DE4236058A1 - Bulk radical vinyl monomer polymerisation giving low polydispersity prod. - using stirred reactor followed by non-stirred adiabatic plug flow tubular reactor - Google Patents

Bulk radical vinyl monomer polymerisation giving low polydispersity prod. - using stirred reactor followed by non-stirred adiabatic plug flow tubular reactor

Info

Publication number
DE4236058A1
DE4236058A1 DE19924236058 DE4236058A DE4236058A1 DE 4236058 A1 DE4236058 A1 DE 4236058A1 DE 19924236058 DE19924236058 DE 19924236058 DE 4236058 A DE4236058 A DE 4236058A DE 4236058 A1 DE4236058 A1 DE 4236058A1
Authority
DE
Germany
Prior art keywords
reactor
stirred
mass
polymer
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19924236058
Other languages
German (de)
Inventor
Franz Dr Brandstetter
Hermann Dr Gausepohl
Reiner Prof Dr Thiele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE19924236058 priority Critical patent/DE4236058A1/en
Publication of DE4236058A1 publication Critical patent/DE4236058A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2435Loop-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene

Abstract

Continuous radical bulk polymerisation of vinyl monomers opt. contg. small amts. of solvent and/or initiator is such that: (a) the starting mixt. is fed to a stirred or circulating reactor (2) where it is converted to a polymer content of 45-65 (esp. 50-60) wt.% before being passed to an adiabatically operated tubular reactor (5) in which an approx. plug flow dominates, the polymer content being increased to 65-90 (esp. 70-85) wt.% in this reactor (5), with the monomer fraction at outlet (6) being at least 10 wt.%; and (b) the polymer prodn. in stirred reactor (2) is at least 1.5 times that in tubular reactor (5) and the polymer soln. leaving reactor (5) is degassed without further reaction. ADVANTAGE - Monomers such as styrene can be polymerised to high conversions with a high space-time yield.

Description

Es ist bekannt, daß die Polymerisation von Vinylmonomeren (z. B. Styrol) in Rührkesseln nur in kleinem Maßstab bei relativ niedri­ ger Temperatur und bei kleinem Umsatz betrieben werden kann, weil Vermischung und Wärmeabfuhr sonst nicht beherrscht werden kann.It is known that the polymerization of vinyl monomers (e.g. Styrene) in stirred tanks only on a small scale at relatively low low temperature and can be operated with small sales because Mixing and heat dissipation cannot be mastered otherwise.

Man ist daher schon vor vielen Jahren dazu übergegangen, die Po­ lymerisation in sog. Reaktionstürmen mit eingebauten Kühlschlan­ gen zu betreiben. Solche Apparate haben aber eine ungünstige Hy­ drodynamik, die, zusammen mit dem vorgegebenen Temperaturprofil zu Produktion mit ungünstigen Eigenschaften führte. Die Kühlung war überdies nicht sehr effektiv. Da im übrigen die Entgasungs­ technik (Entfernung der Restmonomeren) nicht beherrscht wurde, versuchte man, den Umsatz möglichst hoch zu treiben.Therefore, many years ago, the Po started Lymerisation in so-called reaction towers with built-in cooling coils to operate. Such devices have an unfavorable hy drodynamics, which, along with the given temperature profile led to production with unfavorable properties. The cooling was also not very effective. As the rest of the degassing technology (removal of residual monomers) was not mastered, one tried to drive the sales as high as possible.

All dies hat zur Entwicklung sehr aufwendiger verfahrens- und an­ lagentechnischer Lösungen geführt. Einer der Gründe für diese Entwicklung war die auch heute noch allgemein herrschende Mei­ nung, daß ausgeprägte Temperaturprofile die Molmasseverteilung stark verbreitern.All of this has resulted in very elaborate process and development technical solutions. One of the reasons for this Development was still the general rule today nung that pronounced temperature profiles the molecular weight distribution greatly widen.

So hat man z. B. Anlagen in Form von Rührkesselkaskaden gebaut oder Kreislaufreaktoren mit großen spezifischen Kühlflächen kon­ struiert. Außerdem wurden für die Monomer-Entfernung verschiedene technische Lösungen entwickelt (z. B. Rohrbündelentgasungsappa­ rate, Extruder mit Vakuumentgasungszonen u. a.), die auch mit gu­ tem Erfolg benutzt werden.So you have z. B. plants built in the form of stirred tank cascades or circulating reactors with large specific cooling surfaces con structured. In addition, various were used for the monomer removal developed technical solutions (e.g. tube bundle degassing apparatus rate, extruder with vacuum degassing zones u. a.), also with gu success.

Eine spezielle Lösung für die Massepolymerisation von Vinylmono­ meren besteht in einem Kreislaufreaktor, dem ein gekühlter Rohr­ reaktor nachgeschaltet ist. Die Umsatzbereiche im Kreislaufreak­ tor und im Rohrreaktor sowie die Temperaturprofile im Rohrreaktor und in den Rohren eines nachzuschaltenden Entgasungsapparates sind jedoch (z. T. aus prozeßtechnischen Zwängen heraus) so ungün­ stig, daß das Endprodukt eine molekulare Uneinheitlichkeit (Pw/Pn -1) von etwa 2 besitzt. Die Einmischung eines Inhibitors vor dem Entgasungsapparat entschärft das Problem, hat aber wesentli­ che andere Nachteile.A special solution for the bulk polymerization of vinyl monomers consists in a circulation reactor, which is followed by a cooled tubular reactor. However, the sales ranges in the cycle reactor and in the tubular reactor as well as the temperature profiles in the tubular reactor and in the tubes of a degassing apparatus to be connected are so unfavorable (partly due to process constraints) that the end product has a molecular inconsistency (P w / P n -1 ) of about 2. Mixing an inhibitor upstream of the degassing device alleviates the problem, but has other essential disadvantages.

Aufgabe der Erfindung ist die Schaffung eines kontinuierlich be­ treibbaren Verfahrens zur radikalischen Massepolymerisation von Vinylmonomeren in einem Kreislaufreaktor mit nachgeschaltetem Rohrreaktor, das auf der Erkenntnis beruht, daß in einem relativ breiten Umsatzgebiet im Bereich hoher Umsätze bei adiabater Reak­ tionsführung in einem Rohrreaktor keine nennenswerte Verbreite­ rung der Molmasseverteilung auftritt. Diese Erkenntnis ermög­ licht, zusammen mit einer fortgeschrittenen Entgasungstechnik, den Einsatz eines Kreislaufreaktors mit großer Kühlfläche, wobei ein adiabatisch betriebener Rohrreaktor nachgeschaltet ist.The object of the invention is to provide a continuously drivable process for the radical bulk polymerization of Vinyl monomers in a circulation reactor with downstream  Tube reactor, which is based on the knowledge that in a relative wide sales area in the area of high sales at adiabatic reak tion management in a tubular reactor no significant spread tion of the molecular weight distribution occurs. This realization enables light, together with an advanced degassing technique, the use of a circulation reactor with a large cooling surface, whereby an adiabatically operated tubular reactor is connected downstream.

Das Verfahrensrecht ist in der Figur dargestellt. Das Zulaufge­ misch (Monomere, bis zu 20% Lösungsmittel und gegebenenfalls In­ itiator) wird einem rückvermischten Reaktor zugeführt (1), der als Rührkessel oder als Kreislaufreaktor (2) gestaltet sein kann, wobei im letzteren Fall der Kreislauf des Kreislaufreaktors z. B. mit einer Zahnradpumpe 3 aufrechterhalten wird. Der Polymermas­ senbruch am Ende dieses Reaktors beträgt etwa 45 bis 65, vorzugs­ weise 50 bis 60%. Die den durchmischten Reaktor über das Druck­ halteventil 4 verlassende Polymerlösung gelangt in einen im we­ sentlichen adiabatisch betriebenen Rohrreaktor 5, in dem annä­ hernd eine Pfropfenströmung realisiert wird, wobei dieser Reaktor vorzugsweise keine bewegten Teile besitzt. Der Rohrreaktor kann z. B. so gestaltet werden, daß an seinem Ablauf eine Lochplatte 6 angebracht ist, aus deren Bohrungen die hochviskose Polymerlösung in Form von Stromfäden direkt in eine Vakuumkammer 7 eintritt. Der Polymermassenbruch am Austritt des adiabaten Rohrreaktors be­ trägt 65 bis 90, vorzugsweise 70 bis 85%, wobei der Monomermas­ senbruch noch mindestens 10% beträgt. Der Füllstand des Sumpfes der Vakuumkammer 8 kann z. B. über die Drehzahl einer Zahnradpumpe 9 gesteuert werden. Die aus der Vakuumkammer geförderte, weitge­ hend entgaste Polymerschmelze 19 kann bei Bedarf in einer zweiten Entgasungsstufe auf den geforderten Restgehalt an flüchtigen Be­ standteilen gebracht oder direkt dem üblichen Verarbeitungsgang (Extrudieren, Granulieren) zugeführt werden.The procedural law is shown in the figure. The Zulaufge mixture (monomers, up to 20% solvent and optionally in itiator) is fed to a backmixed reactor ( 1 ), which can be designed as a stirred tank or as a circulation reactor ( 2 ). B. is maintained with a gear pump 3 . The Polymermas senbruch at the end of this reactor is about 45 to 65, preferably 50 to 60%. The polymer solution leaving the mixed reactor via the pressure holding valve 4 enters an essentially adiabatically operated tubular reactor 5 , in which a plug flow is approximately realized, this reactor preferably having no moving parts. The tubular reactor can e.g. B. be designed so that a perforated plate 6 is attached to its outlet, from the holes the highly viscous polymer solution in the form of current threads enters directly into a vacuum chamber 7 . The polymer mass fraction at the outlet of the adiabatic tubular reactor is 65 to 90%, preferably 70 to 85%, the monomer mass fraction still being at least 10%. The level of the sump of the vacuum chamber 8 can, for. B. can be controlled via the speed of a gear pump 9 . The widely degassed polymer melt 19 conveyed from the vacuum chamber can, if required, be brought to the required residual volatile content in a second degassing stage or can be fed directly to the usual processing step (extrusion, granulation).

Das erfindungsgemäße Verfahren hat u. a. folgende Vorteile:The inventive method has u. a. following advantages:

Es wird bei hohem Umsatz eine hohe Raum-Zeit-Ausbeute erzielt; die Produkte weisen eine geringe molekulare Uneinheitlichkeit auf; bei Copolymeren wird zusätzlich hohe chemische Einheitlich­ keit erreicht.A high space-time yield is achieved with high conversion; the products have a low molecular inconsistency on; copolymers also have high chemical uniformity reached.

Das Verfahren zeichnet sich außerdem durch einen sehr geringen Energiebedarf und relativ geringe Investitions- und Betriebsko­ sten aus. The process is also characterized by a very low level Energy requirements and relatively low investment and operating costs out.  

AusführungsbeispieleEmbodiments

Für die in der nachstehenden Tabelle zusammengefaßten Beispiele wurde eine Vorrichtung nach der Figur benutzt; die Abmessungen und durchgesetzten Mengen sind unmittelbar über die Angaben zur Verweilzeit bzw. Raum-Zeit-Ausbeute korreliert.For the examples summarized in the table below a device according to the figure was used; the dimensions and enforced quantities are immediately above the information on Residence time or space-time yield correlated.

Beispiel 1example 1

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch reines Styren- Pure styrene feed mixture
  • - mittlere Verweilzeit 1,5 h- Average residence time 1.5 hours
  • - Temperatur 160°C- temperature 160 ° C
  • - Polymermassenbruch 0,602- Polymer mass fraction 0.602
  • - massenmittlerer Polymerisationsgrad 2900- mass average degree of polymerization 2900
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,20 h- average residence time 0.20 h
  • - Austrittstemperatur 234°C- outlet temperature 234 ° C
  • - Polymermassenbruch am Austritt 0,817- Polymer mass break at the outlet 0.817
  • - massenmittlerer Polymerisationsgrad am Austritt 2740- Mass average degree of polymerization at the outlet 2740
  • - molekulare Uneinheitlichkeit am Austritt 1,0- Molecular inconsistency at the exit 1.0
  • - Monomermassenbruch am Austritt 0,183- Break in monomer mass at outlet 0.183
Beispiel 2Example 2

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch reines Styren- Pure styrene feed mixture
  • - mittlere Verweilzeit 4 h- average residence time 4 h
  • - Temperatur 140°C- temperature 140 ° C
  • - Polymermassenbruch 0,615- Polymer mass fraction 0.615
  • - massenmittlerer Polymerisationsgrad 3670- Mass average degree of polymerization 3670
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,55 h- average residence time 0.55 h
  • - Austrittstemperatur 237°C- outlet temperature 237 ° C
  • - Polymermassenbruch am Austritt 0,896- Polymer mass break at the outlet 0.896
  • - massenmittlerer Polymerisationsgrad am Austritt 3340mass average degree of polymerization at outlet 3340
  • - molekulare Uneinheitlichkeit am Austritt 1,1- Molecular inconsistency at the exit 1.1
  • - Monomermassenbruch am Austritt 0,104- Monometric break at outlet 0.104
Beispiel 3Example 3

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch
     6 Masse-% Ethylbenzen
    94 Masse-% Styren
    - feed mixture
    6% by mass of ethylbenzene
    94 mass% styrene
  • - mittlere Verweilzeit 2 h- average residence time 2 h
  • - Temperatur 167°C- temperature 167 ° C
  • - Polymermassenbruch 0,632- Polymer mass fraction 0.632
  • - massenmittlerer Polymerisationsgrad 2480mass average degree of polymerization 2480
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,35 h- average residence time 0.35 h
  • - Austrittstemperatur 237°C- outlet temperature 237 ° C
  • - Polymermassenbruch am Austritt 0,835- Polymer mass break at the outlet 0.835
  • - massenmittlerer Polymerisationsgrad am Austritt 2280- Mass average degree of polymerization at the outlet 2280
  • - molekulare Uneinheitlichkeit am Austritt 1,1- Molecular inconsistency at the exit 1.1
  • - Monomermassenbruch am Austritt 0,1- Monometric break at outlet 0.1
Beispiel 4Example 4

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch
    10 Masse-% Ethylbenzen
    90 Masse-% Styren
    - feed mixture
    10% by mass of ethylbenzene
    90 mass% styrene
  • - mittlere Verweilzeit 2,2 h- average residence time 2.2 h
  • - Temperatur 170°C- temperature 170 ° C
  • - Polymermassenbruch 0,608- Polymer mass fraction 0.608
  • - massenmittlerer Polymerisationsgrad 2160- Mass average degree of polymerization 2160
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,35 h- average residence time 0.35 h
  • - Austrittstemperatur 225°C- outlet temperature 225 ° C
  • - Polymermassenbruch am Austritt 0,767- Polymer mass break at the exit 0.767
  • - massenmittlerer Polymerisationsgrad am Austritt 2020- mass average degree of polymerization at exit 2020
  • - molekulare Uneinheitlichkeit am Austritt 1,1- Molecular inconsistency at the exit 1.1
  • - Monomermassenbruch am Austritt 0,133- Monometric break at outlet 0.133
Beispiel 5Example 5

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch
    12 Masse-% Ethylbenzen
    88 Masse-% Styren
    - feed mixture
    12% by mass of ethylbenzene
    88 mass% styrene
  • - mittlere Verweilzeit 2,9 h- average residence time 2.9 h
  • - Temperatur 167°c- temperature 167 ° c
  • - Polymermassenbruch 0,601- Polymer mass fraction 0.601
  • - massenmittlerer Polymerisationsgrad 2140- Mass average degree of polymerization 2140
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,5 h- average residence time 0.5 h
  • - Austrittstemperatur 223°C- outlet temperature 223 ° C
  • - Polymermassenbruch am Austritt 0,763- Polymer mass break at the outlet 0.763
  • - massenmittlerer Polymerisationsgrad 1980- mass average degree of polymerization 1980
  • - molekulare Uneinheitlichkeit 1,1- molecular inconsistency 1.1
  • - Monomermassenbruch am Austritt 0,117- Break in monomer mass at outlet 0.117
Beispiel 6Example 6

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch
    12 Masse-% Ethylbenzen
    88 Masse-% Styren und Acrylnitril im Masseverhältnis 2,5:1 (annähernd azeotrop)
    - feed mixture
    12% by mass of ethylbenzene
    88% by mass of styrene and acrylonitrile in a mass ratio of 2.5: 1 (approximately azeotropic)
  • - mittlere Verweilzeit 1,3 h- average residence time 1.3 h
  • - Temperatur 160°C- temperature 160 ° C
  • - Polymermassenbruch 0,633- Polymer mass fraction 0.633
  • - massenmittlerer Polymerisationsgrad 1660- Mass average degree of polymerization 1660
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,12 h- average residence time 0.12 h
  • - Austrittstemperatur 208°C- outlet temperature 208 ° C
  • - Polymermassenbruch am Austritt 0,74- Polymer mass break at the exit 0.74
  • - massenmittlerer Polymerisationsgrad 1560- Mass average degree of polymerization 1560
  • - molekulare Uneinheitlichkeit 1,1- molecular inconsistency 1.1
  • - Monomermassenbruch am Austritt 0,14- Monometric break at outlet 0.14
Beispiel 7Example 7

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch
    12 Masse-% Ethylbenzen
    88 Masse-% Styren und Acrylnitril im Masseverhältnis 2,33:1 (schwach, nicht­ azeotrop, Acrylnitril im Überschuß)
    - feed mixture
    12% by mass of ethylbenzene
    88% by mass of styrene and acrylonitrile in a mass ratio of 2.33: 1 (weak, not azeotropic, excess of acrylonitrile)
  • - mittlere Verweilzeit 1,3 h- average residence time 1.3 h
  • - Temperatur T = 160°C- temperature T = 160 ° C
  • - Polymermassenbruch yp = 0,636- polymer mass fraction y p = 0.636
  • - massenmittlerer Polymerisationsgrad 1630- Mass average degree of polymerization 1630
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0
  • - mittlere Zusammensetzung XB = 0,451- average composition X B = 0.451

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,12 h- average residence time 0.12 h
  • - Austrittstemperatur 209°C- outlet temperature 209 ° C
  • - Polymermassenbruch am Austritt 0,75- Polymer mass break at the exit 0.75
  • - massenmittlerer Polymerisationsgrad 1527- mass average degree of polymerization 1527
  • - molekulare Uneinheitlichkeit 1,13- molecular inconsistency 1.13
  • - mittlere Zusammensetzung XB = 0,452- average composition X B = 0.452
  • - Monomermassenbruch am Austritt 0,13- Monometric break at outlet 0.13
Beispiel 8Example 8

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch
    10 Masse-% Ethylbenzen
    90 Masse-% Styren und Acrylnitril im Masseverhältnis 3 : 1 (schwach, nicht­ azeotrop, Styren im Überschuß)
    - feed mixture
    10% by mass of ethylbenzene
    90% by mass of styrene and acrylonitrile in a mass ratio of 3: 1 (weak, not azeotropic, styrene in excess)
  • - mittlere Verweilzeit 1,2 h- average residence time 1.2 h
  • - Temperatur 160°C- temperature 160 ° C
  • - Polymermassenbruch 0,637- Polymer mass fraction 0.637
  • - massenmittlerer Polymerisationsgrad 1820- Mass average degree of polymerization 1820
  • - molekulare Uneinheitlichkeit 1,0- molecular inconsistency 1.0
  • - mittlere Zusammensetzung XB = 0,409- average composition X B = 0.409

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,12 h- average residence time 0.12 h
  • - Austrittstemperatur 214°C- outlet temperature 214 ° C
  • - Polymermassenbruch am Austritt 0,76- Polymer mass break at the outlet 0.76
  • - massenmittlerer Polymerisationsgrad 1690- Mass average degree of polymerization 1690
  • - molekulare Uneinheitlichkeit 1,15 - molecular inconsistency 1.15  
  • - mittlere Zusammensetzung XB = 0,408- average composition X B = 0.408
  • - Monomermassenbruch am Austritt 0,14- Monometric break at outlet 0.14
Beispiel 9Example 9

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch reines Styren mit 0,01 Masse-% DBPO- Pure styrene feed mixture with 0.01% by mass of DBPO
  • - mittlere Verweilzeit 1,5 h- Average residence time 1.5 hours
  • - Temperatur 160°C- temperature 160 ° C
  • - Polymermassenbruch 0,630- Polymer mass fraction 0.630
  • - massenmittlerer Polymerisationsgrad 2960- Mass average degree of polymerization 2960
  • - molekulare Uneinheitlichkeit 0,98- molecular non-uniformity 0.98

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,20 h- average residence time 0.20 h
  • - Austrittstemperatur 229°C- outlet temperature 229 ° C
  • - Polymermassenbruch am Austritt 0,828- Polymer mass break at the outlet 0.828
  • - massenmittlerer Polymerisationsgrad am Austritt 2820- Mass average degree of polymerization at the outlet 2820
  • - molekulare Uneinheitlichkeit am Austritt 1,0- Molecular inconsistency at the exit 1.0
  • - Monomermassenbruch am Austritt 0,172- Monometric break at outlet 0.172
Beispiel 10Example 10

Durchmischter ReaktorMixed reactor

  • - Zulaufgemisch reines Styren mit 0,04 Masse-% DBPO- Feed mixture of pure styrene with 0.04% by mass of DBPO
  • - mittlere Verweilzeit 1 h- average residence time 1 h
  • - Temperatur 165°C- temperature 165 ° C
  • - Polymermassenbruch 0,648- Polymer mass fraction 0.648
  • - massenmittlerer Polymerisationsgrad 2760- Mass average degree of polymerization 2760
  • - molekulare Uneinheitlichkeit 0,973- molecular non-uniformity 0.973

Adiabater RohrreaktorAdiabatic tube reactor

  • - mittlere Verweilzeit 0,16 h- average residence time 0.16 h
  • - Austrittstemperatur 238°C- outlet temperature 238 ° C
  • - Polymermassenbruch am Austritt 0,861- Polymer mass break at the outlet 0.861
  • - massenmittlerer Polymerisationsgrad am Austritt 2640- Mass average degree of polymerization at the outlet 2640
  • - molekulare Uneinheitlichkeit am Austritt 1,0- Molecular inconsistency at the exit 1.0
  • - Monomermassenbruch am Austritt 0,139- monomer mass break at outlet 0.139

Claims (1)

Kontinuierliches Verfahren zur radikalischen Massepolymerisation von Vinylmonomeren und deren Gemischen, die gegebenenfalls ge­ ringe Lösungsmittelanteile und/oder Initiatoren enthalten können, dadurch gekennzeichnet, daß das Zulaufgemisch in einem durch­ mischten Reaktor, der als Rührkessel oder Kreislaufreaktor ausge­ führt ist, bis zu einem Polymermassenbruch von 45% bis 65% (vorzugsweise 50 bis 60%) umgesetzt wird und daß der Polymermas­ senbruch in einem nachgeschalteten adiabaten Rohrreaktor, in dem annähernd eine Pfropfenströmung herrscht, auf 65% bis 90% (vor­ zugsweise 70 bis 85%) getrieben wird, wobei der Monomermassen­ bruch am Austritt des adiabaten Rohrreaktors noch mindestens etwa 10% beträgt, daß die Polymerproduktion im durchmischten Reaktor mindestens des 1,5fache der Polymerproduktion im adiabaten Pfropfenstromreaktor beträgt und daß die den adiabaten Rohr­ reaktor verlassende Polymerlösung ohne wesentliche weitere Reak­ tion sofort entgast wird.Continuous process for the radical bulk polymerization of vinyl monomers and their mixtures, which may optionally contain small amounts of solvent and / or initiators, characterized in that the feed mixture in a mixed reactor, which is a stirred tank or circulation reactor, leads to a polymer mass fraction of 45 % to 65% (preferably 50 to 60%) is implemented and that the Polymermas senbruch in a downstream adiabatic tube reactor, in which there is approximately a plug flow, is driven to 65% to 90% (preferably 70 to 85%), the At the outlet of the adiabatic tubular reactor, the monomeric mass is still at least about 10%, that the polymer production in the mixed reactor is at least 1.5 times the polymer production in the adiabatic plug flow reactor and that the polymer solution leaving the adiabatic tubular reactor is immediately degassed without any further reaction.
DE19924236058 1992-10-26 1992-10-26 Bulk radical vinyl monomer polymerisation giving low polydispersity prod. - using stirred reactor followed by non-stirred adiabatic plug flow tubular reactor Withdrawn DE4236058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19924236058 DE4236058A1 (en) 1992-10-26 1992-10-26 Bulk radical vinyl monomer polymerisation giving low polydispersity prod. - using stirred reactor followed by non-stirred adiabatic plug flow tubular reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19924236058 DE4236058A1 (en) 1992-10-26 1992-10-26 Bulk radical vinyl monomer polymerisation giving low polydispersity prod. - using stirred reactor followed by non-stirred adiabatic plug flow tubular reactor

Publications (1)

Publication Number Publication Date
DE4236058A1 true DE4236058A1 (en) 1994-04-28

Family

ID=6471343

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19924236058 Withdrawn DE4236058A1 (en) 1992-10-26 1992-10-26 Bulk radical vinyl monomer polymerisation giving low polydispersity prod. - using stirred reactor followed by non-stirred adiabatic plug flow tubular reactor

Country Status (1)

Country Link
DE (1) DE4236058A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998664A (en) * 1995-06-07 1999-12-07 Novus International, Inc. Continuous hydrolysis process for the preparation of 2-hydroxy-4-methylthiobutanoic acid
US6268531B1 (en) 1995-06-07 2001-07-31 Novus International, Inc. Continuous hydrolysis process for preparing 2-hydroxy-4-methylthiobutanoic acid or salts thereof
EP1331232A1 (en) * 2002-01-28 2003-07-30 Dsm N.V. Process for the preparation of a copolymer of maleic anhydride and an alkyl vinyl ether, copolymers of maleic anhydride and an alkyl vinyl ether and an apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998664A (en) * 1995-06-07 1999-12-07 Novus International, Inc. Continuous hydrolysis process for the preparation of 2-hydroxy-4-methylthiobutanoic acid
US6166250A (en) * 1995-06-07 2000-12-26 Novus International, Inc. Continuous hydrolysis process for the preparation of 2-hydroxy-4-methylthiobutanoic acid
US6268531B1 (en) 1995-06-07 2001-07-31 Novus International, Inc. Continuous hydrolysis process for preparing 2-hydroxy-4-methylthiobutanoic acid or salts thereof
US6458997B2 (en) 1995-06-07 2002-10-01 Novus International, Inc. Continuous hydrolysis process for the preparation of 2-hydroxy-4-methylthiobutanoic acid
US6531101B2 (en) 1995-06-07 2003-03-11 Yung C. Hsu Continuous hydrolysis process for preparing 2-hydroxy-4-methylthiobutanoic acid or salts thereof
EP1331232A1 (en) * 2002-01-28 2003-07-30 Dsm N.V. Process for the preparation of a copolymer of maleic anhydride and an alkyl vinyl ether, copolymers of maleic anhydride and an alkyl vinyl ether and an apparatus
WO2003064482A3 (en) * 2002-01-28 2004-04-01 Dsm Ip Assets Bv Process for the preparation of a copolymer of maleic anhydride and an alkyl vinyl ether, copolymers of maleic anhydride and an alkyl vinyl ether and an apparatus

Similar Documents

Publication Publication Date Title
EP0059446B1 (en) Method for the production of maleic anhydride copolymers
DE2343871A1 (en) PROCESS FOR THE PRODUCTION OF UNIFORM POLYMERIZES.
DE19524181A1 (en) Process and device for the continuous production of polymers
DE2439341A1 (en) CONTINUOUS SUBSTANCE POLYMERIZATION OF VINYL DERIVATIVES
EP1255784A1 (en) Method for carrying out radical ethylene high-pressure polymerization while preventing undesired polymer deposits
DE1155246B (en) Process and device for the continuous block copolymerization of styrene and acrylonitrile
EP0656374A2 (en) Polymethacrylate moulding matter with elevated heat distortion resistance and elevated resistance against thermal degradation
DE1745233A1 (en) Process for the production of methyl methacrylate polymer syrups
DE2131145C3 (en) Process for high pressure polymerization of ethylene
DE2524230A1 (en) PROCESS FOR THE PRODUCTION OF MIXED POLYMERIZES OF ETHYLENE
DE4236058A1 (en) Bulk radical vinyl monomer polymerisation giving low polydispersity prod. - using stirred reactor followed by non-stirred adiabatic plug flow tubular reactor
DE1904540A1 (en) Process for polymerizing oxazolines
DE1520260B1 (en) Process for the production of homopolymers or copolymers of ethylene
EP0603677B1 (en) Process for the manufacture of low molecular weight polymers of acrylonitrile and the use thereof
EP0175316A2 (en) Process for the manufacture of ethylene copolymers
DE2461164C2 (en) Process for telomerizing water-soluble acrylic compounds
DE2754047A1 (en) METHOD OF MANUFACTURING A LOW MOLECULAR POLYMER
DE2118685C3 (en) Process for polymerizing unsaturated compounds in a thick layer
DE2612414A1 (en) CONTROL OF CONTINUOUS BULK POLYMERIZATION PROCEDURES
DE10124580A1 (en) Process for the treatment of oligoamides and for the production of polyamide
DE880939C (en) Process for the polymerization of unsaturated compounds
DE1520234A1 (en) Process for the polymerization of vinyl monomers or a monomer mixture to form a syrup, which consists of a solution of the polymer in the monomer
DE2843759A1 (en) METHOD FOR THE CONTINUOUS PRODUCTION OF A PREPOLYMER SYRUP AND THE USE THEREOF
DE2432411A1 (en) PROCESS FOR THE SEPARATION AND RECOVERY OF SULFUR DIOXIDE AND MONOMER FROM A POLYMERIZATION MIXTURE OBTAINED IN THE PRODUCTION OF ACRYLNITRILE POLYMERIZES
DE928369C (en) Process for the production of polymers

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8130 Withdrawal