DE4016622A1 - Vane profile for Savonius rotor - has centre of gravity of main profile in front half facing preceding vane - Google Patents

Vane profile for Savonius rotor - has centre of gravity of main profile in front half facing preceding vane

Info

Publication number
DE4016622A1
DE4016622A1 DE19904016622 DE4016622A DE4016622A1 DE 4016622 A1 DE4016622 A1 DE 4016622A1 DE 19904016622 DE19904016622 DE 19904016622 DE 4016622 A DE4016622 A DE 4016622A DE 4016622 A1 DE4016622 A1 DE 4016622A1
Authority
DE
Germany
Prior art keywords
profile
vane
flow
wing
darieus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19904016622
Other languages
German (de)
Inventor
Des Erfinders Auf Nennung Verzicht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEYER FLORIAN 4930 DETMOLD DE
Original Assignee
MEYER FLORIAN 4930 DETMOLD DE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEYER FLORIAN 4930 DETMOLD DE filed Critical MEYER FLORIAN 4930 DETMOLD DE
Priority to DE19904016622 priority Critical patent/DE4016622A1/en
Publication of DE4016622A1 publication Critical patent/DE4016622A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • F03D3/007Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical using the Magnus effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/213Rotors for wind turbines with vertical axis of the Savonius type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Behind the profile end of the main vane profile (1) in the direction of the flow lines (2,3) is a Darieus vane support surface which is asymmetrical. With large profile cross-sections, in the rotation condition in which the inner flow line (2) is turned away from the wind, and the outer flow line (3) is facing the wind, a strong flow difference at the vane end exists in the area (A) in which the pressure drop occurs between outer and inner flow. With three-bladed rotors of the Savonius type, flow division outwards and inwards can be expected in an area (C) adjacent to the blades. The centre of gravity of the main vane profile (1) is located in the front half, i.e. that facing the preceding vane, in the cross-section in relation to its length. USE - As a rotor vane profile functioning in accordance with the Savonius-Darieus and Flettner principles.

Description

Die Erfindung betrifft ein Flügelprofil für einen Savo­ niusrotor, der vornehmlich als Vertikalläufer zur Er­ zeugung elektrischer- und mechanischer Energie Verwen­ dung findet.The invention relates to a wing profile for a Savo niusrotor, primarily as a vertical rotor for Er generation of electrical and mechanical energy finds.

Bei der Erfindung handelt es sich um ein Element des Maschinenbaus.The invention is an element of Mechanical engineering.

Stand der Technik sind meist zwei- oder dreiblättrig­ flüglige Savoniusrotoren, deren Flügelflächen entweder, ob ihres labilen Aufbaus, zentral im Drehpunkt oder durch jenen hindurch zumindest diagonal verspannt werden müssen; oder Flügelprofile mit geringem Gesamt­ querschnitt, die zwar in der Lage sind, sich selbst zu halten, nicht jedoch befähigt sind, anfallende Strö­ mungsdifferenzen des Windes durch das Profil (z. B. durch Anwendung eines Darieusflügels) auch bei relativ niedriger Windgeschwindigkeit optimiert auszunutzen. Darieusrotoren, die relativ hoher Windgeschwindigkeiten - hohe Außendurchmesser - bedürfen, kleine Savonius­ rotoren dienen nur als Anlaufhilfe; Darieusrotoren werden ob ihrer hohen Drehzahlen nur zur Stromerzeu­ gung verwandt.State of the art are usually two or three-leaf winged Savonius rotors, the wing surfaces of which either whether its unstable structure, central in the pivot or strained through it at least diagonally Need to become; or wing profiles with low overall cross section, which are able to self hold, but are not able, currents differences in the wind caused by the profile (e.g. by using a Darieus wing) even with relative to take advantage of low wind speeds. Darieusrotoren, the relatively high wind speeds - high outside diameter - need small Savonius rotors only serve as a starting aid; Darieus rotors because of their high speeds, they are only used to generate electricity related.

Savoniusrotorflügel, bei denen die Druckdifferenz am Ende der Flügelblätter durch geeignete Maßnahmen zum optimierten Antrieb genutzt werden, sind dem Anmelder nicht bekannt.Savonius rotor blades, in which the pressure difference on Take appropriate measures to end the blades optimized drive are used, the applicant not known.

Der Erfindung liegt die Aufgabe zugrunde, einen ma­ terialsparend, einfach produzierbaren Savoniusrotor zu entwickeln, der nicht durch oder im Drehpunkt verspannt werden muß, der optimierte Laufeigenschaften gegenüber zentral verspannten Savoniusrotoren (durch Widerstandsverminderung der windentgegenrotierenden Flächen) aufweist und das Strömungsdruckgefälle beider Flügelseiten eines Einzelflügels beim Zusammentreffen der Strömungen nutzt.The invention has for its object a ma saves material, easy to produce Savonius rotor to develop that is not through or at the pivot must be braced, the optimized running properties  opposite centrally tensioned Savonius rotors (through Resistance reduction of the counter-rotating wind Areas) and the flow pressure gradient of both Wing sides of a single wing when they meet who uses currents.

Grundlage der Erfindung sind das Savonius-Darieus- bzw. das Flettner-Prinzip.The basis of the invention is the Savonius-Darieus or the Flettner principle.

Um auf eine zentrale Abspannung zu verzichten, ist es vonnöten, den Profilquerschnitt der Einzelflügel weit zu erhöhen. Dieser wird nun statischen Ansprüchen gerecht, um auftretende Torsionsmomente im Betrieb auch bei großen Profillängen, also Savoniusrotorhöhen aufzu­ nehmen.In order to do without central bracing, it is the profile cross-section of the individual wings to increase far. This now becomes static justice to torsional moments occurring during operation too with large profile lengths, i.e. Savonius rotor heights to take.

Bei großen Profilquerschnitten ergibt sich im Rotations­ zustand, bei dem die Innenströmungslinie (2) windab­ gewandt, die Außenströmungslinie (3) dem wahren Wind zugewandt ist, eine starke Strömungsdifferenz am Flügelende im Raum (A) zwischen, durch mehrmalige Ab­ lenkung stark abgebremstem wahren Innenwind und durch seitliche Verdrängung stark erhöhtem Außenwind.In the case of large profile cross-sections, there is a strong flow difference at the wing end in space (A) between, with the inner flow line ( 2 ) facing away from the wind and the outer flow line ( 3 ) facing the true wind, due to repeated deflection of the braked true inside wind and greatly increased outside wind due to lateral displacement.

Je höher das Profil, desto höher der Strömungsunter­ schied; es gilt also, den Profilquerschnitt so hoch wie möglich zu gestalten um einen größeren Strömungs­ unterschied im Raum (A) zu erreichen.The higher the profile, the higher the flow sub divorced; so it is important to have a high profile cross section as possible to create a larger flow difference in room (A).

Anders herum müssen Tests im Windkanal erweisen, ab welcher Profilhöhe des Einzelflügels der Einfluß des Windschattens des wahren Windes auf das vorlaufende Profil negativ wirkt und der Vorteil größeren Profil­ querschnitts mit dem Nachteil größerer, also schnellerer Wirkung des Windschattens auf den Vor­ flügel ausgewogen sind; wobei bei dreiflügligen Savoniusrotoren eine unumgängliche Strömungsverwirbe­ lung im Raum (C) entfällt und den Wirkungsgrad dadurch erhöht.The other way round, tests in the wind tunnel have to prove what profile height of the single wing the influence of Slipstream of the true wind on the leading Profile has a negative effect and the advantage of a larger profile cross-section with the disadvantage of larger, so faster impact of slipstream on the fore wings are balanced; being three-winged Savonius rotors are an inevitable flow swirl  tion in room (C) is eliminated and the efficiency is reduced elevated.

Der Profilschwerpunkt muß sich möglichst nah am Dreh­ punkt (M) und am vorlaufenden Flügel befinden, um zu den Enden hin eine möglichst lange effektive Strömungs-Ver­ drängungslinie zu erhalten; jedoch den Raum (B) nicht stören.The focus of the profile must be as close as possible to the rotation point (M) and on the leading wing to reach the End effective flow Ver as long as possible to get crowding; but not the room (B) to disturb.

Dieses Strömungsgefälle zwischen Außen- und Innenströ­ mung, das variiert, da die Innenströmungslinie (2) ab­ wechselnder Strömungsrichtung durch Rotation des Savoniusrotors ausgesetzt ist, wird normalerweise einen Sog entwickelnd, ungenutzt hinter der Strömungskante ver­ wirbeln, was wir jedoch zum Beispiel durch Anbringen eines asymmetrischen Flügels (4) im Grenzbereich Raum (A) zu verhindern wissen.This flow gradient between the outside and inside flow, which varies because the inside flow line ( 2 ) is exposed from the changing flow direction by rotation of the Savonius rotor, will normally develop a suction, swirl unused behind the flow edge, which we, for example, by attaching an asymmetrical Knowing how to prevent wing ( 4 ) in the border area room (A).

Es muß sich erweisen, auf welcher Profilseite die Parallel-Steigungs-Anströmungswinkelverstellungen des asymetrischen Darieusflügels (bzw. Flettnerrotors) (4a, 5a) gebracht werden müssen, da auf der Innenseite (2) ein zu frühes Abbremsen des wahren Windes bei dessen Einfall auf der Rückseite (3) ein zu starkes Abbremsen der dortigen, verstärkten Verdrängungsströmung erreicht wer­ den kann, was jedoch ihres nur vereinzelten Vorkommens im Verhältnis zur Gesamtprofillänge wahrscheinlich uner­ heblich ist.It has to be shown on which profile side the parallel pitch-flow angle adjustments of the asymmetrical Darieus wing (or Flettner rotor) ( 4 a, 5 a) have to be made, because on the inside ( 2 ) the real wind is braked too early when it falls on the back ( 3 ) a too slow braking of the local, displaced flow achieved who can, which, however, their only occasional occurrence in relation to the overall profile length is probably irrelevant.

Im Falle, in dem die Strömungslinie (2) dem wahren Winde zugeneigt ist, wird natürlich die Wirkung des Darieus-Flügels (4) nachlassen, jedoch die Windangriffs­ fläche und ausgelöstes Drehmoment, durch Vergrößerung des effektiven Rotordurchmessers im Vergleich zu Ro­ toren ohne Darieus-Flügel, verbunden mit besserer Stabilität, größer sein, wobei der Effekt auftreten kann, bei dem die äußere - nach außen strömende "Hoch­ druckzone" die effektive Profillänge so vergrößert, daß schwächerer wahrer Wind gegenläufig an der Hochdrucklinie (verlängerte 3er Linie) entlang in den Rotor einfällt.In the case where the flow line ( 2 ) is inclined to the true wind, the effect of the Darieus wing ( 4 ) will of course decrease, but the wind attack area and the torque triggered, by increasing the effective rotor diameter compared to rotors without Darieus. Wings combined with better stability can be larger, whereby the effect can occur in which the outer - outward flowing "high pressure zone" increases the effective profile length in such a way that weaker true wind flows in opposite directions along the high pressure line (extended 3 line) into the Rotor collapses.

Dynamischer Auftrieb des Hauptflügelprofils (1) ist wohl nur bei zweiblättrigen Savoniusrotoren zu erwarten, da bei dreiblättrigen eine Strömungstrennung im Bereich Raum (C), einerseits nach außen, andererseits zum Dreh­ punkt hin, zu erwarten ist.Dynamic lift of the main airfoil ( 1 ) is probably only to be expected with Savonius rotors with two blades, since with three blades a flow separation in the area (C), on the one hand outwards and on the other hand towards the pivot point, is to be expected.

Die Innenabströmkante (7) muß möglichst scharfkantig ausgeführt werden, um keine Strömungsverluste durch Ver­ wirbelungen hervorzurufen.The inner trailing edge ( 7 ) must be as sharp as possible, so as not to cause flow losses due to swirling.

Bei zweiblättrigen Savoniusrotoren kann es nützlich sein, Ausgleichsgewichte (6) rückenflossenartig auf dem Flügelprofil (1) zu ermöglichen.In the case of Savonius rotors with two blades, it can be useful to enable balance weights ( 6 ) on the wing profile ( 1 ) in the manner of a dorsal fin.

Außerdem ist eine bessere Laufeigenschaft im Vergleich zu innenverspannten Savoniusrotoren schon deshalb zu erwarten, da die Windangriffsfläche der Strömungslinie (3) strömungsgünstiger als die ansonsten als Innen- und Außenlinie verwandte Linie (2) wirkt und zusätzlich Verwirbelungen an Abspannungen, oder - und dann nötigem Zentralrohr entfallen.It is also for this reason to expect a better running property as compared to an internally braced Savoniusrotoren because the wind surface of the flow line (3) acts streamlined than otherwise related as interior and exterior line line (2) and additionally turbulence at bracing, or - and then nötigem central tube omitted.

Der Darieusflügel wird ob des verdrängten wahren Windes und der Druckgefälleausnutzung viel früher, d. h. bei viel schwächeren wahren Winden Schub entfalten, als reine Darieusrotoren trotz geringeren Gesamtdurch­ messers des Rotors. The Darieus wing becomes because of the repressed true wind and pressure drop utilization much earlier, i.e. H. at thrust much weaker true winds than pure Darieus rotors despite lower overall through knife of the rotor.  

Merkmale der Erfindung sind:Features of the invention are:

Große Effektivität durch optimierte Verbindung des Savonius- mit dem Darieus- bzw. Flettnerprinzips.Great effectiveness through optimized connection of the Savonius with the Darieus or Flettner principle.

Sich selbst frei tragende hocheffiziente Einzelflügel, die leicht in jeder beliebigen Länge, material-, energiesparend, allen statischen Kräften gewachsen, produziert werden können.Self-supporting, highly efficient single wings, which are light in any length, material, energy-saving, able to withstand all static forces, can be produced.

Die Flügel können, auf geeigneten Gitterkonstruktionen gehalten, an Trägerrahmen oder vorhandenen Türmen be­ festigt, bzw. was mir sinnvoller erscheint, frei abge­ spannt werden.The wings can, on suitable lattice constructions held, be on support frames or existing towers consolidates, or what seems more meaningful to me, freely given be stretched.

Die Herstellung kann im Vakuumverfahren (Epoxy, Sperr­ holz, Triaxialgewebe, Kohle-, Aramid-Faser, etc.), oder als Endlosprofil, das nur in jeweiliger Länge gekappt wird, erfolgen.The production can be done in a vacuum process (epoxy, barrier wood, triaxial fabric, carbon, aramid fiber, etc.), or as an endless profile that is only cut to length will be done.

Große Sicherheit und Variabilität durch starke Profile und der Möglichkeit, die Savoniusrotordrehzahl durch Einstellungswinkelverstellung des Darieusflügels, bzw. Drehrichtungs- oder Umdrehungszahlveränderung des Flettnerrotors, den Rotor abzubremsen (z. B. bei Stark­ wind); oder die Rotationsgeschwindigkeit so dem Ge­ brauchszweck (Verbraucher) bei jeder Windgeschwindigkeit optimal anzugleichen; bzw. Möglichkeit, über die Darieusflügeleinstellung (5a) ähnlich dem "Giro-Mill- Prinzip" (Just) bei stärkeren Winden durch gleichför­ mige Verstellung im Rotationsprozeß, die Auftriebs­ spitzen der Darieusflügel gegen die wahre Wind-Richtung zu verlagern und so die Abspannung zu entlasten und das Gesamtsystem zu stützen. Great safety and variability thanks to strong profiles and the option of braking the rotor of the Savonius rotor by adjusting the setting angle of the Darieus wing or changing the direction of rotation or speed of rotation of the Flettner rotor (e.g. in strong winds); or to optimally adapt the speed of rotation to the intended use (consumer) at any wind speed; or possibility of using the Darieus wing setting ( 5 a) similar to the "Giro Mill Principle" (Just) in stronger winds by uniform adjustment in the rotation process, the buoyancy tips of the Darieus wings to shift against the true wind direction and thus the guy to relieve and support the entire system.

Des weiteren ist durch die großen Hauptflügelquer­ schnitte (1) genügend Raum vorhanden, durch einfach realisierbaren Druckabfall im Inneren der Tragflächen, (1) Grenzschichtabsaugung realisierbar.Furthermore, due to the large main wing cross-sections ( 1 ) there is enough space, through an easily realizable pressure drop inside the wings, ( 1 ) boundary layer suction can be realized.

Wartung erfolgt durch einfache Demontage-Montage weniger stabiler Teile.Maintenance is carried out by simple disassembly assembly less stable parts.

Zeichenerklärung:Explanation of symbols:

1: Hauptflügel
2: Strömungs-Innenlinie
3: Strömungs-Außenlinie
4: Darieusflügel
4a: Variable Darieusflügelanströmwinkelverstellung bzw. -halterung
5: Flettnerrotor
5a: Flettnerrotorhalterung
6: gegenüber dem Hauptflügelschwerpunkt angebrachte als Flosse ausgearbeitete Gewichtskonzentration zur Auswuchtung
7: Abströminnenkante (scharfkantig)
1 : main wing
2 : Inner flow line
3 : Flow outline
4 : Darieus wing
4 a: Variable Darieusflügel approach angle adjustment or bracket
5 : Flettner rotor
5 a: Flettner rotor holder
6 : Weight concentration, worked out as a fin, in relation to the main wing center of gravity for balancing
7 : outflow inner edge (sharp-edged)

AktionsraumAction space

A: Bereich in dem das Druckgefälle zwischen Außen- und Innenströmung auftritt - genutzt werden kann
B: Bereich, der wechselnden Strömungsrichtungen unterworfen ist, bei dem durch optimierte Ausformung von Linie 3 ansonsten unvermeidbare leistungssenkende Verwirbelungen ausgeschlossen werden
C: Raum, in dem Strömungstrennung (bei dreiblättrigen Savoniusrotoren) nach außen und innen zu erwarten ist
M: Mittelpunkt, Rotations-Drehpunkt
: Rotationsrichtung
A: Area in which the pressure drop between the outside and inside flow occurs - can be used
B: Area which is subject to changing flow directions, in which optimized shaping of line 3 would otherwise rule out unavoidable turbulence
C: Space in which flow separation (with three-bladed Savonius rotors) is to be expected from inside and outside
M: center point, rotation fulcrum
: Direction of rotation

Claims (4)

1. Flügelprofil für Savoniusrotoren, dadurch gekennzeichnet, daß sich der Schwerpunkt des Hauptprofils in der vorderen, d. h. dem vorlaufenden Flügel zugewandten Hälfte, im Querschnitt desselben im Verhältnis zu dessen Länge befindet.1. Wing profile for Savonius rotors, characterized in that the center of gravity of the main profile is in the front, ie facing the leading wing, in cross section of the same in relation to its length. 2. Flügelprofil für Savoniusrotoren, dadurch gekennzeichnet, daß sich hinter den Profilenden des Hauptprofils in Richtung der Strömungslinien eine Darieus-Flügeltrag­ fläche befindet.2. Wing profile for Savonius rotors, characterized in that that behind the profile ends of the main profile in Direction of the flow lines of a Darieus wing support area located. 3. Flügelprofil für Savoniusrotoren nach Anspruch 2, da­ durch gekennzeichnet, daß es sich um einen asymmetrischen Darieusflügel handelt.3. Wing profile for Savonius rotors according to claim 2, there characterized by that it is an asymmetrical Darieus wing acts. 4. Flügelprofil für Savoniusrotoren, dadurch gekennzeichnet, daß sich hinter den Profilenden des Hauptprofils in Richtung der Strömungslinien ein Flettnerrotor befindet.4. Wing profile for Savonius rotors, characterized in that that behind the profile ends of the main profile in A Flettner rotor is located in the direction of the flow lines.
DE19904016622 1990-05-23 1990-05-23 Vane profile for Savonius rotor - has centre of gravity of main profile in front half facing preceding vane Ceased DE4016622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19904016622 DE4016622A1 (en) 1990-05-23 1990-05-23 Vane profile for Savonius rotor - has centre of gravity of main profile in front half facing preceding vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19904016622 DE4016622A1 (en) 1990-05-23 1990-05-23 Vane profile for Savonius rotor - has centre of gravity of main profile in front half facing preceding vane

Publications (1)

Publication Number Publication Date
DE4016622A1 true DE4016622A1 (en) 1991-11-28

Family

ID=6407044

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19904016622 Ceased DE4016622A1 (en) 1990-05-23 1990-05-23 Vane profile for Savonius rotor - has centre of gravity of main profile in front half facing preceding vane

Country Status (1)

Country Link
DE (1) DE4016622A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063380A1 (en) * 2004-10-20 2006-06-22 Vortech Energy & Power Pty Limited Vertical axis wind turbine with twisted blade or auxiliary blade
US7314346B2 (en) 2005-11-03 2008-01-01 Vanderhye Robert A Three bladed Savonius rotor
WO2008007934A1 (en) * 2006-07-14 2008-01-17 Nikolay Buktukov Wind power plant buktukov-3
DE102007059285A1 (en) 2007-12-08 2009-06-10 Nordex Energy Gmbh Rotor blade for use in rotor of wind turbine, has profile flown from leading edge to trailing edge, where leading edge is formed by rotational body in longitudinal section of blade, and body is rotatably supported about symmetric axis
DE102008048522A1 (en) 2008-09-23 2010-03-25 Meyer, Florian Decentral-vertical rotor-power plant for use in building structure within rural and urban structures, has supporting surface longitudinal profiles shifted and placed in savonius flow inlets, and end cap plates provided in vertical rotor
US7980825B2 (en) 2005-10-18 2011-07-19 Robert A. Vanderhye Savonius rotor blade construction particularly for a three bladed savonius rotor
DE102012014627A1 (en) 2012-07-17 2014-02-06 Christiane Bareiß Segovia Conical rotor for energy generation for charging batteries in transport with electric and hybrid drive, has round base plate, which has top profile with three alternate shafts and three troughs, where base plate is opened at its center
DE102014001891A1 (en) 2014-02-14 2015-08-20 Christian Esterhammer Wind or hydro power plant as well as rotor
WO2017191492A1 (en) * 2016-05-04 2017-11-09 Turbosaam Sarl Savonius rotor, rotor module, installation and applications thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE542471C (en) * 1929-08-06 1932-01-25 Kaeser Ernst Device to increase the transverse drive and to prevent the air flow from being released on the upper side of aircraft wings
FR797106A (en) * 1935-10-31 1936-04-21 Wind motor
DE3003270A1 (en) * 1980-01-28 1981-08-06 Alfred 1000 Berlin Goedecke WIND TURBINE WITH A WIND ROTOR ROTATING A SIGNAL AXIS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE542471C (en) * 1929-08-06 1932-01-25 Kaeser Ernst Device to increase the transverse drive and to prevent the air flow from being released on the upper side of aircraft wings
FR797106A (en) * 1935-10-31 1936-04-21 Wind motor
DE3003270A1 (en) * 1980-01-28 1981-08-06 Alfred 1000 Berlin Goedecke WIND TURBINE WITH A WIND ROTOR ROTATING A SIGNAL AXIS

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469665B2 (en) 2004-10-20 2013-06-25 Windworks Engineering Limited Vertical axis wind turbine with twisted blade or auxiliary blade
WO2006063380A1 (en) * 2004-10-20 2006-06-22 Vortech Energy & Power Pty Limited Vertical axis wind turbine with twisted blade or auxiliary blade
US7980825B2 (en) 2005-10-18 2011-07-19 Robert A. Vanderhye Savonius rotor blade construction particularly for a three bladed savonius rotor
US7314346B2 (en) 2005-11-03 2008-01-01 Vanderhye Robert A Three bladed Savonius rotor
WO2008007934A1 (en) * 2006-07-14 2008-01-17 Nikolay Buktukov Wind power plant buktukov-3
EA018388B1 (en) * 2006-07-14 2013-07-30 Николай Садвакасович Буктуков Wind power plant
CN101589228B (en) * 2006-07-14 2012-11-14 N·布克图科沃维 Wind power plant buktukov-3
DE102007059285A1 (en) 2007-12-08 2009-06-10 Nordex Energy Gmbh Rotor blade for use in rotor of wind turbine, has profile flown from leading edge to trailing edge, where leading edge is formed by rotational body in longitudinal section of blade, and body is rotatably supported about symmetric axis
DE102008048522A1 (en) 2008-09-23 2010-03-25 Meyer, Florian Decentral-vertical rotor-power plant for use in building structure within rural and urban structures, has supporting surface longitudinal profiles shifted and placed in savonius flow inlets, and end cap plates provided in vertical rotor
DE102012014627A1 (en) 2012-07-17 2014-02-06 Christiane Bareiß Segovia Conical rotor for energy generation for charging batteries in transport with electric and hybrid drive, has round base plate, which has top profile with three alternate shafts and three troughs, where base plate is opened at its center
DE102014001891A1 (en) 2014-02-14 2015-08-20 Christian Esterhammer Wind or hydro power plant as well as rotor
WO2017191492A1 (en) * 2016-05-04 2017-11-09 Turbosaam Sarl Savonius rotor, rotor module, installation and applications thereof
CN108138744A (en) * 2016-05-04 2018-06-08 图博萨姆公司 Savonius rotor, rotor module, its device and application

Similar Documents

Publication Publication Date Title
DE3234170C2 (en) Wind power plant with at least one wing that can be rotated about an axis of rotation
EP1671030A1 (en) Rotor blade for a wind power station
DE667674C (en) Wind dam with many small, net-like wind wheels arranged one above the other and next to each other
WO1982003662A1 (en) Plant for utilization of wind and waves
DE19920560A1 (en) Wind power plant with vertical rotor
WO2006097091A1 (en) Method and device for using wind energy
DE2715729A1 (en) ROTOR FOR A TURBINE
DE4016622A1 (en) Vane profile for Savonius rotor - has centre of gravity of main profile in front half facing preceding vane
DE3315439C2 (en)
DE222868C (en)
DE3819145A1 (en) Aerodynamically active end plates for aircraft-wing and propeller-blade tips
DE10233102A1 (en) Rotor for wind turbine has blades made from flexible material and inflated, trailing edge of each blade being fitted with flexible cover whose sides and tip are bonded to flexible support
DE102008025895B4 (en) Pinwheel with a vertical axis and horizontal pivot wing axes
DE102012107250B4 (en) Rotor of a vertical axis wind turbine
DE102008023606B4 (en) Pinwheel with a vertical axis and horizontal pivot wing axes
DE4136956A1 (en) Wind turbine for electricity generation - has several blade pairs inclined rearwards and with turned up edges for increased wind collection
DE102010052947B4 (en) Wind direction-independent wind turbine with vertical rotor, multi-row inlet surface construction and drop-shaped profiled rotor blades
DE19847965C1 (en) Wind-powered unit with a flexible construction according to the Savonius rotor principle operates two or more vanes from a flexible material as a rotor along with a generator fitted between the rotor's top and bottom rotating faces.
DE19815208A1 (en) Radially flowed axi-flexible vaned wind rotor
DE102013101977A1 (en) Wind power turbine system has V-shaped wind distributor aligned parallel to rotor axis, which is provided with wind passage that is opened below predetermined wind speed and closed above predetermined wind speed
DE3303898A1 (en) METHOD FOR THE USE OF WIND ENERGY BY COMBINING A ROTOR WITH A VERTICAL TURBINE
DE102008034464A1 (en) Wind mill has vertical axis and two opposite rotating blades that are set right axially to connecting bar and rotating axes, and is attached to supporting structure of vertical axis
DE8228078U1 (en) VERTICAL AXIS ROTOR
AT382688B (en) Mounting for a high-power wind converter or wind generator for the generation of electrical current
CH700422B1 (en) Axial-flow wind turbine used for electricity generation, has helical blade with aerodynamic cross section inclined rearwardly toward rotation axis over length of blade

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection