DE3828005A1 - Encapsulated magnetoresistive component for floating (potential-free, voltageless) current measurement - Google Patents

Encapsulated magnetoresistive component for floating (potential-free, voltageless) current measurement

Info

Publication number
DE3828005A1
DE3828005A1 DE3828005A DE3828005A DE3828005A1 DE 3828005 A1 DE3828005 A1 DE 3828005A1 DE 3828005 A DE3828005 A DE 3828005A DE 3828005 A DE3828005 A DE 3828005A DE 3828005 A1 DE3828005 A1 DE 3828005A1
Authority
DE
Germany
Prior art keywords
sensor
chip
chip carrier
pins
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE3828005A
Other languages
German (de)
Inventor
Gunter Moehler
Fritz Dipl Phys Dr Sc Dettmann
Stephan Dipl Phys Dr Rer Linke
Uwe Dipl Phys Loreit
Peter Dipl Phys Dr Rer Pertsch
Manfred Kohlmeyer
Joachim Mitzner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zetex Neuhaus 98724 Neuhaus De GmbH
Original Assignee
Friedrich Schiller Universtaet Jena FSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Schiller Universtaet Jena FSU filed Critical Friedrich Schiller Universtaet Jena FSU
Publication of DE3828005A1 publication Critical patent/DE3828005A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Hall/Mr Elements (AREA)

Abstract

The invention includes an encapsulated magnetoresistive sensor which is suitable for floating measurement of direct and alternating currents in a wide frequency range. The chip with the magnetoresistive sensor is arranged in this case in an insulated fashion on a conductive chip carrier which is connected to at least two pins of the component and through which the current to be measured flows, with the result that its magnetic field can act on the sensor. The essence of the invention is to be seen in Figure 1. <IMAGE>

Description

Das magnetoresistive Bauelement wird zur potentialfreien Messung von Gleich- und Wechselstrom in einem weiten Frequenzbereich eingesetzt. Weiterhin kann es zur Leistungsmessung angewendet werden.The magnetoresistive component becomes a floating measurement of direct and alternating current in a wide frequency range used. It can also be used to measure performance will.

Anordnungen zum Einsatz magnetoresistiver Sensoren zur poten­ tialfreien Strommessung sind bekannt. In der Anordnung muß dafür gesorgt werden, daß das Magnetfeld des zu messenden Stromes in definierter Weise auf den Sensor einwirkt und so eine sichere Stromanzeige gewährleistet wird. Nach der Patentschrift DD WP 1 55 220 wird das dadurch erreicht, daß über den magneto­ resistiven Widerstandsschichtstreifen des Sensors, von diesen durch eine Dünnschichtisolation getrennt, ein Dünnschichtsteuer­ leiter angeordnet ist, der den zu messenden Strom führt. Diese Anordnung ist nur mit einem hohen Aufwand auf dünnschichttechno­ logischem Gebiet herstellbar und weist als Nachteile einen zu hohen Eingangswiderstand und eine zu geringe Isolationsfestig­ keit zwischen Steuerleiter und magnetoresistivem Sensor auf. In einer anderen Anordnung zur potentialfreien Strommessung (VALVO Technische Information 8 40 323) ist um den Stromleiter herum ein weichmagnetischer Ringkern angebracht. In einem Luft­ spalt, der den Ringkern unterbricht, befindet sich der magneto­ resistive Sensor. Damit ist das Magnetfeld am Ort des Sensors näherungsweise unabhängig von der genauen Position des Strom­ leiters im Ringkern. Diese Anordnung erfordert außer dem mit der Ringherstellung verbundenen Aufwand auch eine Sensorbauform, die die Anwendung genügend schmaler Luftspalte zuläßt und die wegen der notwendigerweise in der Chipfläche des magnetoresistiven Sensors liegenden Magnetfeldrichtung schwierig herstellbar ist. Weiterhin wird, bedingt durch die Eigenschaften des Ringkernes, die obere Frequenzgrenze der Strommessung herabgesetzt. Durch die kaum vermeidbare Hysterese des Ringkernes traten anderer­ seits besonders im niederfrequenten Bereich störende hystereti­ sche Abschnitte in der Sensorkennlinie auf, die die eindeutige Zuordnung des Stromes zum Sensorausgangssignal unmöglich machen.Arrangements for the use of magnetoresistive sensors for poten tial-free current measurement are known. In the arrangement must for this be ensured that the magnetic field of the current to be measured in acts in a defined manner on the sensor and thus a safe Current display is guaranteed. According to the patent DD WP 1 55 220 this is achieved by using the magneto resistive resistance layer strips of the sensor, of these separated by thin film insulation, a thin film control arranged conductor that carries the current to be measured. These Arrangement is only with great effort on thin-film techno logical area and assigns one as disadvantages high input resistance and insufficient insulation strength between control conductor and magnetoresistive sensor. In another arrangement for floating current measurement (VALVO Technical Information 8 40 323) is around the conductor a soft magnetic toroid is attached around it. In an air gap that interrupts the toroid is the magneto resistive sensor. So the magnetic field is at the location of the sensor approximately regardless of the exact position of the stream conductor in the toroid. This arrangement also requires that with the Ring production also involves a sensor design that allows the use of sufficiently narrow air gaps and because which is necessarily in the chip area of the magnetoresistive  Sensor lying magnetic field direction is difficult to manufacture. Furthermore, due to the properties of the toroid, the upper frequency limit of the current measurement is reduced. By the hardly avoidable hysteresis of the toroid occurred to others hystereti, which are particularly annoying in the low-frequency range sections in the sensor characteristic curve that show the unique Make it impossible to assign the current to the sensor output signal.

Der Erfindung liegt die Aufgabe zugrunde, ein magnetoresistives Bauelement zur potentialfreien Strommessung anzugeben, das über einen genügend geringen Eingangswiderstand verfügt, das eine ausreichende Isolationsfestigkeit zwischen Eingang und Ausgang aufweist, dessen Einsatzfrequenz nicht durch nicht notwendig mit dem Meßprinzip zusammenhängende Effekte eingeschränkt ist und das keine zusätzlichen aufwendigen Herstellungsschritte der Dünnschichttechnologie benötigt. Die Aufgabe wird dadurch ge­ löst, daß bei einem verkapselten magnetoresistiven Bauelement mit einem Chipträger, der ganz oder teilweise aus leitfähigem Material besteht erfindungsgemäß der leitfähige Teil des Chip­ trägers von einem darüber befindlichen magnetoresistiven Sensor isoliert, mit mindestens zwei Pins des Bauelementes verbunden und vom zu messenden Strom durchflossen ist. Bei dieser Anord­ nung wird der magnetoresistive Sensor durch das Magnetfeld des Stromes im leitfähigen Teil des Chipträgers ausgesteuert. Chip­ träger und Pins des Bauelementes bilden entweder ein zusammen­ hängendes Teil des gleichen Materials oder sie sind durch Bond­ drähte miteinander verbunden. Damit ist ein genügend geringer Eingangswiderstand gewährleistet. Wegen der niedrigen Eingangs­ induktivität gibt es keine Einschränkung der Einsatzfrequenz durch die Einkopplung. Die Isolationsfestigkeit wird beispiels­ weise durch eine thermisch erzeugte SiO2-Schicht auf dem Sub­ trat, auf dem sich der Sensor befindet, oder zusätzlich durch eine isolierende Folie zwischen Chip und Chipträger erreicht. In einer besonderen Ausführungsform des Bauelementes ist eine symmetrische und im Bereich des Sensors homogene Magnetfeldver­ teilung, die für die maximale Sensorempfindlichkeit notwendig ist, dadurch realisiert, daß jedes Ende des Chipträgers mit zwei gegenüberliegenden Pins verbunden ist und der Strom jeweils über beide Pins eingesetzt wird. Dabei ist die Breite des Chipträ­ gers im Bereich des Sensors vorzugsweise gleich der Sensorbrei­ te.The invention has for its object to provide a magnetoresistive component for potential-free current measurement, which has a sufficiently low input resistance, has sufficient insulation strength between the input and output, the frequency of use is not limited by effects not necessarily related to the measuring principle and that no additional elaborate manufacturing steps of thin-film technology required. The object is achieved in that in an encapsulated magnetoresistive component with a chip carrier, which consists entirely or partially of conductive material according to the invention, the conductive part of the chip carrier is isolated from an overlying magnetoresistive sensor, connected to at least two pins of the component and from measuring current is flowing through. In this arrangement, the magnetoresistive sensor is driven by the magnetic field of the current in the conductive part of the chip carrier. Chip carriers and pins of the component either form a coherent part of the same material or they are connected to each other by bond wires. This ensures a sufficiently low input resistance. Because of the low input inductance, there is no restriction on the operating frequency due to the coupling. The insulation strength is achieved, for example, by a thermally generated SiO 2 layer on the substrate on which the sensor is located, or additionally by an insulating film between the chip and the chip carrier. In a special embodiment of the component, a symmetrical and homogeneous magnetic field distribution in the area of the sensor, which is necessary for the maximum sensor sensitivity, is realized in that each end of the chip carrier is connected to two opposite pins and the current is used via both pins. The width of the chip carrier in the area of the sensor is preferably the same as the sensor width.

Die Erfindung soll nachstehend an Ausführungsbeispielen näher erläutert werden. In der Zeichnung zeigtThe invention will be described in more detail below using exemplary embodiments are explained. In the drawing shows

Fig. 1 die Aufsicht auf ein noch unverkapseltes Bauelement. Fig. 1 shows the supervision of a still unencapsulated component.

Die Zeichnung ist nicht maßstäblich. Insbesondere sind der Siliziumchip mit dem Sensor 3 und die auf ihm befindlichen magnetoresistiven Dünnschichtwiderstände 4 der deutlichen Darstellung halber ver­ größert gezeichnet. Wirkliche Sensorchips haben Abmessungen von etwa 1 × 1 mm2, während das komplette Bauelement etwa eine Länge von 10 mm hat. In Fig. 1 bestehen der Chipträger 1 und die Pins für die Stromeinspeisung 2 sowie die Pins für den Sen­ soranschluß 7 aus gleichem leitfähigen Material. Die Pins für Stromeinspeisung 2 sind über Bonddrähte 5 mit dem Chipträger 1 niederohmig verbunden. Auf dem Chipträger 1 ist über einer iso­ lierten Folie 6 der Siliziumchip mit dem Sensor 3 angeordnet. Der Sensor ist eine Brückenschaltung aus vier magnetoresistiven Dünnschichtwiderständen 4, deren Längsrichtung mit der Längs­ richtung der gezeichneten Widerstände übereinstimmt. Die Dünn­ schichtwiderstände 4 sind vom Siliziumchip 3 zusätzlich durch eine in der Zeichnung nicht enthaltene SiO2-Schicht isoliert. Damit ist durch diese Doppelisolation eine genügende Spannungs­ festigkeit gegenüber dem stromleitenden Chipträger 1 gewährlei­ stet. Die Sensorbrücke ist über Bonddrähte 5 mit den Pins für den Sensoranschluß 7 kontaktiert. Bei Einspeisung des Meßstromes wird über dem Chipträger 1 am Ort des Chips mit dem Sensor 3 ein Magnetfeld in Richtung quer zur Längsausdehnung der magnetore­ sistiven Dünnschichtwiderstände 4 erzeugt, was zu einem entspre­ chenden Signal am Ausgang des magnetoresistiven Sensors führt. The drawing is not to scale. In particular, the silicon chip with the sensor 3 and the magnetoresistive thin-film resistors 4 located on it are shown enlarged for the sake of clarity. Real sensor chips have dimensions of approximately 1 × 1 mm 2 , while the complete component has a length of approximately 10 mm. In Fig. 1, the chip carrier 1 and the pins for the power supply 2 and the pins for the sensor connection 7 Sen consist of the same conductive material. The pins for current feed 2 are connected to the chip carrier 1 in a low-resistance manner via bond wires 5 . On the chip carrier 1 , the silicon chip with the sensor 3 is arranged over an insulating foil 6 . The sensor is a bridge circuit of four magnetoresistive thin film resistors 4 , the longitudinal direction of which corresponds to the longitudinal direction of the resistors shown. The thin film resistors 4 are additionally isolated from the silicon chip 3 by an SiO 2 layer not shown in the drawing. So that this double insulation is a sufficient voltage strength compared to the current-carrying chip carrier 1 guaran- teed. The sensor bridge is contacted with the pins for the sensor connection 7 via bonding wires 5 . When the measuring current is fed in, a magnetic field in the direction transverse to the longitudinal extension of the magnetoresistive thin-film resistors 4 is generated above the chip carrier 1 at the location of the chip with the sensor 3 , which leads to a corresponding signal at the output of the magnetoresistive sensor.

In einem anderen Ausführungsbeispiel der Erfindung bestehen der Chipträger 1 und die Pins für die Stromeinspeisung 2 zusammen­ hängend aus gleichem leitfähigem Material. Zur symmetrischen Verteilung des Magnetfeldes am Ort des Chips mit dem Sensor 3 ist der Chipträger 1 an beiden Enden mit je zwei gegenüberlie­ genden Pins für die Stromeinspeisung 2 verbunden. Damit auf den magnetoresistiven Sensor das maximal mögliche Feld bei einem ge­ gebenen Eingangsstrom wirkt und so die maximale Sensorempfind­ lichkeit realisiert wird, stimmen im Bereich des Chips mit dem Sensor 3 die Breite des Chips und des Chipträgers überein. In another exemplary embodiment of the invention, the chip carrier 1 and the pins for the current feed 2 are made of the same conductive material and hang together. For symmetrical distribution of the magnetic field at the location of the chip with the sensor 3 , the chip carrier 1 is connected at both ends to two pins lying opposite each other for the current feed 2 . So that the maximum possible field at a given input current acts on the magnetoresistive sensor and thus the maximum sensor sensitivity is realized, the width of the chip and the chip carrier match in the area of the chip with the sensor 3 .

Liste der verwendeten BezugszeichenList of the reference symbols used

1 Chipträger
2 Pin für Stromeinspeisung
3 Siliziumchip mit Sensor
4 Dünnschichtwiderstand
5 Bonddraht
6 isolierende Folie
7 Pin für Sensoranschluß
1 chip carrier
2 pin for power supply
3 silicon chip with sensor
4 thin film resistor
5 bond wire
6 insulating film
7 pin for sensor connection

Claims (7)

1. Verkapseltes magnetoresistives Bauelement zur potentialfreien Strommessung mit einem Chipträger (1), der ganz oder teilwei­ se aus leitfähigem Material besteht, gekennzeichnet dadurch, daß der leitfähige Teil des Chipträgers (1) von einem darüber befindlichen magnetoresistiven Sensor (3) isoliert, mit min­ destens zwei Pins (2) des Bauelementes verbunden und vom zu messenden Strom durchflossen ist.1. Encapsulated magnetoresistive component for potential-free current measurement with a chip carrier ( 1 ) which consists entirely or partially of conductive material, characterized in that the conductive part of the chip carrier ( 1 ) is isolated from a magnetoresistive sensor ( 3 ) located above it, with min at least two pins ( 2 ) of the component are connected and the current to be measured flows through. 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Isolation eine SiO2-Schicht auf dem Chip mit dem Sensor (3) ist.2. Arrangement according to claim 1, characterized in that the insulation is an SiO 2 layer on the chip with the sensor ( 3 ). 3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß sich zwischen dem Chip mit dem magnetoresistiven Sensor (3) und dem Chipträger (1) eine isolierende Folie (6) befindet.3. Arrangement according to claim 1, characterized in that there is an insulating film ( 6 ) between the chip with the magnetoresistive sensor ( 3 ) and the chip carrier ( 1 ). 4. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Chip mit dem magnetoresistiven Sensor (3) durch einen isolie­ renden Kleber mit dem Chipträger (1) verbunden ist.4. Arrangement according to claim 1, characterized in that the chip is connected to the magnetoresistive sensor ( 3 ) by an insulating adhesive with the chip carrier ( 1 ). 5. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzeugung einer symmetrischen Magnetfeldverteilung im Bauele­ ment der Chipträger (1) an jedem Ende mit zwei gegenüberlie­ genden Pins (2) verbunden ist.5. Arrangement according to claim 1, characterized in that for generating a symmetrical magnetic field distribution in the component of the chip carrier ( 1 ) is connected at each end to two pins ( 2 ) lying opposite. 6. Anordnung nach Anspruch 1 oder 5, dadurch gekennzeichnet, daß die Verbindung zwischen Chipträger (1) und Pins (2) durch Bonddrähte (5) hergestellt ist.6. Arrangement according to claim 1 or 5, characterized in that the connection between chip carrier ( 1 ) and pins ( 2 ) is made by bonding wires ( 5 ). 7. Anordnung nach Anspruch 1 oder 5, dadurch gekennzeichnet, daß die Breite des Chipträgers (1) direkt unter dem Chip mit dem magnetoresistiven Sensor (3) mit dessen Breite übereinstimmt.7. Arrangement according to claim 1 or 5, characterized in that the width of the chip carrier ( 1 ) directly below the chip with the magnetoresistive sensor ( 3 ) matches its width.
DE3828005A 1987-08-27 1988-08-18 Encapsulated magnetoresistive component for floating (potential-free, voltageless) current measurement Withdrawn DE3828005A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DD87306407A DD264091A1 (en) 1987-08-27 1987-08-27 CAPACITED MAGNETORESISTIVE COMPONENT FOR POTENTIAL-FREE CURRENT MEASUREMENT

Publications (1)

Publication Number Publication Date
DE3828005A1 true DE3828005A1 (en) 1989-03-09

Family

ID=5591862

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3828005A Withdrawn DE3828005A1 (en) 1987-08-27 1988-08-18 Encapsulated magnetoresistive component for floating (potential-free, voltageless) current measurement

Country Status (2)

Country Link
DD (1) DD264091A1 (en)
DE (1) DE3828005A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929452A1 (en) * 1989-09-05 1991-03-07 Asea Brown Boveri Potential-less current measurer suitable for monitoring and protection - comprises magnetic field ring sensor with substrate having central opening for current conductor
DE4036479A1 (en) * 1990-11-15 1992-05-21 Gimelli Produktions Ag Battery-operated electrical device e.g. tooth-brush, screwdriver, torch - has battery charge sensor preventing total drainage of sec. cell battery
DE4312760A1 (en) * 1993-04-20 1994-10-27 Lust Electronic Systeme Gmbh Terminal with integrated current measurement
WO1995025959A1 (en) * 1994-03-24 1995-09-28 Robert Bosch Gmbh Current intensity measuring instrument
DE19514342C1 (en) * 1995-04-18 1996-02-22 Siemens Ag Radio-interrogated current transducer for HV or MV appts.
DE4221385C2 (en) * 1992-06-30 2000-05-11 Zetex Neuhaus Gmbh Component for potential-free current measurement
US6356068B1 (en) 1997-09-15 2002-03-12 Ams International Ag Current monitor system and a method for manufacturing it
WO2003038452A1 (en) 2001-11-01 2003-05-08 Asahi Kasei Emd Corporation Current sensor and current sensor manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2064140A (en) * 1979-11-27 1981-06-10 Landis & Gyr Ag Measuring transducers for measuring magnetic fields

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2064140A (en) * 1979-11-27 1981-06-10 Landis & Gyr Ag Measuring transducers for measuring magnetic fields

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE Transactions on Magnetics, Vol. MAG-12, No. 6, 1976, S. 113-115 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929452A1 (en) * 1989-09-05 1991-03-07 Asea Brown Boveri Potential-less current measurer suitable for monitoring and protection - comprises magnetic field ring sensor with substrate having central opening for current conductor
DE4036479A1 (en) * 1990-11-15 1992-05-21 Gimelli Produktions Ag Battery-operated electrical device e.g. tooth-brush, screwdriver, torch - has battery charge sensor preventing total drainage of sec. cell battery
DE4221385C2 (en) * 1992-06-30 2000-05-11 Zetex Neuhaus Gmbh Component for potential-free current measurement
DE4312760A1 (en) * 1993-04-20 1994-10-27 Lust Electronic Systeme Gmbh Terminal with integrated current measurement
US5548208A (en) * 1993-04-20 1996-08-20 Lust Antriebstechnik Gmbh Terminal for connecting live conductors
WO1995025959A1 (en) * 1994-03-24 1995-09-28 Robert Bosch Gmbh Current intensity measuring instrument
DE19514342C1 (en) * 1995-04-18 1996-02-22 Siemens Ag Radio-interrogated current transducer for HV or MV appts.
US5966008A (en) * 1995-04-18 1999-10-12 Siemens Aktiengesellschaft Radio-interrogated, surface-wave technology current transformer for high-voltage systems
US6356068B1 (en) 1997-09-15 2002-03-12 Ams International Ag Current monitor system and a method for manufacturing it
WO2003038452A1 (en) 2001-11-01 2003-05-08 Asahi Kasei Emd Corporation Current sensor and current sensor manufacturing method
EP1443332A1 (en) * 2001-11-01 2004-08-04 Asahi Kasei EMD Corporation Current sensor and current sensor manufacturing method
EP1443332B1 (en) * 2001-11-01 2014-04-16 Melexis Technologies NV Current sensor

Also Published As

Publication number Publication date
DD264091A1 (en) 1989-01-18

Similar Documents

Publication Publication Date Title
DE68912720T2 (en) Magnetoresistive magnetic field sensor.
DE602005003777T2 (en) Surface mount integrated current sensor
DE4319146C2 (en) Magnetic field sensor, made up of a magnetic reversal line and one or more magnetoresistive resistors
DE4141386C2 (en) Hall sensor
DE4300605A1 (en) Bridge circuit
EP1436849A2 (en) Compact vertical hall sensor
EP0772046A2 (en) Magnetic field probe and current and/or energy probe
DE112009001350T5 (en) Arrangements for a current sensor circuit and integrated current sensor
DE2851330A1 (en) MAGNETORESISTIVE SEMICONDUCTOR ELEMENT
DE3308352A1 (en) MAGNETIC DETECTOR DEVICE
DE3828005A1 (en) Encapsulated magnetoresistive component for floating (potential-free, voltageless) current measurement
CH642477A5 (en) MESSWANDLER FOR POTENTIAL FREE MEASURING currents or voltages.
DE19650078A1 (en) Sensor element for determining magnetic field or current
DE4327458C2 (en) Sensor chip for high-resolution measurement of the magnetic field strength
DE4221385C2 (en) Component for potential-free current measurement
DE4219908C2 (en) Ferromagnetic resistance unit in full-way bridge circuit
DE3931780A1 (en) Magnetic FET with four resistors forming bridge - has ferromagnetic strip layers of each resistor with one or several sections for widening linear working range
DE3328958C2 (en)
DE4318716A1 (en) Magnetic field sensor in the form of a bridge circuit
WO2005083363A2 (en) Measuring device for linear position recording
DE2825397C2 (en) Measuring transducer for potential-free measurement of currents or voltages
DE3325148C2 (en)
DE4244083A1 (en) Semiconductor memory device with internal state determining circuit - has region of chip surface for alternative connections of internal circuit to ends of supply lines
DE3401488C1 (en) Measuring probe
DE3702780A1 (en) Integrated varistor protection device to protect an electronic component against the effects of electromagnetic fields or static charges

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: ZETEX NEUHAUS GMBH, 98724 NEUHAUS, DE

8110 Request for examination paragraph 44
8130 Withdrawal