted again. The result is a renewed increase in the melting rate.
  • 3. Phase:
    Stationäres Abschmelzverhalten. In der Naht bildet sich eine konstante Schmelzeschichtdicke aus. D.h., in der dritten Phase steigt der Fügeweg zeitproportional an, wobei vorausgesetzt ist, daß der Fügedruck konstant ist.
    3rd phase:
    Stationary melting behavior. A constant melt layer thickness forms in the seam. That is, in the third phase the joining path increases in proportion to the time, provided that the joining pressure is constant.
  • 4. Phase:
    Haltephase. Hier kühlt die Schmelze durch Wegfall der Ultraschallschwingung ab.
    4th phase:
    Hold phase. Here the melt cools down due to the elimination of the ultrasonic vibration.

Dieser Verlauf zeigt sich in abgewandelter Form auch bei sich ändernder Fügekraft und Amplitude. Erfindungsgemäß zeigen sich bei Untersuchungen als Voraussetzung guter Verbindungseigenschaften, daß je nach verwendetem Werkstoff und Qualitätsanforderung eine bestimmte Phase erreicht werden muß. Erfindungsgemäß werden wäh­ rend des Ultraschallschweißprozesses zeitabhängig auf jeden Fall die qualitätsrelevanten Parameter Fügeweg und Fügekraft gemessen, um zu ermöglichen, daß die unterschiedlichen Prozeßphasen exakt voneinander getrennt und die Energieeinleitung in die Fügeteile kontrolliert werden kann. Insbesondere eignet sich als Indikator für das Erreichen der jeweiligen Phase die zeitliche Ableitung des Fügeweges, also die Fügegeschwindigkeit. In der dritten Phase z. B. nimmt der Fügeweg in erster Näherung linear mit der Zeit zu. Die Ableitung ist somit eine Konstante. Untersuchungen haben gezeigt, das alleine durch Erreichen der dritten Phase bei konstanter Fügekraft, bzw. in dieser Phase auch konstantem Fügedruck, eine Mindestfestigkeit in der Verbindung erreicht wird, die sich bei fortschreitender Schweißzeit nicht mehr verändert. In dieser Phase ist mit reproduzierbaren Schweißergebnissen zu rechnen. Die Unter­ suchungen haben ferner ergeben, daß als Voraussetzung guter Ver­ bindungseigenschaften eine definierte Fließgeschwindigkeit in der Schmelzeschicht vorliegen muß. Über den Schweißprozeß ist diese werkstoff- und geometriespezifische Fließgeschwindigkeit mit einer definierten Fügegeschwindigkeit verknüpft. Dadurch ist es möglich, die aus dem Fügewegverlauf bestimmbare Fügegeschwindigkeit als Gütekriterium für die Ultraschallschweißverbindung heranzuziehen. Hierzu wird die Fügegeschwindigkeit als Regelgröße während des Schweißprozesses herangezogen. Eine bestimmte Fügegeschwindigkeit kann hierbei entweder über den Fügedruck bzw. die Fügekraft, mit der die Fügeteile von einem Antrieb aufeinander zu bewegt werden so geregelt werden, daß ein bestimmter Sollwert für die Fügegeschwindigkeit erreicht wird. Allerdings ist das alleinige Erreichen einer bestimmten Fügegeschwindigkeit kein Maß für die in der Fügeebene vorliegende Fließgeschwindigkeit der Kunst­ stoffschmelze und damit auch kein alleiniges Maß für die erziel­ baren Schweißnahtqualitäten. Die Fließgeschwindigkeit wird unter anderem sehr stark durch die Fügekraft und den damit verbundenen Energieeinleitungs- und Schmelzebildungsprozessen bestimmt. Aus diesem Grunde muß die Fügekraft mit überwacht werden.This course can also be seen in a modified form changing joining force and amplitude. According to the invention Investigations as a prerequisite for good connection properties, that depending on the material used and quality requirements certain phase must be reached. According to the invention In any case, depending on the time of the ultrasonic welding process the quality-relevant parameters of joining path and joining force measured, to enable the different process phases to be precise separated from each other and the introduction of energy into the parts to be joined can be controlled. Particularly suitable as an indicator the time derivative of the Joining path, i.e. the joining speed. In the third phase z. B. In the first approximation, the joining path increases linearly with time. The Derivation is therefore a constant. Studies have shown just by reaching the third phase at constant Joining force, or in this phase also constant joining pressure, a Minimum strength in the connection is reached, which is at progressing welding time no longer changed. In this phase reproducible welding results can be expected. The sub Searches have further shown that as a prerequisite for good ver binding properties a defined flow rate in the Melt layer must be present. This is about the welding process material and geometry specific flow rate with a  defined joining speed. This makes it possible the joining speed which can be determined from the joining path as To use the quality criterion for the ultrasonic welded joint. For this purpose, the joining speed is used as a controlled variable during the Welding process. A certain joining speed can either with the joining pressure or the joining force which the parts to be joined are moved towards each other by a drive be regulated so that a certain setpoint for the Joining speed is reached. However, that is the only one Reaching a certain joining speed is not a measure of the in the flow velocity of art present at the joining plane melted fabric and therefore not a sole measure of the achieved weld quality. The flow rate is below other very strongly by the joining force and the associated Energy introduction and melt formation processes determined. Out For this reason, the joining force must also be monitored.

In Fig. 3 ist beispielhaft für eine Energierichtungsgeber­ geometrie der Verlauf der Prozeßgrößen Fügekraft und Fügeweg dargestellt. Wobei im Fall A mit konstanter Fügekraft geschweißt wird, im Fall B hingegen die Fügegeschwindigkeit in der dritten Prozeßphase durch Vorgabe eines Fügekraftprofils geregelt wird. Ziel ist es hierbei unter anderem, durch die anfangs hohe Kraft, ein schnelles Durchlaufen der beiden ersten Phasen zu erreichen und eine optimale Schmelzebildung nach Erreichen der dritten Phase zu gewährleisten. Die Absenkung der Fügekraft führt zu einer Reduzierung der Fügegeschwindigkeit. Durch die Regelung der Fügegeschwindigkeit über die Fügekraft als Stellgröße werden definierte Fließbedingungen der Kunststoffschmelze in der Schweißnaht induziert, diese korrelieren wiederum mit der Er­ zielung bestimmter Verbindungsqualitäten. Bei der Vorgabe der Fügekraft als Stellgröße ist jedoch zu beachten, daß die Fügekraft hierbei keine beliebigen Werte annehmen darf, sondern nur solche, bei denen weiterhin eine gute Energieeinleitung in die Fügeteile stattfinden kann, denn die Schweißkraft beeinflußt entscheidend die Energieumsetzungs- und Schmelzebildungsprozesse. Dies unterstreicht auch die Bedeutung der Fügekraftüberwachung während des Schweißprozesses. In Fig. 3, the course of the process variables joining force and joining path is shown as an example for an energy direction sensor geometry. In case A welding is carried out with constant joining force, in case B however the joining speed is regulated in the third process phase by specifying a joining force profile. One of the goals here is to achieve a fast passage through the first two phases through the initially high force and to ensure optimal melt formation after reaching the third phase. The lowering of the joining force leads to a reduction in the joining speed. By regulating the joining speed via the joining force as a manipulated variable, defined flow conditions of the plastic melt are induced in the weld seam, which in turn correlate with the achievement of certain connection qualities. When specifying the joining force as a manipulated variable, it should be noted, however, that the joining force may not assume any values here, but only those where good energy introduction into the parts to be joined can continue, because the welding force has a decisive influence on the energy conversion and melt formation processes. This also underlines the importance of joining force monitoring during the welding process.

Somit ergibt sich über die Steuerung oder Regelung der Fügegeschwindigkeit die Möglichkeit die Verbindungsqualität der Ultraschallschweißung gezielt zu beeinflussen. Dies ist bei bisherigen Prozeßführungskonzepten nicht möglich. Hier fehlten bisher die erforderlichen Vorrichtungen und Verfahren zur meßtechnischen Erfassung der qualitätsrelevanten Prozeßgrößen sowie zu deren Steuerung und Regelung.This results in the control or regulation of the Joining speed the possibility of the connection quality of the To influence ultrasonic welding in a targeted manner. This is at previous process control concepts not possible. Were missing here So far, the necessary devices and methods for metrological recording of the quality-relevant process variables as well as their control and regulation.

Im Falle des Ultraschallschweißens von Quetschnahtgeometrien ist eine Einteilung des Schweißprozesses in verschiedene Phasen aufgrund der komplexeren nahtgeometrischen Voraussetzungen nicht möglich. Aber auch hier korrelieren die Verbindungseigenschaften mit dem Verlauf des Fügeweges bzw. -geschwindigkeit. So daß auch hier die Fügegeschwindigkeit als Regelgröße während des Schweiß­ prozesses zur Erzielung bestimmter Verbindungsqualitäten heran­ gezogen werden kann. Neben den in Fig. 1 dargestellten Nahtgeometrien werden in der Praxis auch häufig modifizierte Nahtgeometrien oder Sonderformen eingesetzt. Generell sind die dargestellten Zusammenhänge für alle Nahtgeometrien gültig. Es ergeben sich hier nur tendenziell unterschiedliche Fügewegver­ läufe. Entscheidend für die Qualität der Schweißverbindung ist jedoch immer der Fügewegverlauf in Verbindung mit dem Füge­ kraftverlauf.In the case of ultrasonic welding of pinch seam geometries, it is not possible to divide the welding process into different phases due to the more complex seam-geometrical requirements. But here, too, the connection properties correlate with the course of the joining path or speed. So that the joining speed can also be used as a control variable during the welding process to achieve certain connection qualities. In addition to the seam geometries shown in FIG. 1, modified seam geometries or special shapes are also frequently used in practice. In general, the relationships shown are valid for all seam geometries. There tend to be different joining paths here. However, the decisive factor for the quality of the welded connection is the course of the joining path in connection with the joining force course.

In Fig. 4 ist ein Wegaufnehmer 1 an der beweglichen nicht darge­ stellten Verfahreinheit der Ultraschallschweißmaschine befestigt. Diese Verfahreinheit wird mittels eines Antriebs, der entweder die Variation der Fügekraft oder die direkte Vorgabe von definierten Fügegeschwindigkeiten erlaubt, auf die gehäusefeste Fügeteilauf­ nahme zubewegt, woraus sich der Fügeweg in z-Richtung der Fig. 1 ergibt.In Fig. 4, a displacement sensor 1 is attached to the movable travel unit not shown Darge the ultrasonic welding machine. This moving unit is moved by means of a drive which either allows the variation of the joining force or the direct specification of defined joining speeds to the housing-fixed joining part, which results in the joining path in the z direction of FIG. 1.

Bei einem pneumatischen Antrieb wird hierbei beispielsweise vom Pneumatikzylinder ein bestimmter Druck auf die Fügeteile ausgeübt, d. h. die Maschine arbeitet kraftgeregelt. Die Signale des Wegauf­ nehmers werden in einem Verstärker 2 verstärkt und dann einem Dif­ ferenzierer 3 zugeführt. Das Ausgangssignal des Differenzierers stellt somit die zeitliche Ableitung des Fügeweges und damit die Fügegeschwindigkeit dar. Dem Differenzierer ist ein Vergleicher 4 nachgeschaltet, in dem die Fügegeschwindigkeitssignale in kurzen zeitlichen Abständen verglichen werden. Als Sollgröße wird dem Differenzierer 3 hierbei eine definierte Fügegeschwindigkeit oder ein zeitlicher Fügegeschwindigkeitsverlauf vorgegeben. Unterschreitet die Abweichung zwischen gemessener und vorgegebener Geschwindigkeit eine gewisse Toleranz, so gibt der Vergleicher 4 ein Ausgangssignal "Ultraschall aus" ab, daß über ein Relais 5 die Ultraschallschwingung der Schweißmaschine abschaltet. Es ist somit, unter der Voraussetzung einer konstanten Fügekraft, sichergestellt, daß bei Prozeßende definierte Fließbedingungen in der Kunststoffschmelze vorliegen.In the case of a pneumatic drive, for example, a certain pressure is exerted on the parts to be joined by the pneumatic cylinder, ie the machine is force-controlled. The signals of the Wegauf participants are amplified in an amplifier 2 and then fed to a Dif ferenzierer 3 . The output signal of the differentiator thus represents the time derivative of the joining path and thus the joining speed. A comparator 4 is connected downstream of the differentiator, in which the joining speed signals are compared at short time intervals. The differentiator 3 is given a defined joining speed or a temporal joining speed curve as the target variable. If the deviation between the measured and the specified speed falls below a certain tolerance, the comparator 4 emits an output signal “ultrasound off” that switches off the ultrasound oscillation of the welding machine via a relay 5 . Providing a constant joining force, it is thus ensured that defined flow conditions are present in the plastic melt at the end of the process.

In Fig. 5 ist wiederum der Wegaufnehmer 1, der Verstärker 2 und der Differenzierer 3 dargestellt. Wiederum liefert das Aus­ gangssignal des Differenzierers 3 eine Aussage über die momentan vorliegende Fügegeschwindigkeit. Hierbei wird gemäß Fig. 5 der Ultraschall nicht abgeschaltet, sondern das Ausgangssignal des Differenzierers 3 einem Regler 6 zugeführt und hier mit einem Sollwert für die mittlere Fügegeschwindigkeit verglichen. Der Ausgang des Reglers 6 wird einem Proportionalventil 7 zugeführt. Das Proportionalventil 7 wird vom Regler 6 so angesteuert, daß die vom Zylinder ausgeübte Kraft und somit die Fügegeschwindigkeit den eingestellten Sollwert erreicht. Sobald die gemessene Fügegeschwindigkeit, innerhalb eines gewissen Toleranzbandes, den vorgegebenen Sollwert erreicht hat, schaltet die Maschine über das Relais 5 den Ultraschall aus. Vorteil diese Schaltungskonzeptes ist es, daß durch die Regelung der Fügegeschwindigkeit Toleranzen in den Fügeteilen, wie z. B. geometrische Toleranzen oder unterschiedliche innere Gefüge den Schweißprozeß nicht mehr negativ beeinflussen können. Die durch diese Toleranzen bedingten unterschiedlichen Fügewegverläufe können, durch Einregelung der Fügegeschwindigkeit auf ein für das jeweilige Fügeteil und den Werkstoff als optimal erkannte Größe, kompensiert werden. Somit lassen sich reproduzierbare Nahtqualitäten herstellen. Vorausset­ zung hierbei ist, daß die Stellgröße Fügekraft während des Regelungsvorgangs so variiert wird, daß sich neben der Erzielung einer vorgegebenen Fügegeschwindigkeit auch, infolge der von der Fügekraft abhängenden Energieeinleitungsverhältnisse, ähnliche Schmelzeschichtdicken und somit auch ähnliche rheologische und thermische Zustände in der Nahtebene einstellen. Weiterhin Voraus­ setzung für reproduzierbare Schweißnahtqualitäten ist das gleich­ mäßige Erreichen der Fügegeschwindigkeit in allen Fügenahtbereichen.In Fig. 5 the position transducer 1, the amplifier 2 and the differentiator 3 is again shown. Again, the output signal from the differentiator 3 provides information about the current joining speed. In this case the ultrasound is shown in FIG. 5 is not switched off, but the output signal of the differentiator 3 supplied to a controller 6 and is compared here with a set value for the mean joining velocity. The output of the controller 6 is fed to a proportional valve 7 . The proportional valve 7 is controlled by the controller 6 so that the force exerted by the cylinder and thus the joining speed reach the setpoint. As soon as the measured joining speed has reached the specified target value within a certain tolerance band, the machine switches off the ultrasound via relay 5 . The advantage of this circuit concept is that by regulating the joining speed, tolerances in the joining parts, such as. B. geometric tolerances or different internal structures can no longer negatively affect the welding process. The different joining path profiles caused by these tolerances can be compensated for by adjusting the joining speed to a size that is optimally recognized for the respective joining part and the material. This enables reproducible seam qualities to be produced. The prerequisite for this is that the control force is varied during the control process in such a way that, in addition to achieving a predetermined joining speed, similar melt layer thicknesses and thus similar rheological and thermal conditions occur in the seam plane as a result of the energy introduction conditions depending on the force. A further prerequisite for reproducible weld seam qualities is that the joining speed is reached uniformly in all joint seam areas.

Bei dem in Fig. 5 dargestellten Regelungskonzepts muß berücksich­ tigt werden, daß sich infolge der als Stellgröße wirkenden variablen Fügekraft unterschiedliche Fügeteildeformationen während des Regelungsvorgangs einstellen. Diese haben Auswirkungen auf die gemessene Fügegeschwindigkeit, die dann nicht mehr mit der tat­ sächlichen Fügegeschwindigkeit, infolge der Abschmelzbewegung in der Fügeebene, übereinstimmt. Die Fügeteildeformationen müssen bei der Bestimmung der Fügegeschwindigkeit im Differenzierer 3 berück­ sichtigt werden.In the control concept shown in FIG. 5, it must be taken into account that, due to the variable joining force acting as a manipulated variable, different parts of the joining part are set during the control process. These have an impact on the measured joining speed, which then no longer corresponds to the actual joining speed due to the melting movement in the joining plane. The joining part information must be taken into account when determining the joining speed in the differentiator 3 .

Claims (13)

1. Verfahren zum Steuern und Regeln von Prozeßparametern beim Ultraschallschweißen, wobei die Fügeteile durch eine schwin­ gende Sonotrode in eine oszillierende longitudinale Schwin­ gungsbewegung zueinander versetzt werden bis der Werkstoff in der Berührungszone aufschmilzt und unter Aufbringung einer Fügekraft und Zurücklegen eines Fügeweges aufeinander zu bewegt werden, worauf nach Beendigung des Ultraschallschweiß­ vorgangs beim Abkühlen eine stoffschlüssige Verbindung entsteht. Dadurch gekennzeichnet, daß die zeitabhängigen für die Fertigung charakteristischen Parameter während des Ultraschallschweißvorganges gemessen werden und das Erreichen der Prozeßphase in der ein, für das jeweilige Material und die jeweilige Fügeteilgeometrie bezüglich der erzielbaren Schweißnahtqualität, optimaler Schmelzefluß in der Fügeebene herrscht bestimmt wird, worauf der Ultraschallschweißprozeß beendet wird.1. A method for controlling and regulating process parameters in ultrasonic welding, the parts to be joined being set into an oscillating longitudinal oscillating movement by a vibrating sonotrode until the material melts in the contact zone and is moved towards one another with application of a joining force and covering a joining path, whereupon, after the ultrasonic welding process has ended, a material connection is formed when cooling. Characterized in that are time dependent for the production of the characteristic parameters during the ultrasonic welding process is measured and reaching the process phase in which a, for the material and the respective joining part geometry is determined with respect to rules of the achievable weld quality, optimal melt flow in the joining plane, whereupon the ultrasonic welding process is ended. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Bestimmung einer Prozeßphase der Fügeweg und/oder die Fügege­ schwindigkeit gemessen werden.2. The method according to claim 1, characterized in that for Determination of a process phase of the joining path and / or the joining path speed can be measured. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fügegeschwindigkeit beim Zurücklegen des Fügeweges ermit­ telt wird und nach Erreichen einer vorgegebenen Fügegeschwin­ digkeit der Ultraschallschweißvorgang beendet wird.3. The method according to claim 1 or 2, characterized in that the joining speed when covering the joining path is telt and after reaching a predetermined joining speed the ultrasonic welding process is ended. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Fügeweg gemessen und aus dem Fügeweg in zeitlicher Ableitung die Fügegeschwindigkeit ermittelt wird.4. The method according to claim 3, characterized in that the Joining path measured and derived from the joining path in time the joining speed is determined. 5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß eine definierte Fügegeschwindigkeit oder ein Fügegeschwindig­ keitsverlauf durch Vergleich der aus dem Fügeweg ermittelten Fügegeschwindigkeit mit einem Konstantwert oder einem zeit­ lichen Fügegeschwindigkeitsverlauf festgestellt wird.5. The method according to claim 3 or 4, characterized in that a defined joining speed or a joining speed profile by comparing the determined from the joining path Joining speed with a constant value or a time the joining speed curve is determined. 6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekenn­ zeichnet, daß nach Erreichen der definierten Fügegeschwindig­ keit innerhalb eines vorher definierten Zeitraumes oder eines Fügegeschwindigkeitsverlaufs über einen bestimmten Zeitraum, der Ultraschallschweißvorgang abgeschaltet wird.6. The method according to any one of claims 3 to 5, characterized  records that after reaching the defined joining speed speed within a previously defined period or Joining speed curve over a certain period of time, the ultrasonic welding process is switched off. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Fügegeschwindigkeit so geregelt wird, daß eine vorbestimmte Fließgeschwindigkeit der Werkstoffschmelze erreicht wird.7. The method according to claim 6, characterized in that the Joining speed is controlled so that a predetermined Flow rate of the material melt is reached. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Regelung der Fügegeschwindigkeit durch die Kraft erfolgt, mit der die Fügeteile aufeinander gedrückt werden.8. The method according to claim 7, characterized in that the Regulation of the joining speed by the force takes place with the parts to be pressed together. 9. Verfahren nach Anspruch 8 in Verbindung mit einem der An­ sprüche 1-7, dadurch gekennzeichnet, daß zur Überwachung der Energieeinleitungsverhältnisse in die Fügeteile die Fügekraft während des Schweißvorganges gemessen wird.9. The method according to claim 8 in connection with one of the An sayings 1-7, characterized in that for monitoring of the energy introduction into the parts to be joined Joining force is measured during the welding process. 10. Vorrichtung zum Durchführen des Verfahrens nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß zur Messung des Fügeweges ein Wegaufnehmer (1) vorgesehen ist, an den ein Differenzierer (3) und ein Vergleicher (4) angeschlossen sind, in dem das Signal aus dem Differenzierer mit einem Sollwert verglichen wird.10. The device for performing the method according to any one of claims 1-9, characterized in that a displacement transducer ( 1 ) is provided for measuring the joining path, to which a differentiator ( 3 ) and a comparator ( 4 ) are connected, in which the Signal from the differentiator is compared with a setpoint. 11. Vorrichtung zum Durchführen des Verfahrens nach Anspruch 9, dadurch gekennzeichnet, daß zur Messung der Fügekraft eine Kraftmeßdose vorgesehen ist.11. Device for performing the method according to claim 9, characterized in that a for measuring the joining force Load cell is provided. 12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß an den Vergleicher (4) ein Regler (6) angeschlossen ist, der nach Erreichen einer definierten Fügegeschwindigkeit durch Vergleich mit einem Sollwert eine Regelung der Fügegeschwin­ digkeit durchführt und der Ultraschallschweißvorgang nach Erreichen einer bestimmten Fügegeschwindigkeit innerhalb eines vorher definierten Zeitraums beendet wird.12. The apparatus according to claim 10, characterized in that a controller ( 6 ) is connected to the comparator ( 4 ) which, after reaching a defined joining speed by comparison with a target value, carries out a regulation of the joining speed and the ultrasonic welding process after reaching a certain joining speed is ended within a previously defined period. 13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß der Reglerausgang auf ein Stellglied (7) für einen Antrieb in Fügerichtung geführt wird. Der Antrieb kann pneumatisch, elektrisch oder hydraulisch sein. Als Stellgröße dient die vom Antrieb auf die Sonotrode ausgeübte Fügekraft.13. The apparatus according to claim 12, characterized in that the controller output is guided to an actuator ( 7 ) for a drive in the joining direction. The drive can be pneumatic, electric or hydraulic. The joining force exerted by the drive on the sonotrode serves as the manipulated variable.
DE4321874A 1993-07-01 1993-07-01 Process and device for the open-loop and closed-loop control of process parameters in ultrasonic welding Ceased DE4321874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4321874A DE4321874A1 (en) 1993-07-01 1993-07-01 Process and device for the open-loop and closed-loop control of process parameters in ultrasonic welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4321874A DE4321874A1 (en) 1993-07-01 1993-07-01 Process and device for the open-loop and closed-loop control of process parameters in ultrasonic welding

Publications (1)

Publication Number Publication Date
DE4321874A1 true DE4321874A1 (en) 1995-01-12

Family

ID=6491677

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4321874A Ceased DE4321874A1 (en) 1993-07-01 1993-07-01 Process and device for the open-loop and closed-loop control of process parameters in ultrasonic welding

Country Status (1)

Country Link
DE (1) DE4321874A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003864A1 (en) * 1998-07-15 2000-01-27 Cyklop Gmbh Method and device for welding strips of a thermoplastic material
DE19950512A1 (en) * 1999-10-20 2001-05-17 Stiebel Eltron Gmbh & Co Kg Ultrasonically-welded assembly of injection moldings, includes tongue-and-groove or peg-and-hole joints specially-profiled as ultrasound paths
DE20105550U1 (en) 2001-03-29 2001-08-16 Branson Ultraschall Niederlassung Der Emerson Technologies Gmbh & Co, 63128 Dietzenbach Sonotrode arrangement
DE10126943A1 (en) * 2001-06-01 2002-12-12 Stapla Ultaschalltechnik Gmbh Plastic component welding or deformation method involves reduction of amplitude and measurement of a parameter to determine a subsequent period at constant amplitude
DE10218596A1 (en) * 2002-04-25 2003-11-06 Pfister Waagen Gmbh Mating force measurement device for use in documenting the jointing of waste water or sewage pipes, comprises a force measurement cell linked to a handheld computer so that measurements can be digitally recorded
DE10324094B3 (en) * 2003-04-30 2004-09-09 Schunk Ultraschalltechnik Gmbh Ultrasonic welding system for joining electrical conductors together has converter and sonotrode and has control circuit comparing actual curve of pressure plotted against time with ideal curve
DE102006043605B3 (en) * 2006-09-16 2008-03-27 Stapla Ultraschalltechnik Gmbh Method for quality monitoring in ultrasonic welding
DE202008016010U1 (en) 2008-12-03 2009-02-19 Grenzebach Maschinenbau Gmbh Device for non-positive connection of vitreous components with metals
EP2106899A2 (en) 2008-04-04 2009-10-07 Dukane Corporation Ultrasonic press using servo motor and delayed motion technique
WO2010063262A1 (en) 2008-12-03 2010-06-10 Grenzebach Maschinenbau Gmbh Method and device for force-fit connecting glass-like components to metals
US8052816B2 (en) 2006-05-08 2011-11-08 Dukane Corporation Ultrasonic press using servo motor with delayed motion
DE102012106491A1 (en) * 2012-07-18 2014-01-23 Herrmann Ultraschalltechnik Gmbh & Co. Kg Method for controlling an ultrasonic machining process
US9144937B2 (en) 2006-05-08 2015-09-29 Dukane Corporation Ultrasonic press using servo motor with delayed motion
WO2017045978A1 (en) 2015-09-15 2017-03-23 Basf Se Damper bearing comprising a housing and cover
DE102015120165A1 (en) 2015-11-20 2017-05-24 Kromberg & Schubert Gmbh Apparatus and method for monitoring an ultrasonic welding process
US9688017B2 (en) 2013-05-14 2017-06-27 Dukan IAS, LLC Vibration welders with high frequency vibration, position motion control, and delayed weld motion
US20180178313A1 (en) * 2014-06-12 2018-06-28 Nissan Motor Co., Ltd. Bonding state inspection method
US10076871B2 (en) 2013-08-08 2018-09-18 GM Global Technology Operations LLC Systems and methods for improved ultrasonic welding using energy-director-locating algorithm
US10549481B1 (en) 2018-12-21 2020-02-04 Dukane Ias, Llc Systems and methods for low initial weld speed in ultrasonic welding
DE102019109262A1 (en) * 2019-04-09 2020-10-15 Lisa Dräxlmaier GmbH DEVICE FOR DETERMINING A STATE OF AN ULTRASONIC WELDING PROCESS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429776C2 (en) * 1984-08-13 1988-05-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3429776C2 (en) * 1984-08-13 1988-05-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CH-Z: Technische Rundschau, Nr. 23/86, S. 20 bis 29 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470941B1 (en) 1998-07-15 2002-10-29 Cyklop Gmbh Method and device for welding strips of a thermoplastic material
WO2000003864A1 (en) * 1998-07-15 2000-01-27 Cyklop Gmbh Method and device for welding strips of a thermoplastic material
DE19950512A1 (en) * 1999-10-20 2001-05-17 Stiebel Eltron Gmbh & Co Kg Ultrasonically-welded assembly of injection moldings, includes tongue-and-groove or peg-and-hole joints specially-profiled as ultrasound paths
DE19950512B4 (en) * 1999-10-20 2004-02-26 Stiebel Eltron Gmbh & Co. Kg Assembly connectable by ultrasonic welding
DE20105550U1 (en) 2001-03-29 2001-08-16 Branson Ultraschall Niederlassung Der Emerson Technologies Gmbh & Co, 63128 Dietzenbach Sonotrode arrangement
DE10126943A1 (en) * 2001-06-01 2002-12-12 Stapla Ultaschalltechnik Gmbh Plastic component welding or deformation method involves reduction of amplitude and measurement of a parameter to determine a subsequent period at constant amplitude
US6979376B2 (en) 2001-06-01 2005-12-27 Stapla Ultraschalltechnik Gmbh Method for machining, such as soldering or deformation, a workpiece
DE10218596A1 (en) * 2002-04-25 2003-11-06 Pfister Waagen Gmbh Mating force measurement device for use in documenting the jointing of waste water or sewage pipes, comprises a force measurement cell linked to a handheld computer so that measurements can be digitally recorded
US7491280B2 (en) 2003-04-30 2009-02-17 Schunk Ultraschalltechnik Gmbh Systems and methods for welding of parts
DE10324094B3 (en) * 2003-04-30 2004-09-09 Schunk Ultraschalltechnik Gmbh Ultrasonic welding system for joining electrical conductors together has converter and sonotrode and has control circuit comparing actual curve of pressure plotted against time with ideal curve
US9849627B2 (en) 2006-05-08 2017-12-26 Dukane Ias, Llc Ultrasonic press using servo motor with delayed motion
US9914263B2 (en) 2006-05-08 2018-03-13 Dukane Ias, Llc Ultrasonic press with automatic speed changes in advancing movement of welding stack
US9849628B2 (en) 2006-05-08 2017-12-26 Dukane Ias, Llc Ultrasonic welding method using delayed motion of welding stack
US9586361B2 (en) 2006-05-08 2017-03-07 Dukane Ias, Llc Ultrasonic press using servo motor with delayed motion
US9486955B2 (en) 2006-05-08 2016-11-08 Dukane Ias, Llc Ultrasonic press using servo motor with delayed motion
US9144937B2 (en) 2006-05-08 2015-09-29 Dukane Corporation Ultrasonic press using servo motor with delayed motion
US8720516B2 (en) 2006-05-08 2014-05-13 Dukane Corporation Ultrasonic press using servo motor with delayed motion
US8052816B2 (en) 2006-05-08 2011-11-08 Dukane Corporation Ultrasonic press using servo motor with delayed motion
DE102006043605B3 (en) * 2006-09-16 2008-03-27 Stapla Ultraschalltechnik Gmbh Method for quality monitoring in ultrasonic welding
EP2106899A3 (en) * 2008-04-04 2010-09-08 Dukane Corporation Ultrasonic press using servo motor and delayed motion technique
EP2106899A2 (en) 2008-04-04 2009-10-07 Dukane Corporation Ultrasonic press using servo motor and delayed motion technique
JP2009297786A (en) * 2008-04-04 2009-12-24 Dukane Corp Ultrasonic press using servo motor and delayed motion technique
WO2010063262A1 (en) 2008-12-03 2010-06-10 Grenzebach Maschinenbau Gmbh Method and device for force-fit connecting glass-like components to metals
DE202008016010U1 (en) 2008-12-03 2009-02-19 Grenzebach Maschinenbau Gmbh Device for non-positive connection of vitreous components with metals
DE102008060301B4 (en) * 2008-12-03 2012-05-03 Grenzebach Maschinenbau Gmbh Method and device for non-positive connection of vitreous components with metals and computer program and machine-readable carrier for carrying out the method
DE102008060301A1 (en) 2008-12-03 2010-06-10 Grenzebach Maschinenbau Gmbh Method and device for non-positive connection of vitreous components with metals
US8667814B2 (en) 2008-12-03 2014-03-11 Grenzebach Maschinenbau Gmbh Method and apparatus for the force-fitting connection of glass-like components to metals
US8702883B2 (en) 2012-07-18 2014-04-22 Herrmann Ultraschalltechnik Gmbh & Co. Kg Method for controlling an ultrasonic machining process
USRE48685E1 (en) 2012-07-18 2021-08-17 Herrmann Ultraschalltechnik Gmbh & Co. Kg Method for controlling an ultrasonic machining process
DE102012106491A1 (en) * 2012-07-18 2014-01-23 Herrmann Ultraschalltechnik Gmbh & Co. Kg Method for controlling an ultrasonic machining process
US9688017B2 (en) 2013-05-14 2017-06-27 Dukan IAS, LLC Vibration welders with high frequency vibration, position motion control, and delayed weld motion
US10076871B2 (en) 2013-08-08 2018-09-18 GM Global Technology Operations LLC Systems and methods for improved ultrasonic welding using energy-director-locating algorithm
US10272517B2 (en) * 2014-06-12 2019-04-30 Nissan Motor Co., Ltd. Bonding state inspection method
US20180178313A1 (en) * 2014-06-12 2018-06-28 Nissan Motor Co., Ltd. Bonding state inspection method
WO2017045978A1 (en) 2015-09-15 2017-03-23 Basf Se Damper bearing comprising a housing and cover
WO2017084988A1 (en) 2015-11-20 2017-05-26 Kromberg & Schubert Gmbh Apparatus and method for monitoring an ultrasonic welding process
DE102015120165A1 (en) 2015-11-20 2017-05-24 Kromberg & Schubert Gmbh Apparatus and method for monitoring an ultrasonic welding process
US10549481B1 (en) 2018-12-21 2020-02-04 Dukane Ias, Llc Systems and methods for low initial weld speed in ultrasonic welding
DE102019109262A1 (en) * 2019-04-09 2020-10-15 Lisa Dräxlmaier GmbH DEVICE FOR DETERMINING A STATE OF AN ULTRASONIC WELDING PROCESS
CN113677473A (en) * 2019-04-09 2021-11-19 利萨·德雷克塞迈尔有限责任公司 Device for determining the state of an ultrasonic welding process
CN113677473B (en) * 2019-04-09 2024-02-13 利萨·德雷克塞迈尔有限责任公司 Device for determining the state of an ultrasonic welding process
US11969817B2 (en) 2019-04-09 2024-04-30 Lisa Draexlmaier Gmbh Device for determining a status of an ultrasonic welding process

Similar Documents

Publication Publication Date Title
DE4321874A1 (en) Process and device for the open-loop and closed-loop control of process parameters in ultrasonic welding
EP0340671B1 (en) Process and apparatus for controlling the machine parameters in friction welding
DE102008018881B4 (en) Method and device for applying a viscous material to a workpiece and use of a needle valve for a device for applying a viscous material to a workpiece
DE3241897C2 (en) Resistance spot welder
EP0421019B1 (en) Method and device for joining plastic parts with ultrasonic waves
EP2424724B1 (en) Ultrasound welding device and method for welding material webs
DE69414249T2 (en) METHOD FOR CONTROLLING THE PERFORMANCE OF A WELDING UNIT IN THE ULTRASONIC WELDING PROCESS, AND ARRANGEMENT FOR CARRYING OUT THIS METHOD
CH697295B1 (en) A method for welding parts.
DE60115055T2 (en) METHOD AND TOOL TOOL FOR MANUFACTURING FIBER REINFORCED PRODUCTS
DE19514070C2 (en) Control method for an injection molding device
WO1996005015A1 (en) Device for welding together at least two parts, and method using the device
DE102012106491A1 (en) Method for controlling an ultrasonic machining process
WO2011157563A1 (en) Method and device for the butt-welding of pipes made of thermoplastic material
DE3313918A1 (en) Process for open and closed loop control of the electrical power required during jointing of thermoplastics by means of ultrasound
EP0369220B1 (en) Method of controlling and/or regulating an injection process
DE4206583C2 (en) Method and device for connecting two themoplastic components
DE10347984A1 (en) Vibration welding method with shortened settling time
EP4065349B1 (en) Ultrasonic treatment method
DE102015114957A1 (en) Electric welding process
DE102008004880A1 (en) Device for welding a material web
DE202016107208U1 (en) Heizelementschweißeinheit
DD204879A1 (en) METHOD FOR THE HEATING TUMP WELDING OF PLASTIC MATERIALS
EP4247624A1 (en) Method for operating an ultrasonic welding machine
DE10322450A1 (en) Process for laser welding coated plates, e.g. in the automobile industry involves restricting length of weld seam so that built up vapor pressure of evaporating coating never exceeds its critical eruption value
DE102021116526A1 (en) Method for controlling a machining process

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8131 Rejection