DE4320781A1 - Differential thermal conductivity measurement of solid. liquid or gas samples - comparing heat flows of parallel paths containing sample and reference respectively, measured simultaneously by Peltier device - Google Patents

Differential thermal conductivity measurement of solid. liquid or gas samples - comparing heat flows of parallel paths containing sample and reference respectively, measured simultaneously by Peltier device

Info

Publication number
DE4320781A1
DE4320781A1 DE19934320781 DE4320781A DE4320781A1 DE 4320781 A1 DE4320781 A1 DE 4320781A1 DE 19934320781 DE19934320781 DE 19934320781 DE 4320781 A DE4320781 A DE 4320781A DE 4320781 A1 DE4320781 A1 DE 4320781A1
Authority
DE
Germany
Prior art keywords
thermal conductivity
sample
solid
liquid
heat flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19934320781
Other languages
German (de)
Inventor
Maria Theresia Praessl-Wendl
Winfried Karl Goenner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRAESSL WENDL MARIA THERESIA
Original Assignee
PRAESSL WENDL MARIA THERESIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRAESSL WENDL MARIA THERESIA filed Critical PRAESSL WENDL MARIA THERESIA
Priority to DE19934320781 priority Critical patent/DE4320781A1/en
Publication of DE4320781A1 publication Critical patent/DE4320781A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The thermal conductivity of a solid, liquid, or gaseous sample is made w.r.t. a reference, by simultaneous measurement of two parallel heat flows, with Peltier elements pref. used as the heat flow sensors. Pref. the measuring system uses a heated block beneath which a Peltier element is attached with a sample or reference material below the Peltier element, in turn followed by a common heated block. The blocks are uniformly heated and the heat flow difference is determined by comparing the Peltier voltages. Pref. the sample and reference material are each acted on by a contact force. USE - Provides absolute thermal conductivity value.

Description

Die Patentanmeldung betrifft ein Meßgerät, mit dem es möglich ist, den Wärmestrom durch eine Feststoffprobe, Flüssigkeit oder Gas bzw. deren Wärmeleitfähigkeit mittels der Differenz- bzw. Vergleichsmethode zu bestimmen.The patent application relates to a measuring device with which it is possible to flow through the heat a solid sample, liquid or gas or their thermal conductivity using the differential or method of comparison.

Stand der TechnikState of the art

Die bislang bekannten Wärmestrom-Meßgeräte bestimmen entweder den Wärmestrom, der über die in Reihe geschaltete Probe und Referenz fließt oder sie messen Absolutwerte. Es sind auch Geräte bekannt, wobei ein kurzer Wärmeimpuls eine Probe aufheizt und der Wärmestrom indirekt gemessen und per Rechenverfahren ausgewertet wird.The heat flow measuring devices known to date either determine the heat flow, the flows over the series-connected sample and reference or they measure absolute values. Devices are also known in which a short heat pulse heats up a sample and the Heat flow is measured indirectly and evaluated using a calculation method.

Die folgenden Patentschriften können dagegen sprechen:The following patents can speak against:

P 19 50 354.9 (G01 N 25/18)
P 36 38 483.6-52 (G01 N 25/18)
WO 79/00911 bzw. PCT/US79/00220 (G01 N 25/18).
P 19 50 354.9 (G01 N 25/18)
P 36 38 483.6-52 (G01 N 25/18)
WO 79/00911 and PCT / US79 / 00220 (G01 N 25/18).

WirkungsweiseMode of action

Das Gerät ist als Differenzmeßgerät gebaut. Proben- und Referenzseite sind gleich gestaltet. Unter einem beheizbaren Block ist ein Sensor, vorzugsweise ein Peltier-Element, befestigt. Unter dem Peltier-Element ist die Probe oder die Referenz. Wiederum darunter ist ein zweiter, für Proben- und Referenzseite gemeinsamer, beheizbarer Block. Alle drei Blöcke werden geregelt beheizt. Wenn die oberen Blöcke der Proben- und Referenzseite wärmer sind, als der untere, gemeinsame Block, so fließt ein Wärmestrom von den oberen Blöcken zum unteren Block. Haben Probe und Referenz die gleiche Fläche, Dicke und Wärmeleitfähigkeit, so wird an beiden Peltier-Elementen die gleiche Spannung erzeugt. Besteht ein Unterschied in der Wärmeleitfähigkeit, so ist auch die, von den Peltier-Elementen erzeugte Spannung, unterschiedlich. Wegen des Differenz-Prinzips können mehrere Größenordnungen an Wärmeleitfähigkeit gemessen werden. Als Referenz wird man normalerweise ein Material verwenden, dessen Wärmeleitfähigkeit bekannt ist. Man wird z. B. drei Materialien verwenden, die unterschiedliche Wärmeleitfähigkeit haben, um eine Eichkurve zu erhalten. Bekanntes Referenzmaterial ist nicht notwendig, wenn z. B. nur ermittelt werden soll, ob eine Probe besser oder schlechter leitet als die Referenz. Um eine definierte Auflagekraft auf Probe und Referenz zu bekommen, können Gewichte auf die oberen Blöcke gebracht werden. Die Auflagekraft kann mit Hilfe einer, z. B. justierbaren Spiralfeder, auf null Newton eingestellt werden. Probe und Referenz können aus festen Materialien bestehen, sie können aber auch als spezielle Küvetten für Flüssigkeiten und Gase ausgebildet sein. Messungen können bei konstanten Temperaturdifferenzen sowie bei veränderbaren Temperaturdifferenzen erfolgen. The device is built as a differential measuring device. The sample and reference page have the same design. A sensor, preferably a Peltier element, is attached under a heatable block. The sample or reference is under the Peltier element. Again there is a second, heatable one for the sample and reference side Block. All three blocks are heated in a controlled manner. If the top blocks of the sample and reference side are warmer than the bottom, common block, so a heat flow flows from the upper blocks to the lower block. If the sample and reference have the same area, thickness and thermal conductivity, then both Peltier elements generate the same voltage. If there is a difference in the thermal conductivity, this is also the case with the Peltier elements generated voltage, different.  Because of the difference principle, several orders of magnitude of thermal conductivity be measured. As a reference one will normally use a material whose thermal conductivity is known. One is z. B. use three materials that have different thermal conductivity have to get a calibration curve. Known reference material is not necessary if e.g. B. should only be determined whether a Sample performs better or worse than the reference. In order to get a defined contact force on sample and reference, weights can be applied the top blocks are brought. The contact force can be measured using a, e.g. B. adjustable coil spring, to zero Newtons can be set. Sample and reference can be made of solid materials, but they can also be special Cuvettes designed for liquids and gases. Measurements can be made at constant temperature differences as well as at changeable ones Differences in temperature occur.  

Die Auswertung erfolgt nach folgender Formel:The evaluation is based on the following formula:

= L/d * A * dT= L / d * A * dT

bei Gleichheit von Proben- und Referenz-Fläche gilt:if the sample and reference surfaces are identical:

p = Lp/dp * A *dTp = Lp / dp * A * dT

r = Lr/dr * A * dTr = Lr / dr * A * dT

Lp/dp = Lr/dr+((p-r)/A) * dTLp / dp = Lr / dr + ((pr) / A) * dT

d = p-r = A * dT * (Lp/dp-Lr/dr)d = pr = A * dT * (Lp / dp-Lr / dr)

d wird über den Sensor ermittelt;d is determined via the sensor;

L Wärmeleitfähigkeit
Lp der Probe
Lr der Referenz
A durchströmte Fläche
dT Temperaturdifferenz zwischen Probenober- und Probenunterseite d Dicke
dp der Probe
dr der Referenz
Wärmestrom
p durch die Probe
r durch die Referenz
d Differenzwärmestrom
L thermal conductivity
Lp of the sample
Lr the reference
A area flowed through
dT temperature difference between top and bottom of sample d thickness
dp of the sample
dr the reference
Heat flow
p through the sample
r through the reference
d differential heat flow

Claims (4)

1. Verfahren zur Bestimmung der Wärmeleitfähigkeit von festen, flüssigen oder gasförmigen Proben gegenüber einer Referenz, dadurch gekennzeichnet, daß die Bestimmung der Wärmeleitfähigkeit durch gleichzeitige Messung zweier paralleler Wärmeströme erfolgt.1. A method for determining the thermal conductivity of solid, liquid or gaseous samples compared to a reference, characterized in that the determination of the thermal conductivity is carried out by simultaneous measurement of two parallel heat flows. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Probe und Referenz mit einer Kontaktkraft belastet werden können.2. The method according to claim 1, characterized in that that the sample and reference can be loaded with a contact force. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vorzugsweise Peltier-Elemente als Wärmestromsensoren verwendet werden.3. The method according to claim 1, characterized in that preferably Peltier elements can be used as heat flow sensors. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Wärmestrom, der durch die Probe geht, gemessen werden kann.4. The method according to claim 1, characterized in that the heat flow, that goes through the sample can be measured.
DE19934320781 1993-06-23 1993-06-23 Differential thermal conductivity measurement of solid. liquid or gas samples - comparing heat flows of parallel paths containing sample and reference respectively, measured simultaneously by Peltier device Withdrawn DE4320781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934320781 DE4320781A1 (en) 1993-06-23 1993-06-23 Differential thermal conductivity measurement of solid. liquid or gas samples - comparing heat flows of parallel paths containing sample and reference respectively, measured simultaneously by Peltier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934320781 DE4320781A1 (en) 1993-06-23 1993-06-23 Differential thermal conductivity measurement of solid. liquid or gas samples - comparing heat flows of parallel paths containing sample and reference respectively, measured simultaneously by Peltier device

Publications (1)

Publication Number Publication Date
DE4320781A1 true DE4320781A1 (en) 1994-03-03

Family

ID=6490979

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934320781 Withdrawn DE4320781A1 (en) 1993-06-23 1993-06-23 Differential thermal conductivity measurement of solid. liquid or gas samples - comparing heat flows of parallel paths containing sample and reference respectively, measured simultaneously by Peltier device

Country Status (1)

Country Link
DE (1) DE4320781A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355126A1 (en) * 2003-11-24 2005-06-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for measuring the heat released in chemical or physical reactions
WO2011060768A1 (en) * 2009-11-20 2011-05-26 Netzsch-Gerätebau GmbH System and method for thermal analysis
CZ302897B6 (en) * 2011-01-26 2012-01-11 Technická univerzita v Liberci Method of and device for measuring heat conductivity
WO2012103601A1 (en) * 2011-02-03 2012-08-09 Katholieke Universiteit Leuven Differential adiabatic scanning calorimeter
CN102735707A (en) * 2011-03-30 2012-10-17 财团法人工业技术研究院 Test unit and measurement method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257840A (en) * 1964-12-17 1966-06-28 Kenneth G Skinner Apparatus for comparative determination of thermal conductivity
US3733887A (en) * 1972-01-31 1973-05-22 Borg Warner Method and apparatus for measuring the thermal conductivity and thermo-electric properties of solid materials
SU972359A1 (en) * 1981-05-26 1982-11-07 Государственный Научно-Исследовательский И Проектный Институт Нефтяной И Газовой Промышленности Им.В.И.Муравленко "Гипротюменьнефтегаз" Thermal conductivity determination method
DE3338991A1 (en) * 1982-10-28 1984-05-03 Yokogawa Hokushin Electric Corp., Tokyo HEAT CONDUCTIVITY METER
CH654926A5 (en) * 1979-03-28 1986-03-14 Unisearch Ltd METHOD AND THERMOELECTRIC COMPARATOR FOR IDENTIFYING A MATERIAL.
DE3517240A1 (en) * 1985-05-13 1986-11-13 Leybold-Heraeus GmbH, 5000 Köln Appliance for carrying out measurements on gases by means of at least one measuring cell responding to gas flows
SU1638571A1 (en) * 1988-12-12 1991-03-30 Отделение Института химической физики АН СССР Differential calorimeter
SU1681216A1 (en) * 1989-05-19 1991-09-30 Львовский политехнический институт им.Ленинского комсомола Method of measuring heat conduction
US5052819A (en) * 1989-06-12 1991-10-01 Baratta Francis I Method of and apparatus for nondestructively determining the composition of an unknown material sample
DE9109034U1 (en) * 1991-07-22 1992-08-27 Siemens AG, 8000 München Device for analyzing gases using the thermal conductivity method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257840A (en) * 1964-12-17 1966-06-28 Kenneth G Skinner Apparatus for comparative determination of thermal conductivity
US3733887A (en) * 1972-01-31 1973-05-22 Borg Warner Method and apparatus for measuring the thermal conductivity and thermo-electric properties of solid materials
CH654926A5 (en) * 1979-03-28 1986-03-14 Unisearch Ltd METHOD AND THERMOELECTRIC COMPARATOR FOR IDENTIFYING A MATERIAL.
SU972359A1 (en) * 1981-05-26 1982-11-07 Государственный Научно-Исследовательский И Проектный Институт Нефтяной И Газовой Промышленности Им.В.И.Муравленко "Гипротюменьнефтегаз" Thermal conductivity determination method
DE3338991A1 (en) * 1982-10-28 1984-05-03 Yokogawa Hokushin Electric Corp., Tokyo HEAT CONDUCTIVITY METER
US4594879A (en) * 1982-10-28 1986-06-17 Yokogawa Hokushin Electric Corporation Thermal conductivity detector
DE3517240A1 (en) * 1985-05-13 1986-11-13 Leybold-Heraeus GmbH, 5000 Köln Appliance for carrying out measurements on gases by means of at least one measuring cell responding to gas flows
SU1638571A1 (en) * 1988-12-12 1991-03-30 Отделение Института химической физики АН СССР Differential calorimeter
SU1681216A1 (en) * 1989-05-19 1991-09-30 Львовский политехнический институт им.Ленинского комсомола Method of measuring heat conduction
US5052819A (en) * 1989-06-12 1991-10-01 Baratta Francis I Method of and apparatus for nondestructively determining the composition of an unknown material sample
DE9109034U1 (en) * 1991-07-22 1992-08-27 Siemens AG, 8000 München Device for analyzing gases using the thermal conductivity method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ACKERMANN, Th.: Ein empfindliches adiabatisches Differenzkalorimeter zur Unter- suchung kooperativer Strukturumwandlungen in Lö- sungen. In: Zeitschrift für Physikalische Chemie Neue Folge, 1974, Bd.93, S.255-264 *
GRUBERT, M. *
ROSE, S.J.: A scanning calorimeter for thermal analysis of biological materials. In: Journal of Physics E, May 1975, Vol.8, No.5, S.377-378 *
SMITH, M.B. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10355126A1 (en) * 2003-11-24 2005-06-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for measuring the heat released in chemical or physical reactions
WO2011060768A1 (en) * 2009-11-20 2011-05-26 Netzsch-Gerätebau GmbH System and method for thermal analysis
US20120250723A1 (en) * 2009-11-20 2012-10-04 Juergen Blumm System And Method For Thermal Analysis
CZ302897B6 (en) * 2011-01-26 2012-01-11 Technická univerzita v Liberci Method of and device for measuring heat conductivity
WO2012103601A1 (en) * 2011-02-03 2012-08-09 Katholieke Universiteit Leuven Differential adiabatic scanning calorimeter
CN102735707A (en) * 2011-03-30 2012-10-17 财团法人工业技术研究院 Test unit and measurement method thereof

Similar Documents

Publication Publication Date Title
DE68918169T2 (en) Method for determining the thermal conductivity of materials and device for measuring it.
Carpenter et al. Capillary water migration in rock: process and material properties examined by NMR imaging
Gray et al. Paradoxes and realities in unsaturated flow theory
Dulieu‐Smith Alternative calibration techniques for quantitative thermoelastic stress analysis
DE837731T1 (en) LIQUID DEVICE AND METHOD FOR CORRECTING AN ERROR IN SUCH
EP1193488A1 (en) Method and device for determining the gaseous quality of natural gas
Rogers et al. The hydraulic conductivity‐water content relationship during nonsteady flow through a sand column
DE19613229A1 (en) Procedure for calibration of a radiation thermometer
Mackwell et al. Transient creep of olivine: point-defect relaxation times
DE4320781A1 (en) Differential thermal conductivity measurement of solid. liquid or gas samples - comparing heat flows of parallel paths containing sample and reference respectively, measured simultaneously by Peltier device
Richards et al. Gelatin models for photoelastic analysis of gravity structures: Paper describes a series of tests to show that body-force stress distributions can be conveniently found with gelatin models
Froitzheim et al. The kinetics of the adsorption and desorption of the system CO/Pt (111) derived from high resolution TREELS
DE4106923A1 (en) Porosity measurer for building materials - has injector head for direct infusion of liq. under static pressure via bore in material
Laue et al. Insights from a new analytical electrophoresis apparatus
DE4229549A1 (en) Determination method for mechanical properties of biological tissue - using in situ measuring head applying dynamic twisting
Hansen et al. Proficiency testing materials for pH and blood gases: the California Thoracic Society experience
DE2531849C3 (en) Device for determining the oxygen content of a gas mixture
DE102009056338B4 (en) Ceramic DSC chip
Hemalatha et al. An undergraduate physical chemistry experiment on the analysis of first-order kinetic data
SU1069527A1 (en) Method of determining thermal physical characteristics of material under pressure
DE892981C (en) Method and device for determining and controlling the composition of gas mixtures
RU2018117C1 (en) Method of complex determining of thermophysical properties of materials
DE10022818A1 (en) Determination device includes force meter which is used to determine applied force to sample and reaction of sample to relative motion of holders
DD225875A3 (en) METHOD FOR THE DYNAMIC MEASUREMENT OF THE HEAT CAPACITITY, TEMPERATURE TEMPERATURE AND HEAT ACCURACY
EP3588081B1 (en) Device and method for calibrating a fluid detector with pre-concentrator

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8122 Nonbinding interest in granting licenses declared
8105 Search report available
8110 Request for examination paragraph 44
8130 Withdrawal