DE4042002A1 - Carbon di:oxide removal from waste gas - by chemical reaction with porous solid basic nitrite-sodalite - Google Patents

Carbon di:oxide removal from waste gas - by chemical reaction with porous solid basic nitrite-sodalite

Info

Publication number
DE4042002A1
DE4042002A1 DE4042002A DE4042002A DE4042002A1 DE 4042002 A1 DE4042002 A1 DE 4042002A1 DE 4042002 A DE4042002 A DE 4042002A DE 4042002 A DE4042002 A DE 4042002A DE 4042002 A1 DE4042002 A1 DE 4042002A1
Authority
DE
Germany
Prior art keywords
sodalite
solid
guest molecule
temp
chemical reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4042002A
Other languages
German (de)
Other versions
DE4042002C2 (en
Inventor
Josef-Christian Dr Buhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUHL, JOSEF-CHRISTIAN, DR., 4405 NOTTULN, DE
Original Assignee
BUHL JOSEF CHRISTIAN DR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BUHL JOSEF CHRISTIAN DR filed Critical BUHL JOSEF CHRISTIAN DR
Priority to DE4042002A priority Critical patent/DE4042002A1/en
Publication of DE4042002A1 publication Critical patent/DE4042002A1/en
Application granted granted Critical
Publication of DE4042002C2 publication Critical patent/DE4042002C2/de
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3408Regenerating or reactivating of aluminosilicate molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2892Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures containing an element or a compound occluded in the pores of the network, e.g. an oxide already present in the starting reaction mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

A process and substance for CO2 removal from off-gases at elevated temp. are claimed, the novelty being that (i) the CO2 is fixed as Na2CO3 by chemical reaction on passage through a porous solid at 700-750 deg.C with evolution of only H2O; (ii) the solid is an aluminosilicate with a framework structure of space-filling packed cells of sodalite type with statistical 50% occupation of the cells by NaNO2 as temp.-stabilising guest molecule and 50% occupation by NaOH.H2O as reactive guest molecule, the solid having the compsn. Na8(AlSiO4)6(NO2)(OH.H2O) (i.e. basic nitrite-sodalite); and (iii) after satn. with CO2, the solid can be regenerated by heating at 850 deg.C in air to release the CO2 while retaining the framework structure and can be simultaneously modified by oxidn. of the temp. stabilising guest molecule to nitrate. USE/ADVANTAGE - The process is useful for CO2 removal from fossil fuel combustion waste gases. The CO2 is immobilised as a stable cpd. (Na2CO3) in a temp. range in which zeolites have very low sorption rates and the solid can be easily regenerated and simultaneously modified.

Description

Die Erfindung betrifft ein Verfahren zur CO2 Aufnahme aus Gasen. Kohlendioxid wird dabei durch eine chemische Reaktion in einer Festphase mit Sodalith-Struktur (poröses Gerüst) als carbonat gebunden. Im allgemeinen enthalten Sodalithe in den Käfigen ihres Strukturgerüstes z. B. NaCl als Gastmoleküle und besitzen keine signifikanten Sorptionseigenschaften. Der hier erforderliche Sodalith hingegen muß zur Erzielung seiner spezifischen Eigenschaften nun 50% reaktive Gastmoleküle (NaOH · H2O) und 50% temperaturstabilisierende Gastmoleküle (NaNO2 oder NaHO3) enthalten.The invention relates to a method for CO 2 uptake from gases. Carbon dioxide is bound by a chemical reaction in a solid phase with sodalite structure (porous framework) as a carbonate. In general, sodalites contained in the cages of their structural skeleton z. For example, NaCl as guest molecules and have no significant sorption. The sodalite required here, however, must now contain 50% reactive guest molecules (NaOH · H 2 O) and 50% temperature-stabilizing guest molecules (NaNO 2 or NaHO 3 ) to achieve its specific properties.

Die Schaffung geeigneter Methoden zur Reduzierung der hohen Mengen an CO2 in den Verbrennungsabgasen fossiler Brennstoffe stellt heute ein dominierendes Problem zur Umweltreinhaltung dar.Creating suitable methods for reducing the high levels of CO 2 in the combustion fumes of fossil fuels is now a dominant environmental concern.

Für die Reduzierung des Schadstoffes Kohlendioxid in Gasen gibt es bis heute kein befriedigendes Verfahren. Die Molsiebe (Zeolithe) nehmen zwar durch Adsorptionsprozesse CO2 in ihr Poorensystem auf. vermögen dieses aber nicht durch chemische Reaktionen fest zu binden und erleiden bei Temperaturerhöhung beträchtliche Verluste ihrer Adsorptionskapazität, bei Zeolith A z. B. rund 70% bei einen Temperaturanstieg von 195K auf 298K (D. W. Breck, Zeolite Molecular Sieves. Verlag John Wiley & Sons. New York. London. Sydney, Toronto. 1974. S. 610).There is still no satisfactory method for reducing the pollutant carbon dioxide in gases. Although the molecular sieves (zeolites) absorb CO 2 in their Poorensystem by adsorption. but are unable to bind this by chemical reactions firmly and suffer from temperature increase considerable losses of their adsorption capacity, for zeolite A z. For example, about 70% increase in temperature from 195K to 298K (DW Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York, London, Sydney, 1974, p 610).

Sodalithe, die ein wesentlich engmaschigeres Gerüst als die Zeolithe A, X bzw. Y aufweisen, können in ihrer bekannten Form als "Hydrosodalithe" lediglich Wassermoleküle einlagern: eine Aufnahme von CO2 gelang bisher nicht (D. W. Breck: Zeolite Molecular Sieves. Verlag John Wiley & Sons, New York, London, Sydney, Toronto, 1974. S. 155).Sodalithe, which have a much closer-meshed scaffold than the zeolites A, X and Y, can store in their known form as "hydrosodalites" only water molecules: a recording of CO 2 has not been successful (DW Breck: Zeolite Molecular Sieves, John Wiley & Sons, New York, London, Sydney, Toronto, 1974, p. 155).

Bei der vorliegenden Methode werden nun erstmals Sodalithe benutzt, die zwei unterschiedliche Arten von Gastmolekülen in Ihren Käfigen enthalten, eine reaktive sowie eine das Gerüst thermisch stabilisierende Komponente. Dem liegt der Gedanke zugrunde, bei hohen Temperaturen (700°C) innerhalb des Sodalithgerüstes die reaktiven Gastmoleküle mit CO2 unter Bindung desselben reagieren zu lassen, wobei das Strukturgerüst durch die Wechselwirkung der thermisch stabileren Gastkomponente erhalten bleibt.The present method is the first to use sodalites containing two different types of guest molecules in their cages, a reactive component and a thermally stabilizing component. This is based on the idea at high temperatures (700 ° C) within the Sodalithgerüstes the reactive guest molecules react with CO 2 under binding thereof, wherein the structural framework is maintained by the interaction of the thermally stable guest component.

Zur Realisierung wurde eine Sodalithverbindung der Zusammensetzung Na5(AlSiO4) 6(NO2)(OH · H2O) hergestellt. Die reinen Verbindungen sind aus der Literatur bekannt, Basischer Sodalith Na5(AlSiO4)6(OH · H2O)2 (R. N. Barrer u. E. A. D. White: J. Chem. Soc. 286 (1952) 1561-1571) und Nitrit-Sodalith Na8(AlSiO4)6(NO2)2 (F. Hund: Z. Anorg. Allg. Chem. 511 (1984) 255). Reaktives Gastmolekül (statistisch in jedem zweiten Sodalith-Käfig angeordnet) ist hydratisiertes Natriumhydroxid NaOH · H2O. NaNO2 stabilisiert die Sodalithstruktur. Wird die Verbindung Na8(AlSiO4)6(NO2)(OH-H2O) nun in einer CO2- Athmosphäre erhitzt, reagiert im Temperaturbereich von 700°C-750°C lediglich NaOH · H2O mit CO2 entsprechend der Gleichung:For the realization, a sodalite compound of composition Na 5 (AlSiO 4 ) 6 (NO 2 ) (OH.H 2 O) was prepared. The pure compounds are known from the literature, basic sodalite Na 5 (AlSiO 4 ) 6 (OH.H 2 O) 2 (RN Barrer and EAD White: J. Chem. Soc., 286 (1952) 1561-1571) and nitrite -Sodalith Na 8 (AlSiO 4 ) 6 (NO 2 ) 2 (F. Dog: Z. Anorg. Allg. Chem. 511 (1984) 255). Reactive guest molecule (statistically arranged in each second sodalite cage) is hydrated sodium hydroxide NaOH · H 2 O. NaNO 2 stabilizes the sodalite structure. If the compound Na 8 (AlSiO 4 ) 6 (NO 2 ) (OH-H 2 O) is now heated in a CO 2 atmosphere, only NaOH · H 2 O reacts with CO 2 in the temperature range from 700 ° C.-750 ° C. according to the equation:

Die in den Abb. 1a und 1b dargestellten IR-Spektren der Ausgangsverbindung und des Reaktionsproduktes zeigen das Verschwinden der OH⁻ Bande (3640 cm -1) sowie das Auftreten der CO3 2--Bande (1450 cm+1) nach erfolgter Reaktion.The IR spectra of the starting compound and of the reaction product shown in FIGS. 1a and 1b show the disappearance of the OH⁻ band (3640 cm -1 ) and the appearance of the CO 3 2- band (1450 cm +1 ) after the reaction.

Die Vorteile der Methode liegen darin, daß hierbei durch chemische Reaktion Kohlendioxid in die stabile Verbindung Na2CO3 überführt wird, wobei diese dann in einem alumosilicatischen Gerüst isoliert vorliegt. Die Reaktion verläuft bei hoher Temperatur. Günstigste Ergebnisse werden im Temperaturintervall von 700°C-750°C erreicht, während in Zeolithen die Sorptionsraten bei solchen Werten sehr niedrig werden. Ein weiterer Vorteil liegt in der Regenerierbarkeit des verwendeten Feststoffes. Der carbonathaltige Sodalith kann durch Tempern bei 850°C das aufgenommene CO2 wieder vollständig abgehen, wobei die folgenden Reaktionen ablaufen:The advantages of the method are that this carbon dioxide is converted by chemical reaction in the stable compound Na 2 CO 3 , which is then isolated in an aluminosilicate scaffold. The reaction proceeds at high temperature. Most favorable results are achieved in the temperature range of 700 ° C-750 ° C, while in zeolites the sorption rates at such values become very low. Another advantage lies in the regenerability of the solid used. The carbonated sodalite can be completely removed by annealing at 850 ° C, the absorbed CO 2 , wherein the following reactions occur:

(in den carbonathaltigen Käfigen) sowie:(in the carbonate cages) such as:

(in den NaNO₂-enthaltenden Käfigen)(in the NaNO₂-containing cages)

Insgesamt liegt dann bei 850°C die Verbindung:Overall, then at 850 ° C the connection:

Na₈[AlSiO₄]₆(O)(NO₃)Na₈ [AlSiO₄] ₆ (O) (NO₃)

vor, die dann bei 700°C-750°C wieder CO₂-aufnahmefähig ist, entsprechend der Reaktion:before, then at 700 ° C-750 ° C again CO₂-receptive is, according to the reaction:

Bei dieser Regenerierung hat somit gleichzeitig eine Modifizierung der temperaturstabilisierenden Gaskomponente stattgefunden, wobei NO₂- in NO₃- übergegangen ist.In this regeneration thus simultaneously a modification of the temperature-stabilizing gas component has taken place, wherein NO₂ - in NO₃ - has passed.

Synthese von Na₈[AlSiO₄]₆(NO₂)(OH · H₂O)Synthesis of Na₈ [AlSiO₄] ₆ (NO₂) (OH ·H₂O) Hydrothermalsynthese in 50 ml Stahlautoklaven mit Tefloneinsatz (Aufschlußautoklaven der Fa. Berghofer, Enningen)Hydrothermal synthesis in 50 ml steel autoclave with Teflon insert (digestion autoclave from Berghofer, Enningen) Temperatur:|200°CTemperature: | 200 ° C Druck:Print: Eigendruck bei 100% Füllungsgrad der AutoklavenAutogenous pressure at 100% degree of filling of the autoclave Ausgangsstoffe:Starting materials: 1 g Kaolin (FLUKA 60 609), 0,5 g NaNO₂ (Merck 6549), 45 ml 8molare NaOH (Merck 6495)1 g kaolin (FLUKA 60 609), 0.5 g NaNO₂ (Merck 6549), 45 ml 8 molar NaOH (Merck 6495) Reaktionszeit:Reaction time: 24 h24 hours

Claims (4)

Verfahren und Substanz zur Aufnahme von Kohlendioxid (CO₂) aus Abgasen bei hohen Temperaturen,Process and substance for absorbing carbon dioxide (CO₂) from Exhaust gases at high temperatures, 1. dadurch gekennzeichnet, daß CO2 durch chemische Reaktion beim Durchströmen eines porösen Feststoffes im Temperaturbereich zwischen 700-750°C in diesem als Natriumcarbonat (Na2CO3) fest gebunden wird und der Feststoff dabei lediglich Wasserdampf abgibt.1. characterized in that CO 2 is firmly bound by chemical reaction when flowing through a porous solid in the temperature range between 700-750 ° C in this as sodium carbonate (Na 2 CO 3 ) and the solid releases only water vapor. 2. der verwendete reaktive Feststoff ein Alumosilicat mit Gerüststruktur aus raumausfüllend gepackten Käfigen (Sodalithtyp) ist, dadurch gekennzeichnet, daß bei diesem die Käfige in gemischter Form statistisch zu 50% mit Natriumnitrit (NaNO2) als temperaturstabilisierendes Gastmolekül und zu 50% mit Natriumhydoxidmonohydrat (NaOH×H2O) als reaktives Gastmolekül besetzt sind (chem. Zusammensetzung:
Na8(AlSiO4)6(NO2)(OH×H2O) = Basischer Nitrit-Sodalith).
2. the reactive solid used is an aluminosilicate having a skeleton structure of space-filling packed cages (sodalite type), characterized in that in this case the cages in mixed form statistically 50% with sodium nitrite (NaNO 2 ) as temperature-stabilizing guest molecule and 50% with sodium hydroxide monohydrate ( NaOH.H 2 O) are occupied as a reactive guest molecule (chemical composition:
Na 8 (AlSiO 4 ) 6 (NO 2 ) (OH x H 2 O) = basic nitrite sodalite).
3. der Feststoff nach der Sättigung mit CO2 regeneriert und gleichzeitig modifiziert werden kann, dadurch gekennzeichnet, daß durch einfaches Tempern bei 850°C an Luft das CO2 wieder abgegeben wird, und die Gerüststruktur dabei erhalten bleibt, da gleichzeitig die temperaturstabilisierenden Gastmoleküle in den Sodalith-Käfigen zu Nitrat aufoxidiert werden, wodurch eine modifizierte regenerierte Sodalithverbindung entsteht, die nun erneut Kohlendioxid aufnehmen kann.3. the solid can be regenerated after saturation with CO 2 and modified at the same time, characterized in that the CO 2 is released again by simple annealing at 850 ° C in air, and the framework structure is retained, since at the same time the temperature-stabilizing guest molecules in nitrate the sodalite cages to nitrate to form a modified regenerated sodalite compound which can now recapture carbon dioxide.
DE4042002A 1990-12-22 1990-12-22 Carbon di:oxide removal from waste gas - by chemical reaction with porous solid basic nitrite-sodalite Granted DE4042002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4042002A DE4042002A1 (en) 1990-12-22 1990-12-22 Carbon di:oxide removal from waste gas - by chemical reaction with porous solid basic nitrite-sodalite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4042002A DE4042002A1 (en) 1990-12-22 1990-12-22 Carbon di:oxide removal from waste gas - by chemical reaction with porous solid basic nitrite-sodalite

Publications (2)

Publication Number Publication Date
DE4042002A1 true DE4042002A1 (en) 1991-05-23
DE4042002C2 DE4042002C2 (en) 1993-09-09

Family

ID=6421574

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4042002A Granted DE4042002A1 (en) 1990-12-22 1990-12-22 Carbon di:oxide removal from waste gas - by chemical reaction with porous solid basic nitrite-sodalite

Country Status (1)

Country Link
DE (1) DE4042002A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038132A1 (en) * 1997-02-28 1998-09-03 Grace Gmbh Zeolitic molecular sieve, process for its preparation and its use
DE10229910B4 (en) * 2002-07-04 2005-10-27 Buhl, Josef-Christian, Prof. Dr. Zeolite with boron tetrahydrid-filled β-cages and process for its preparation
DE102013013604A1 (en) * 2013-07-20 2015-01-22 Bvp Gmbh Method for collecting fossil and biogenic carbon C14 from the exhaust air of power plants in molecular sieves and chemical solutions.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUND, F.: Z. anorg. allg. Chem. 511 (1984), S. 225-230 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038132A1 (en) * 1997-02-28 1998-09-03 Grace Gmbh Zeolitic molecular sieve, process for its preparation and its use
DE10229910B4 (en) * 2002-07-04 2005-10-27 Buhl, Josef-Christian, Prof. Dr. Zeolite with boron tetrahydrid-filled β-cages and process for its preparation
DE102013013604A1 (en) * 2013-07-20 2015-01-22 Bvp Gmbh Method for collecting fossil and biogenic carbon C14 from the exhaust air of power plants in molecular sieves and chemical solutions.

Also Published As

Publication number Publication date
DE4042002C2 (en) 1993-09-09

Similar Documents

Publication Publication Date Title
DE69836159T2 (en) Pressure swing adsorption process for hydrogen purification
DE60004382T2 (en) ZEOLITHIC ADSORBENTS, METHOD FOR THEIR PRODUCTION AND THEIR USE FOR REMOVING CO2 FROM GAS FLOWS
DE2200210C3 (en) Process for removing nitrogen oxides from gas mixtures
EP1370342B1 (en) Method for reducing the content of n2o and nox in gases
US7238641B2 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide
DE2330234A1 (en) SORPTION AGENTS FOR THE REMOVAL OF NITROGEN OXYDE AND SULFUR OXYDE
DE19727376A1 (en) Organic pollutant adsorption from air
DE3308693A1 (en) Adsorbent for carbon monoxide and process for its preparation
DE2626065C3 (en) Process for the production of a clinoptilolite and its use
DE69630270T2 (en) Process for the production of zeolite membranes supported by porous glass
DE3914294A1 (en) CARRIER CATALYSTS FOR THE OXIDATION OF CARBON MONOXIDE
US6583081B2 (en) Method of manufacture of molecular sieves
DE2446006C3 (en) Process for the production of a reduction catalytic converter for the separation of nitrogen oxides from exhaust gases
DE2423828B2 (en) Process for cleaning industrial gases
EP0218302A2 (en) Process for purifying exhaust gas containing hydrogen sulfide and sulfur dioxide
DE4042002C2 (en)
US3185540A (en) Method of removing carbon monoxide from gas mixtures
DE102010055680A1 (en) Composition, useful in e.g. extrudate, comprises an aluminosilicate zeolite and a titano-(silico)-alumino-phosphate, where both aluminosilicate zeolite and titano-(silico)-alumino-phosphate comprise a transition metal e.g. iron or copper
DE3590533T1 (en) Sorbent and process for the removal of nitrogen oxides, sulfur oxides and hydrogen sulphide from gas streams
EP1110607B1 (en) Modification process of a ion exchangable material
DE2456197B2 (en) Process for removing nitrogen oxides from combustion exhaust gases
DE1592277A1 (en) Process for the preparation of stabilized synthetic zeolites of type A and X
JP2892410B2 (en) Method for producing nitrogen oxide decomposition catalyst
DE1911669A1 (en) Adsorption process for acidic gases
DE1467180C (en) Dehydrated synthetic zeolitic molecular sieve. Änm: Union Carbide Corp., New York, N.Y. (V.StA.)

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8125 Change of the main classification

Ipc: B01D 53/34

8127 New person/name/address of the applicant

Owner name: BUHL, JOSEF-CHRISTIAN, DR., 4405 NOTTULN, DE

D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: BUHL, JOSEF-CHRISTIAN, DR., 29339 WATHLINGEN, DE

8339 Ceased/non-payment of the annual fee