DE4016052C2 - - Google Patents

Info

Publication number
DE4016052C2
DE4016052C2 DE4016052A DE4016052A DE4016052C2 DE 4016052 C2 DE4016052 C2 DE 4016052C2 DE 4016052 A DE4016052 A DE 4016052A DE 4016052 A DE4016052 A DE 4016052A DE 4016052 C2 DE4016052 C2 DE 4016052C2
Authority
DE
Germany
Prior art keywords
fibers
polymer
ceramic
sic
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE4016052A
Other languages
German (de)
Other versions
DE4016052A1 (en
Inventor
Tilman Dr. 7778 Markdorf De Haug
Rolf Dr. 7772 Oberuhldingen De Ostertag
Ursula Dipl.-Ing. Ehrmann (Fh), 7759 Hagnau, De
Reinhold Dipl.-Ing. Birrenbach (Fh), 7778 Markdorf, De
Wolfgang Dipl.-Ing. Zankl (Fh), 7990 Friedrichshafen, De
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier Luftfahrt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier Luftfahrt GmbH filed Critical Dornier Luftfahrt GmbH
Priority to DE4016052A priority Critical patent/DE4016052A1/en
Publication of DE4016052A1 publication Critical patent/DE4016052A1/en
Application granted granted Critical
Publication of DE4016052C2 publication Critical patent/DE4016052C2/de
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/82Jet pipe walls, e.g. liners
    • F02K1/822Heat insulating structures or liners, cooling arrangements, e.g. post combustion liners; Infrared radiation suppressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines keramischen Faser­ verbundwerkstoffs, wobei die Fasern aus C oder SiC oder SiO2 oder Al2O3 oder Si3N4 oder Al2O3·SiO2·B2O3 oder Mischungen oder Verbindungen daraus bestehen.The invention relates to a method for producing a ceramic fiber composite material, the fibers made of C or SiC or SiO 2 or Al 2 O 3 or Si 3 N 4 or Al 2 O 3 .SiO 2 .B 2 O 3 or mixtures or compounds thereof consist.

In GB 21 19 777 A sind keramische Formteile aus Faserverbundwerkstoffen beschrieben, die anorganische Fasern enthalten, und deren Matrix aus einem präkeramischen Material, nämlich einem Silan oder Siloxan mittels Vernet­ zung und Pyrolyse hergestellt wird.In GB 21 19 777 A there are ceramic molded parts made of fiber composite materials described, which contain inorganic fibers, and the matrix of one preceramic material, namely a silane or siloxane by means of Vernet tion and pyrolysis is produced.

Aus der EP 03 46 192 A1 ist die Herstellung einer Matrix aus einer Mi­ schung eines Polymers und eines Pulvers für eine anorganische Fasern ent­ haltende Verbundkeramik bekannt. Stand der Technik (DE 37 24 580 A1) ist auch der Einsatz von beschichteten Fasern bei Verbundwerkstoffen aus Sili­ ciumcarbidfasern in einer Siliciumnitrid-Matrix. EP 03 46 192 A1 describes the production of a matrix from a Mi Development of a polymer and a powder for an inorganic fiber holding composite ceramics known. State of the art (DE 37 24 580 A1) also the use of coated fibers in composite materials made of sili cium carbide fibers in a silicon nitride matrix.  

Es werden seit Jahren Anstrengungen unternommen, durch den Einbau von Fasern in eine keramische Matrix die Schadenstoleranz des Verbundwerk­ stoffes zu erhöhen und gleichzeitig die positiven Eigenschaften der monolithi­ schen Keramik zu erhalten. Die Anwendung von carbonfaserverstärktem Sili­ ciumkarbid (C/SiC) oder siliciumkarbidfaserverstärktem Siliciumcarbid für die Raumfahrt als thermische Schutzschilde und Strukturmaterialien sind be­ kannt. Es sind dies Strukturbauteile und Teile von Raketentriebwerken sowie "nozzle flaps" für den Einsatz in militärischen Strahltriebwerken. Das hierbei verwendete Herstellprinzip der Abscheidung der Matrix aus der Gasphase (CVI) bedingt sehr lange Prozeßzeiten und damit hohe Kosten. Für den zivilen Flugzeugbau sind solche Teile daher nicht wirtschaftlich einsetzbar.Efforts have been made for years by installing Fibers in a ceramic matrix the damage tolerance of the composite material and at the same time the positive properties of the monolithi ceramics. The use of carbon fiber reinforced sili cium carbide (C / SiC) or silicon carbide fiber reinforced silicon carbide for the Space as thermal shields and structural materials are knows. These are structural components and parts of rocket engines as well "nozzle flaps" for use in military jet engines. That here used manufacturing principle of the deposition of the matrix from the gas phase (CVI) requires very long process times and therefore high costs. For the civilian Such parts cannot therefore be used economically in aircraft construction.

Der Erfindung liegt die Aufgabe zugrunde, einen keramischen Verbundwerk­ stoff zu entwickeln, der neben Beständigkeit gegen hohe Temperaturen (≧ 500°C), Beständigkeit gegen Korrosion und Beständigkeit gegen Oxidation und eine gegenüber monolithischen Keramiken erhöhte Bruchzähigkeit auf­ weist. Aus dem Verbundwerkstoff sollten auch Rohre mit möglichst geringer spezifischer Dichte (<2.5 g/cm3) in Serie herstellbar sein.The invention has for its object to develop a ceramic composite material which, in addition to resistance to high temperatures (≧ 500 ° C), resistance to corrosion and resistance to oxidation and an increased fracture toughness compared to monolithic ceramics. Pipes with the lowest possible specific density (<2.5 g / cm 3 ) should also be able to be produced in series from the composite material.

Die Aufgabe wird erfindungsgemäß durch die Lehre des Hauptanspruchs und der Unteransprüche gelöst.The object is achieved by the teaching of the main claim and of the subclaims solved.

Die Herstellung von Produkten, wie z. B. Rohren, aus endlosfaserverstärkter Keramik geschieht analog zu der Herstellung von faserverstärkten Kunststof­ fen entweder durch einen Prozeß, bei dem der Faden in einem Tauchbad mit einem Schlicker getränkt und anschließend auf einen Wickelkern abgelegt wird oder über Lamination von getränkten Geweben. Erfindungsgemäß besteht der Schlicker aus einem gelösten Si-Polymer (z. B. Silazan, Silan oder Silo­ xan) und einem keramischen Pulver, dessen rheologische Eigenschaften auf die Wickelparameter und die Fadencharakteristik abgestimmt sind. Das kera­ mische Pulver dient als Magerungsmittel, um die Schwindung der Matrix bei der nachfolgenden Temperaturbehandlung zu verringern.The manufacture of products such as B. tubes, from continuous fiber reinforced Ceramics are analogous to the production of fiber-reinforced plastics either by a process in which the thread is immersed in an immersion bath impregnated with a slip and then placed on a winding core or via lamination of soaked tissues. According to the invention  the slip from a dissolved Si polymer (e.g. silazane, silane or silo xan) and a ceramic powder whose rheological properties are based on the winding parameters and the thread characteristics are coordinated. The kera Mix powder serves as a lean agent to help reduce the shrinkage of the matrix the subsequent temperature treatment.

Das fertig gewickelte oder laminierte Teil kann in einem Autoklaven unter er­ höhtem Druck (z. B. 1,5 MPa) und Temperaturerhöhung (z. B. 200 bis 450°C) vernetzt werden. Eine Vernetzung über chemische Hilfsstoffe (z. B. Borsäure) ist bei geeigneten Si-Polymeren auch bei Raumtemperatur möglich. Nach der Abformung wird das Teil bei Temperaturen < 500°C keramisiert (z. B. durch Pyrolyse). Im Autoklaven wird das Polymer viskos und füllt damit die Zwischenräume und Poren im Werkstück auf. Bei der Vernetzung wird das Polymer fest.The finished wound or laminated part can be placed in an autoclave high pressure (e.g. 1.5 MPa) and temperature increase (e.g. 200 to 450 ° C) be networked. Networking via chemical auxiliaries (e.g. boric acid) is also possible at room temperature with suitable Si polymers. To the impression is ceramized at temperatures <500 ° C (e.g. by pyrolysis). The polymer becomes viscous in the autoclave and thus fills the Gaps and pores in the workpiece. With networking, it will Polymer solid.

Die Pyrolyse bewirkt eine Abspaltung organischer Gruppen und die Bildung eines keramischen Produkts, überwiegend SiC aus Silanen, Carbosilanen und Vinylsilanen, Si3N4 aus Silazanen und SiC mit SiO2 aus Siloxanen. Das Pyrolyseprodukt verbindet die Pulverpartikel des Schlickers und die Fasern. Eine Pyrolyse unter Druck bringt eine geringe Verbesserung der keramischen Ausbeute, rechtfertigt jedoch kaum den erhöhten apparativen Aufwand. Die Pyrolyse kann ohne den Einsatz kostenintensiver Formwerkzeuge und ohne Verzug der Strukturteile durchgeführt werden.Pyrolysis causes organic groups to split off and a ceramic product to form, predominantly SiC from silanes, carbosilanes and vinylsilanes, Si 3 N 4 from silazanes and SiC with SiO 2 from siloxanes. The pyrolysis product connects the powder particles of the slip and the fibers. Pyrolysis under pressure brings a slight improvement in the ceramic yield, but hardly justifies the increased outlay on equipment. The pyrolysis can be carried out without the use of expensive molds and without warping the structural parts.

Alternativ zur direkten Formgebung auf dem Wickelkern kann das Prepreg auch nach dem Trocknen vom Kern abgenommen werden. Die getrockneten Teile können durch Lösungsmittelzusatz wieder biegsam gemacht und zu Formteilen laminiert werden, bevor sie ausgehärtet und pyrolysiert werden. As an alternative to direct shaping on the winding core, the prepreg can be used can also be removed from the core after drying. The dried ones Parts can be made flexible again by adding solvents Molded parts are laminated before they are cured and pyrolyzed.  

Die Formteile sind nach dem Aushärten formstabil.The molded parts are dimensionally stable after curing.

Das keramische Endprodukt ist gut mechanisch bearbeitbar und kann, falls er­ forderlich, mit einer keramischen Beschichtung versehen werden.The ceramic end product is easy to machine and if it can required to be provided with a ceramic coating.

In Abhängigkeit von der Pyrolysetemperatur und dem gewählten Si-Polymer kann eine Beständigkeit des keramischen Formteils gegen Temperaturen von mehr als 1400°C erreicht werden. Das Formteil besitzt ein geringes spezifi­ sches Gewicht (< 2,5 g/cm3), ist bearbeitbar zum Beispiel mittels Drehen, Fräsen, Sägen, Bohren und selbsttragend.Depending on the pyrolysis temperature and the selected Si polymer, resistance of the ceramic molded part to temperatures of more than 1400 ° C. can be achieved. The molded part has a low specific weight (<2.5 g / cm 3 ), can be machined, for example, by turning, milling, sawing, drilling and self-supporting.

Die Matrix ist oxidationsbeständig. Bei Verwendung oxidationsbeständiger Fasern (SiC oder oxidische Fasern) ist kein zusätzlicher Oxidationsschutz not­ wendig. Der Werkstoff ist in hohem Maße schadenstolerant, selbst schwerste Schädigungen bleiben lokal begrenzt.The matrix is resistant to oxidation. When using more resistant to oxidation Fibers (SiC or oxidic fibers) do not require additional protection against oxidation agile. The material is highly tolerant of damage, even the heaviest Damage remains local.

Die Biegefestigkeit beträgt mehr als 100 MPa.The bending strength is more than 100 MPa.

Die chemische Zusammensetzung der Fasern und der Matrix ist so gewählt, daß eine Korrosionsbeständigkeit gewährleistet ist.The chemical composition of the fibers and the matrix is chosen so that corrosion resistance is guaranteed.

Die Vorteile der Erfindung liegen in dem geringen spezifischen Gewicht des keramischen Bauteils (< 2,5 g/cm3) und der Hochtemperaturfestigkeit, Oxida­ tionsresistenz sowie der Thermoschockbeständigkeit. Hinzu kommt die we­ sentlich verringerte thermische Leitfähigkeit des keramischen Verbundmate­ rials, die zu einer Reduzierung der Menge des bislang verwendeten Isolier­ materials führen kann und damit zu einer weiteren Gewichtsersparnis beiträgt.The advantages of the invention lie in the low specific weight of the ceramic component (<2.5 g / cm 3 ) and the high temperature resistance, oxidation resistance and thermal shock resistance. In addition, there is the significantly reduced thermal conductivity of the ceramic composite material, which can lead to a reduction in the amount of insulating material used to date and thus contributes to further weight savings.

Gegenüber anderen bekannten Verfahren der Herstellung keramischer Ver­ bundwerkstoffe (z. B. CVI von Fasergelegen) besitzt das hier gezeigte Verfah­ ren deutliche Vorteile bezüglich des Preises der Ausgangsmaterialien und der Fertigungsdauer sowie der Fertigungskosten.Compared to other known methods of producing ceramic ver Bund materials (e.g. CVI of fiber fabrics) has the procedure shown here significant advantages in terms of the price of the raw materials and the  Manufacturing time and manufacturing costs.

Ein Ausführungsbeispiel der Erfindung wird nachfolgend erläutert.An embodiment of the invention is explained below.

Es wurden nach der Lehre der Patentansprüche Rohre von einem maximalen Durchmesser von 300 mm und einer Länge von 420 mm bei einer Wand­ stärke von 1,5 mm hergestellt. Die Dimensionen unterliegen keinen prinzipiel­ len Beschränkungen. Untersuchungen der Biegefestigkeit der faserverstärk­ ten Keramik ergaben Werte von < 300 MPa für unidirektionale Gelege sowie < 150 MPa für bidirektionale Gelege. Mit unidirektional verstärkten Biegepro­ ben wurden bei 1100°C Prüftemperatur mittlere Festigkeiten von 400 MPa er­ reicht. Versuche an Gelegen, die in ihrem Aufbau der Rohrwand entsprechen, laufen derzeit.According to the teaching of the claims, pipes were of a maximum Diameter of 300 mm and a length of 420 mm for a wall 1.5 mm thick. The dimensions are not subject to any principle len restrictions. Investigations of the flexural strength of the fiber reinforcement ceramics gave values of <300 MPa for unidirectional fabrics as well <150 MPa for bidirectional fabrics. With unidirectionally reinforced bending pro Average strengths of 400 MPa were used at a test temperature of 1100 ° C enough. Tests on fabrics that correspond in structure to the pipe wall, are currently running.

Oxidationsversuche bis 700°C mit zyklischem Verlauf zeigen die Notwendig­ keit eines zusätzlichen Oxidationsschutzes für die C-Faser. Mit oxidationsbe­ ständigen Fasern (z. B. SiO2, Al2O3, Al2O3×SiO2× B2O3, SiC), konnte insbe­ sondere im Temperaturbereich bis 1100°C eine Oxidationsbeständigkeit bis 400 h nachgewiesen werden. Eine Langzeitbeständigkeit von mehreren 1000 h ist sehr wahrscheinlich und wird derzeit geprüft.Oxidation tests up to 700 ° C with a cyclical course show the necessity of an additional oxidation protection for the C-fiber. With fibers resistant to oxidation (e.g. SiO 2 , Al 2 O 3 , Al 2 O 3 × SiO 2 × B 2 O 3 , SiC), an oxidation resistance up to 400 h could be demonstrated, especially in the temperature range up to 1100 ° C. Long-term stability of several 1000 h is very likely and is currently being tested.

Eine mögliche Anwendung des Erfindungsgegenstands ist als Abgasrohr in den Triebwerken von Verkehrsflugzeugen oder Motoren von Kraftfahrzeugen. Eine weitere Anwendung ist die Führung von heißen Triebwerksgasen zum Zweck der Enteisung von gefährdeten Stellen an bemannten und unbemann­ ten Flugkörpern. Neben heißen Gasen können auch heiße und korrosive Flüs­ sigkeiten in diesen Röhren geführt werden.A possible application of the subject matter of the invention is as an exhaust pipe in the engines of commercial aircraft or engines of motor vehicles. Another application is the guidance of hot engine gases to the Purpose of defrosting vulnerable areas in manned and unmanned areas missiles. In addition to hot gases, hot and corrosive rivers can also occur liquids in these tubes.

Claims (5)

1. Verfahren zur Herstellung eines keramischen Faserverbundwerkstoffs, wobei die Fasern aus C oder SiC oder SiO2 oder Al2O3 oder Si3N4 oder Al2O3·SiO2·B2O3 oder Mischungen oder Verbindungen daraus bestehen, dadurch gekennzeichnet, daß die keramische Matrix aus einem präkeramischen Si-Polymer mittels Vernetzung und Pyro­ lyse gebildet wird und daß die Fasern oder ein daraus gebildetes Ge­ webe mit einer anorganischen Beschichtung aus C oder SiC oder TiC oder TiN in ein oder mehreren Lagen in den Verbundwerkstoff einge­ bracht werden.1. A process for producing a ceramic fiber composite material, wherein the fibers of C, or SiC, or SiO 2 or Al 2 O 3 or Si 3 N 4 or Al 2 O 3 · SiO 2 · B 2 O 3 or mixtures or compounds consist thereof, characterized characterized in that the ceramic matrix is formed from a preceramic Si polymer by means of crosslinking and pyrolysis, and that the fibers or a fabric formed therefrom with an inorganic coating of C or SiC or TiC or TiN are inserted into the composite material in one or more layers be brought. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Si- Polymer ein Silan, Carbosilan, Vinylsilan, Silazan oder Siloxan oder eine Verbindung oder eine Mischung daraus verwendet wird.2. The method according to claim 1, characterized in that as Si Polymer is a silane, carbosilane, vinylsilane, silazane or siloxane or a compound or a mixture thereof is used. 3. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß dem Si-Polymer ein keramisches Pulver aus Glas oder SiO2 oder SiC oder Si3N4 oder BN oder Al2O3 oder Mischungen oder Verbindungen dieser Stoffe zugemischt wird.3. The method according to claim 1 to 2, characterized in that a ceramic powder made of glass or SiO 2 or SiC or Si 3 N 4 or BN or Al 2 O 3 or mixtures or compounds of these substances is added to the Si polymer. 4. Verfahren nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Fasern oder Gewebe mit der Mischung aus Si-Polymer und Pulver ("Schlicker") getränkt werden.4. The method according to claims 1 to 3, characterized in that the fibers or fabrics with the mixture of Si polymer and powder ("Slip") are soaked. 5. Verwendung von nach den Verfahren der Ansprüche 1 bis 4 hergestell­ ten Produkte als Heißgasrohr für Triebwerke.5. Use of manufactured according to the method of claims 1 to 4 products as hot gas pipes for engines.
DE4016052A 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube Granted DE4016052A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4016052A DE4016052A1 (en) 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4016052A DE4016052A1 (en) 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube

Publications (2)

Publication Number Publication Date
DE4016052A1 DE4016052A1 (en) 1991-11-21
DE4016052C2 true DE4016052C2 (en) 1992-08-06

Family

ID=6406738

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4016052A Granted DE4016052A1 (en) 1990-05-18 1990-05-18 Ceramic-fibre composite hot gas tube - with ceramic matrix formed from silicon polymer and fibres of inorganic materials or mixts., used for e.g. vehicle exhaust tube

Country Status (1)

Country Link
DE (1) DE4016052A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202804A1 (en) * 1992-01-31 1993-08-05 Man Technologie Gmbh Fibre composite ceramic article with durable surface - made by applying ceramic foil or consolidation material onto article surface
DE19645634C2 (en) * 1996-11-06 2003-07-03 Hermsdorfer Inst Tech Keramik Ceramic-like, partially pyrolyzed composite material and process for its production
DE19655214C2 (en) * 1996-11-06 2003-11-20 Hermsdorfer Inst Tech Keramik Composites of organic and inorganic substances with ceramic properties,

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
CA2084243A1 (en) * 1991-12-20 1993-06-21 Daniel R. Petrak Ceramic matrix composites and method for making same
DE4303016C2 (en) * 1993-02-03 1995-07-27 Dornier Gmbh Ceramic fiber composite
US6063327A (en) * 1996-12-18 2000-05-16 Raytheon Company Method for making high yield-low carbon ceramic via polysilazane
FR2757902B1 (en) 1996-12-26 1999-03-26 Aerospatiale DEVICE AND METHOD FOR THE THERMAL PROTECTION OF A SURFACE FROM A THERMALLY AND MECHANICALLY AGGRESSIVE ENVIRONMENT
DE10325030B4 (en) * 2003-06-02 2012-09-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Exhaust system for a motor vehicle
US8859037B2 (en) * 2005-01-12 2014-10-14 The Boeing Company Method for manufacturing ceramic matrix composite structures
US10279924B2 (en) 2017-05-12 2019-05-07 Bell Helicopter Textron Inc. Engine exhaust duct mounting assembly
IT201700089430A1 (en) 2017-08-03 2019-02-03 Petroceramics S P A PRE-IMPREGIATED FIBRO-REINFORCED COMPOSITE MATERIAL AND MANUFACTURED OBTAINED BY FORMING AND COMPLETE HARDENING OF SUCH PRE-IMPREGNATED FIBER-REINFORCED COMPOSITE MATERIAL
IT201700089373A1 (en) * 2017-08-03 2019-02-03 Petroceramics S P A PRE-IMPREGIATED FIBER-REINFORCED COMPOSITE MATERIAL AND FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL OBTAINED BY FORMING AND NEXT PYROLYSIS OF SUCH PRE-IMPREGNATED MATERIAL

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2119777B (en) * 1982-01-21 1985-07-10 Nippon Carbon Co Ltd Process for the preparation of sintered bodies
US4869943A (en) * 1985-01-17 1989-09-26 Norton Company Fiber-reinforced silicon nitride ceramics
FR2632631B1 (en) * 1988-06-09 1992-09-04 Atochem INTERMEDIATE MATERIAL FOR PROCESSING CERAMIC PRECURSORS MEANS OF STORING CERAMIC PRECURSORS, THEIR MANUFACTURING PROCESS, PROCESSING THE INTERMEDIATE MATERIAL

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4202804A1 (en) * 1992-01-31 1993-08-05 Man Technologie Gmbh Fibre composite ceramic article with durable surface - made by applying ceramic foil or consolidation material onto article surface
DE19645634C2 (en) * 1996-11-06 2003-07-03 Hermsdorfer Inst Tech Keramik Ceramic-like, partially pyrolyzed composite material and process for its production
DE19655214C2 (en) * 1996-11-06 2003-11-20 Hermsdorfer Inst Tech Keramik Composites of organic and inorganic substances with ceramic properties,

Also Published As

Publication number Publication date
DE4016052A1 (en) 1991-11-21

Similar Documents

Publication Publication Date Title
DE69909714T2 (en) Composite materials with ceramic matrix
EP0913373B1 (en) Ceramic composite reinforced with carbon fibers
DE4030529C2 (en)
DE4016052C2 (en)
DE60307254T2 (en) PROTECTION OF COMPOSITE MATERIALS AGAINST OXIDATION
Chung Composite materials: functional materials for modern technologies
DE69531552T2 (en) PROTECTION COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF
DE60130688T2 (en) METHOD FOR THE PRODUCTION OF SIC FIBER REINFORCED SIC COMPOUND MATERIAL USING A HOT PRESSURE
DE3037199C2 (en) Process for the production of shaped bodies made of silicon carbide or shaped bodies made of graphite or graphite-like material with a surface made of silicon carbide
DE2627993C2 (en) Process for the production of silicon carbide
DE3922539C2 (en)
DE2206700A1 (en) METHOD FOR MANUFACTURING FIBER-REINFORCED COMPOSITE BODIES
CN102659441B (en) Composite structure prestressed tendon reinforced ceramic matrix composite and producing method thereof
DE2648459A1 (en) METHOD FOR MANUFACTURING SILICON CARBIDE FIBER-REINFORCED COMPOSITE MATERIAL
DE4113061A1 (en) Composite material and method for its production
DE69909950T2 (en) Composite with a ceramic matrix and method for changing the dielectric properties of a composite with a ceramic matrix
EP0759414A2 (en) Ceramic fibers in the system silicon-boron-nitrogen-carbon
DE4016569A1 (en) SILICON OXY CARBIDE GLASS AND METHOD FOR THE PRODUCTION THEREOF
EP0541917A2 (en) Method of making oxidation resistant CFC-based articles, preferably for space-flights
DE102015201119B4 (en) Production process of ceramic matrix semi-finished products
DE3426911C2 (en)
DE3620178C2 (en)
EP1515835A1 (en) Honeycomb-shaped carbon element
DE19616217A1 (en) Protective coating used to improve oxidation resistance of carbon materials
EP0672637B1 (en) Fibre composite material having a ceramic matrix and method of making it

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DORNIER GMBH, 88090 IMMENSTAAD, DE

8339 Ceased/non-payment of the annual fee