DE3929453C1 - Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres - Google Patents

Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres

Info

Publication number
DE3929453C1
DE3929453C1 DE19893929453 DE3929453A DE3929453C1 DE 3929453 C1 DE3929453 C1 DE 3929453C1 DE 19893929453 DE19893929453 DE 19893929453 DE 3929453 A DE3929453 A DE 3929453A DE 3929453 C1 DE3929453 C1 DE 3929453C1
Authority
DE
Germany
Prior art keywords
shaped groove
perot interferometer
fabry
gap
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE19893929453
Other languages
German (de)
Inventor
Peter Dr. 8059 Langenpreising De Deimel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19893929453 priority Critical patent/DE3929453C1/en
Application granted granted Critical
Publication of DE3929453C1 publication Critical patent/DE3929453C1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • G02B6/29359Cavity formed by light guide ends, e.g. fibre Fabry Pérot [FFP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/266Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

The Faser-Fabry-Perot interferometer has two coaxially arranged optical fibres. One set of their end-faces form a variable gap, the other end-faces being reflective. An element variable in length e.g. piezoelectric element is provided for reciprocal axial sliding and change of the gap distance. The optical fibres (5.1, 5.2) are arranged in a V-shaped groove (2) of a plate-shaped substrate (1) and fixed in place. A slot (3) is formed at right angles to the groove at the region of the gap (5.3). The regions of the substrate separated by the slot are movable by the variable length element in the direction of the groove. ADVANTAGE - Easily adjustable. Gap distance variable with lowest possible altenuation.

Description

Die Erfindung betrifft ein Faser-Fabry-Perot-Interferometer mit zwei ko­ axial ausgerichteten Lichtleitfasern, deren eine Stirnflächen einen va­ riablen Spalt miteinander bilden, deren andere Stirnflächen reflek­ tierend ausgebildet sind und die mit einem längenveränderlichen Element zur gegenseitigen axialen Verschiebung und damit Änderung des Spaltab­ standes verbunden sind.The invention relates to a fiber Fabry-Perot interferometer with two ko axially aligned optical fibers, one end face of a va form a stable gap with one another, the other end faces of which reflect are trained and with a variable-length element for mutual axial displacement and thus changing the gap tab are connected.

Ein derartiges Faser-Fabry-Perot-Interferometer ist aus der EP 02 35 801 A2 bekannt, welches dadurch hergestellt wird, daß eine Lichtleitfaser innerhalb ihrer Mantelschicht (Coating) gebrochen wird, ohne daß die Mantelschicht durchtrennt wird. Die beiden Lichtleitfaser­ stücke werden an ihren freien Enden abgemantelt und mit einem Piezoele­ ment, z. B. durch Klebung, mechanisch fest verbunden. Bei Anlegen einer Spannung an das Piezoelement werden die beiden Lichtleitfaserstücke aus­ einandergezogen bzw. zusammengeschoben, wobei sich der Spalt zwischen ihnen ändert. Die gegensinnige Bewegung der beiden Lichtleitfasern muß dabei entweder durch Reibung innerhalb der Ummantelung oder durch ela­ stische Verformung der Mantelschicht im Bereich des Spaltes kompensiert werden. Beides behindert eine rasche Veränderung des Spaltes. Weiterhin gestaltet sich die optische Justierung eines derartigen Fabry-Perot-In­ terferometers an die optische Lichtquelle bzw. an den optischen Detektor schwierig, da sämtliche Achsen möglichst genau miteinander übereinstim­ men müssen.Such a fiber Fabry-Perot interferometer is known from the EP 02 35 801 A2 known, which is produced in that a Optical fiber is broken within its cladding layer (coating), without cutting through the cladding layer. The two optical fibers pieces are stripped at their free ends and with a Piezoele ment, e.g. B. by gluing, mechanically firmly connected. When creating one The two optical fiber pieces are made of voltage to the piezo element pulled together or pushed together, the gap between them changes. The opposite movement of the two optical fibers must either by friction within the casing or by ela static deformation of the cladding layer in the area of the gap is compensated will. Both hinder a rapid change in the gap. Farther the optical adjustment of such a Fabry-Perot-In is designed terferometers to the optical light source or to the optical detector difficult because all axes coincide as exactly as possible must.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Faser-Fabry-Perot-Interfereometer der eingangs genannten Art zu schaffen, welches auf einfache Weise justierbar ist und dessen Spaltabstand mit möglichst geringer Dämpfung veränderbar ist. Diese Aufgabe wird durch ein nach den Merkmalen des Patentanspruchs 1 ausgebilde­ tes Faser-Fabry-Perot-Interferometer gelöst.The invention is therefore based on the object of a fiber Fabry-Perot interfereometer of the type mentioned to create which is easily adjustable and the gap distance with the lowest possible damping can be changed. This task is accomplished by a trained according to the features of claim 1 Fiber Fabry-Perot interferometer solved.

Die Erfindung und deren Vorteile werden im folgenden anhand des in den Figuren teilweise schematisch dargestellten Ausführungsbeispieles näher erläutert. Es zeigt The invention and its advantages are described below with reference to the in the Figures partially schematically illustrated embodiment explained. It shows  

Fig. 1 eine perspektivische Darstellung der Faserhaltung, Fig. 1 is a perspective view of the fiber attitude,

Fig. 2 eine Seitenansicht des faseroptischen Teils eines Faser-Fa­ bry-Perot-Interferometers und Fig. 2 is a side view of the fiber optic part of a fiber Fa-Perot interferometer and

Fig. 3 eine Aufsicht auf ein komplettes Faser-Fabry-Perot-Interferome­ ter. Fig. 3 is a plan view of a complete fiber Fabry-Perot interferome ter.

Zur Herstellung eines Ausführungsbeispieles eines erfindungsgemäßen Fa­ ser-Fabry-Perot-Interferometers wird in ein monokristallines Silizium­ substrat 1, eine V-förmige Nut 2 durch anisotropes Ätzen längs der [1,0,0]-Kristallrichtung erzeugt. Die Tiefe der V-förmigen Nut 2 sollte dabei mindestens dem Radius der verwendeten Lichtleitfaser entsprechen; je nachdem, ob dabei eine abgemantelte oder noch mit dem Mantel versehe­ ne Faser verwendet wird, bewegt sich die Tiefe der Grube im Bereich von 50 bis 500 µm. - Selbstverständlich läßt sich auch jede andere Methode zur Herstellung einer V-förmigen Nut, z. B. Mikrofräsen, verwenden. -To produce an embodiment of a Fa-Fabry-Perot interferometer according to the invention, a V-shaped groove 2 is produced in a monocrystalline silicon substrate 1 by anisotropic etching along the [1,0,0] crystal direction. The depth of the V-shaped groove 2 should at least correspond to the radius of the optical fiber used; depending on whether a stripped or still with the clad ne fiber is used, the depth of the pit ranges from 50 to 500 microns. - Of course, any other method for producing a V-shaped groove, for. B. use micro milling. -

In das Siliziumsubstrat 1 ist senkrecht zur V-förmigen Nut 2 ein Ein­ schnitt 3 vorgesehen, der das Substrat in zwei noch an einer Stelle mit­ einander verbundene Plattenhälften 1.1 und 1.2 teilt. Dadurch entsteht ein Justierelement für die Lichtleitfasern in Form eines U′s bzw. einer Stimmgabel. Auf der der V-förmigen Nut gegenüberliegenden Seite des Sub­ strats 1 ist ein Piezoelement 4 aufgebracht und derart mit den Platten­ teilen 1.1 und 1.2 verbunden, daß bei Anlegen einer Spannung an das Pie­ zoelement 4 der Spalt 3 verringert bzw. erweitert wird.In the silicon substrate 1 , a cut 3 is provided perpendicular to the V-shaped groove 2 , which divides the substrate into two still connected plate halves 1.1 and 1.2 at one point. This creates an adjusting element for the optical fibers in the form of a U's or a tuning fork. On the V-shaped groove opposite side of the sub strate 1 , a piezo element 4 is applied and so connected to the plates parts 1.1 and 1.2 that when a voltage is applied to the piezo element 4, the gap 3 is reduced or expanded.

Der Aufbau des in die Justiereinrichtung gemäß Fig. 1 eingebrachten faseroptischen Teils des Fa­ ser-Fabry-Perot-Interferometers ist in Fig. 2 dargestellt. Der eigentli­ che Faser-Fabry-Perot-Resonator 5 besteht dabei aus zwei Lichtleitfaser­ stücken 5.1 und 5.2, deren eine Stirnflächen 5.11 und 5.21 sich in einem geringen Abstand gegenüberstehen und einen variablen Spalt 5.3 bilden. Die jeweils gegenüberliegenden Stirnflächen der Faserstücke 5.1 und 5.2 sind mit jeweils einer Spiegelschicht 5.12 und 5.22 versehen, wobei der Reflexionskoeffizient die Finesse des Resonators beeinflußt. Zur Einkopp­ lung von Licht in den Resonator 5 ist eine Lichtleitfaser 6 vorgesehen, die mit einer nicht dargestellten Lichtquelle verbunden ist. Auf der der Lichtleitfaser 6 gegenüberliegenden Seite des Resonators 5 ist eine wei­ tere Lichtleitfaser 7 angeordnet, die mit einem ebenfalls nicht darge­ stellten optischen Detektor verbunden ist.The structure of the fiber-optic part of the fiber-Fabry-Perot interferometer introduced into the adjusting device according to FIG. 1 is shown in FIG. 2. The actual fiber-Fabry-Perot resonator 5 consists of two optical fiber pieces 5.1 and 5.2 , one end face 5.11 and 5.21 of which face each other at a short distance and form a variable gap 5.3 . The respective opposite end faces of the fiber pieces 5.1 and 5.2 are each provided with a mirror layer 5.12 and 5.22 , the reflection coefficient influencing the finesse of the resonator. For coupling light into the resonator 5 , an optical fiber 6 is provided, which is connected to a light source, not shown. On the opposite side of the optical fiber 6 of the resonator 5 , a white direct optical fiber 7 is arranged, which is connected to an optical detector, also not shown.

Die Lichtleitfasern 6, 5.1, 5.2 und 7 werden nun gemäß Fig. 3 derart in die V-förmige Nut 2 eingelegt, daß der Spalt 5.3 mit dem Einschnitt 3 in etwa zusammenfällt. Sämtliche Lichtleitfasern werden anschließend inner­ halb der V-förmigen Nut 2 durch einen Kleber fixiert, wobei jedoch der Spalt 3 bzw. 5.3 frei bleiben muß.The optical fibers 6, 5.1, 5.2 and 7 will now be shown in FIG. 3 so inserted into the V-shaped groove 2, that the gap coincides with the incision 3 in 5.3 approximately. All optical fibers are then fixed within half of the V-shaped groove 2 by an adhesive, but the gap 3 or 5.3 must remain free.

Die von dem Faser-Fabry-Perot-Inferferometer erfaßte Bandbreite, die der Resonator überstreichen soll, wird durch die Länge der beiden Faser­ stücke 5.1 und 5.2 bestimmt. Die Veränderung der Resonatorlänge wird zum einen durch den Spaltabstand 3 begrenzt, der vorzugsweise 50 µm betra­ gen sollte, und zum anderen durch die Elastizitätsgrenze des Substrats 1. Sollte die Reflexion an den Stirnflächen 5.11 und 5.21, die ohne spe­ zielle Behandlung der Faser etwa 4% beträgt, stören, so können diese bei­ den Flächen noch vor dem Einbau der Lichtleiterstücke entspiegelt werden.The bandwidth detected by the fiber Fabry-Perot inferferometer, which the resonator is supposed to sweep, is determined by the length of the two fiber pieces 5.1 and 5.2 . The change in the resonator length is limited on the one hand by the gap spacing 3 , which should preferably be 50 μm, and on the other hand by the elastic limit of the substrate 1 . If the reflection on the end faces 5.11 and 5.21 , which amounts to about 4% without special treatment of the fiber, disturbs them, they can be anti-reflective on the surfaces before the light guide pieces are installed.

Da sämtliche Lichtleiter in einer gemeinsamen V-förmigen Nut angeordnet sind, entfällt die Justierung der Lichtleiter bezüglich ihrer optischen Achsen. Da weiterhin im Bereich des Spaltes 5.3 zwischen den Lichtleit­ faserstücken 5.1 und 5.2 kein deren gegenseitige Verschiebung durch das Piezoelement behinderndes Medium vorhanden ist, ist die Reaktionsfähig­ keit und damit die Grenzfrequenz in der Verstellung des Spaltes sehr hoch.Since all light guides are arranged in a common V-shaped groove, there is no need to adjust the light guides with respect to their optical axes. Furthermore, since in the area of the gap 5.3 between the optical fiber pieces 5.1 and 5.2 there is no mutual displacement of the medium which obstructs the piezo element, the responsiveness and thus the limit frequency in the adjustment of the gap is very high.

Der Faser-Fabry-Perot-Interferometer läßt sich z. B. auch als Weggeber verwenden, wenn an Stelle des Piezoelementes eine Zug- oder Druckstange derart angebracht wird, daß diese auf zumindest einen Schenkel des U-förmigen Teils 1.1 oder 1.2 wirkt.The fiber Fabry-Perot interferometer can be used e.g. B. also use as a displacement sensor if a pull or push rod is attached in place of the piezo element such that it acts on at least one leg of the U-shaped part 1.1 or 1.2 .

Claims (4)

1. Faser-Fabry-Perot-Interferometer mit zwei koaxial ausgerichteten Lichtleitfasern, deren eine Stirnflächen einen variablen Spalt miteinan­ der bilden, deren andere Stirnflächen reflektierend ausgebildet sind und die mit einem längenveränderlichen Element zur gegenseitigen axialen Verschiebung und damit Änderung des Spaltabstandes verbunden sind, da­ durch gekennzeichnet, daß die Lichtleitfasern (5.1, 5.2) in einer V-förmigen Nut (2) eines plattenförmigen Substrats (1) angeordnet und darin fixiert sind, welches im Bereich des Spaltes (5.3) zwischen den Lichtleitfasern (5.1, 5.2) einen senkrecht zur V-förmigen Nut (2) ver­ laufenden Einschnitt (3) aufweist und welches mit dem längenveränderli­ chen Element (4) derart verbunden ist, daß die durch den Einschnitt (3) getrennten Bereiche (1.1, 1.2) des Substrats (1) in Richtung der V-för­ migen Nut (2) gegensinnig verschiebbar sind.1.Fiber Fabry-Perot interferometer with two coaxially aligned optical fibers, one end face of which forms a variable gap with one another, the other end faces of which are reflective and which are connected to a variable-length element for mutual axial displacement and thus change in the gap distance, since characterized in that the optical fibers ( 5.1, 5.2 ) are arranged and fixed in a V-shaped groove ( 2 ) of a plate-shaped substrate ( 1 ) which is vertical in the area of the gap ( 5.3 ) between the optical fibers ( 5.1, 5.2 ) to the V-shaped groove ( 2 ) has a running incision ( 3 ) and which is connected to the length-changeable element ( 4 ) in such a way that the regions ( 1.1, 1.2 ) of the substrate ( 1 ) separated by the incision ( 3 ) Direction of the V-shaped groove ( 2 ) can be moved in opposite directions. 2. Faser-Fabry-Perot-Interferometer nach Anspruch 1, dadurch ge­ kennzeichnet, daß sich die V-förmige Nut (2) über das gesamte Substrat (1) erstreckt, daß die Länge der beiden Lichtleitfasern (5.1, 5.2) ins­ gesamt kürzer als die Länge der V-förmigen Nut (2) ist und daß an beiden Enden der V-förmigen Nut (2) je eine weitere Lichtleitfaser (6, 7) zur Ein- bzw. Auskopplung von Licht angeordnet ist.2. Fiber Fabry-Perot interferometer according to claim 1, characterized in that the V-shaped groove ( 2 ) extends over the entire substrate ( 1 ), that the length of the two optical fibers ( 5.1, 5.2 ) is shorter overall than the length of the V-shaped groove ( 2 ) and that at each end of the V-shaped groove ( 2 ) there is a further optical fiber ( 6, 7 ) for coupling or decoupling light. 3. Faser-Fabry-Perot-Interferometer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Substrat (1) aus einem monokristallinen, aniso­ trop ätzbaren Material besteht.3. Fiber Fabry-Perot interferometer according to claim 1 or 2, characterized in that the substrate ( 1 ) consists of a monocrystalline, anisotropically etchable material. 4. Faser-Fabry-Perot-Interferometer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das längenveränderliche Element ein Piezoelement (4) ist.4. Fiber Fabry-Perot interferometer according to one of claims 1 to 3, characterized in that the variable-length element is a piezo element ( 4 ).
DE19893929453 1989-09-05 1989-09-05 Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres Expired - Lifetime DE3929453C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19893929453 DE3929453C1 (en) 1989-09-05 1989-09-05 Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19893929453 DE3929453C1 (en) 1989-09-05 1989-09-05 Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres

Publications (1)

Publication Number Publication Date
DE3929453C1 true DE3929453C1 (en) 1991-03-21

Family

ID=6388664

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19893929453 Expired - Lifetime DE3929453C1 (en) 1989-09-05 1989-09-05 Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres

Country Status (1)

Country Link
DE (1) DE3929453C1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002810A1 (en) * 1992-07-17 1994-02-03 Institut für Physikalische Hochtechnologie e.V. Fibre-optic sensor based on the fabry-perot principle
EP0893715A1 (en) * 1997-07-21 1999-01-27 European Atomic Energy Community (EURATOM) Method of producing an optical fibre resonant cavity, in particular for an interferometric sensor, and optical fibre resonant cavity produced thereby
WO2002029455A2 (en) * 2000-09-29 2002-04-11 Corning Incorporated A tunable optical component
EP1416246A2 (en) * 2002-11-04 2004-05-06 Harris Corporation Fiber optic Fabry-Perot interferometer and associated methods
DE102006002605A1 (en) 2006-01-13 2008-07-24 Technische Universität Berlin Optical module for use as e.g. wavelength filter, has electro-optic layer attached to surface such that light transmitted through Fabry-Perot layer structure is modulated in its intensity by applying modulator voltage at electrodes
EP2573600A1 (en) * 2011-09-21 2013-03-27 Honeywell International Inc. Systems and methods for a hollow core optical fiber resonant filter
CN112097680A (en) * 2020-09-15 2020-12-18 安徽大学 Surface topography testing device and testing method based on multi-cavity FP interferometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235801A2 (en) * 1986-03-05 1987-09-09 AT&T Corp. Fiber fabry-perot etalon
EP0300640A2 (en) * 1987-07-15 1989-01-25 AT&T Corp. Optical communication systems using Fabry-Perot cavities

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235801A2 (en) * 1986-03-05 1987-09-09 AT&T Corp. Fiber fabry-perot etalon
EP0300640A2 (en) * 1987-07-15 1989-01-25 AT&T Corp. Optical communication systems using Fabry-Perot cavities

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002810A1 (en) * 1992-07-17 1994-02-03 Institut für Physikalische Hochtechnologie e.V. Fibre-optic sensor based on the fabry-perot principle
EP0893715A1 (en) * 1997-07-21 1999-01-27 European Atomic Energy Community (EURATOM) Method of producing an optical fibre resonant cavity, in particular for an interferometric sensor, and optical fibre resonant cavity produced thereby
WO1999005551A1 (en) * 1997-07-21 1999-02-04 European Atomic Energy Community (Euratom) Method of producing an optical fibre resonant cavity, in particular for an interferometric sensor, and optical fibre resonant cavity produced thereby
WO2002029455A2 (en) * 2000-09-29 2002-04-11 Corning Incorporated A tunable optical component
WO2002029455A3 (en) * 2000-09-29 2003-05-08 Corning Inc A tunable optical component
EP1416246A2 (en) * 2002-11-04 2004-05-06 Harris Corporation Fiber optic Fabry-Perot interferometer and associated methods
EP1416246A3 (en) * 2002-11-04 2004-12-29 Harris Corporation Fiber optic Fabry-Perot interferometer and associated methods
US6886365B2 (en) 2002-11-04 2005-05-03 Harris Corporation Fiber optic Fabry-Perot interferometer and associated methods
DE102006002605A1 (en) 2006-01-13 2008-07-24 Technische Universität Berlin Optical module for use as e.g. wavelength filter, has electro-optic layer attached to surface such that light transmitted through Fabry-Perot layer structure is modulated in its intensity by applying modulator voltage at electrodes
EP2573600A1 (en) * 2011-09-21 2013-03-27 Honeywell International Inc. Systems and methods for a hollow core optical fiber resonant filter
CN112097680A (en) * 2020-09-15 2020-12-18 安徽大学 Surface topography testing device and testing method based on multi-cavity FP interferometer

Similar Documents

Publication Publication Date Title
DE2363986C3 (en)
EP0592902B1 (en) Optical device having variable light transmission
DE3417164A1 (en) LIGHT LEAD DAMPER
DE19725720A1 (en) Optical isolator and wavelength multiplexer module with integrated optical isolator
DE2851667C2 (en)
DE2851679C2 (en) Process for the production of a branching element according to the beam splitter principle
DE2842276A1 (en) INPUT / OUTPUT ELEMENT
DE3929453C1 (en) Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres
DE3608018A1 (en) CONNECTING ELEMENT FOR ADHESIVE WAVE GUIDES AND METHOD FOR THE PRODUCTION THEREOF
DE3621669A1 (en) OPTICAL PRESSURE SENSOR
DE3205798C2 (en)
EP0388642A2 (en) Micromechanical element
EP0012901B1 (en) Method of manufacturing connectors for optical waveguides
EP0538633B1 (en) Connection between optical fibre and integrated optical waveguide and manufacturing process
EP0625272B1 (en) Method of producing a cover for an integrated optical circuit
WO1999024854A1 (en) Endpiece for optical fibres
EP0176820A2 (en) Connector part for separable plug connections of light wave guides
EP1203252B1 (en) Optical coupling device
EP1200866B1 (en) Optical coupling device
EP0251096B1 (en) Optical resonator for a laser
DE3711940A1 (en) MULTIPLE CONNECTORS FOR LIGHTWAVE GUIDES
DE3606682C1 (en) Optical fibre arrangement for microoptical grating multiplexers and demultiplexers
EP0524179B1 (en) Process for assembling a wave guide switch
EP0171664A1 (en) Coupling device for an optical fibre
WO2001007955A1 (en) Optical coupling device

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT, 80804 M

8320 Willingness to grant licenses declared (paragraph 23)
8339 Ceased/non-payment of the annual fee