DE3825155A1 - Vortex tube with ultrasonic inflow - Google Patents

Vortex tube with ultrasonic inflow

Info

Publication number
DE3825155A1
DE3825155A1 DE3825155A DE3825155A DE3825155A1 DE 3825155 A1 DE3825155 A1 DE 3825155A1 DE 3825155 A DE3825155 A DE 3825155A DE 3825155 A DE3825155 A DE 3825155A DE 3825155 A1 DE3825155 A1 DE 3825155A1
Authority
DE
Germany
Prior art keywords
vortex tube
gas
inflow
ultrasonic
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE3825155A
Other languages
German (de)
Inventor
Hagen Heckel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heckel Hagen 8893 Hilgertshausen-Tandern De
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE3825155A priority Critical patent/DE3825155A1/en
Publication of DE3825155A1 publication Critical patent/DE3825155A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0009Horizontal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/24Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/10Separation by diffusion
    • B01D59/18Separation by diffusion by separation jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/10Processes or apparatus using other separation and/or other processing means using combined expansion and separation, e.g. in a vortex tube, "Ranque tube" or a "cyclonic fluid separator", i.e. combination of an isentropic nozzle and a cyclonic separator; Centrifugal separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/90Separating isotopes of a component, e.g. H2, O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fluid Mechanics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A Laval (supersonic, convergent-divergent) nozzle is used in a vortex tube for the inflow of a gas into the rolling vessel (container). This results in a high inlet velocity of the gas in the rolling vessel, and the effect of this is a striking improvement in efficiency and thus, e.g. in the cooling effect or the separation of gases or isotopes.

Description

Die Erfindung geht von dem von G. Ranque beschriebenen Effekt aus (J. Physique Radium (7)4,1125).The invention proceeds from that described by G. Ranque Effect from (J. Physique Radium (7) 4.1125).

Dabei strömt Druckluft durch eine tangentiale Düse in einen Wälzbehälter ein, der aus einem beiderseits offenen Rohr besteht. Dabei stellt man fest, daß sich die Luft unter dem Einwirken der Zentrifugalkraft in einen warmen Anteil am Rohrmantel und einen kalten Anteil in der Rohrachse zerlegt. Rudolf Hilsch ver­ besserte diese Anordnung 1946 (Zeitschrift für Natur­ forschung I, S. 208-214 [1946]), um einen Kälteprozeß mit möglichst hohem Nutzeffekt zu erzielen. Dabei kam er auf eine Anordnung gemäß Fig. 1. Der durch die Düse eintretende Luftstrahl wird in eine schraubenförmige Drehströmung versetzt. Durch die Fliehkraft und die innere Reibung dieser Drehströmung wird das Gas im Bereich der Rohrachse stark expandiert und kühlt sich dabei ab (siehe Fig. 3). Durch innere Reibung gleichen sich die kinetischen Energien des kalten und heißen Gases an. Fig. 2 zeigt das Wirbelrohr im Längsschnitt. Durch eine Drossel auf der linken Seite erzwingt man das Entweichen des achsnahen, kälteren Gasanteils durch eine Blende nach rechts.Compressed air flows through a tangential nozzle into a roller container, which consists of a tube that is open on both sides. It is found that the air breaks down under the action of the centrifugal force into a warm portion of the tube shell and a cold portion in the tube axis. Rudolf Hilsch improved this arrangement in 1946 (Zeitschrift für Naturforschung I, pp. 208-214 [1946]) in order to achieve a cooling process with the greatest possible efficiency. He came up with an arrangement according to FIG. 1. The air jet entering through the nozzle is set into a helical three-way flow. Due to the centrifugal force and the internal friction of this rotary flow, the gas in the region of the tube axis is greatly expanded and cools down in the process (see FIG. 3). The kinetic energies of the cold and hot gas adjust due to internal friction. Fig. 2 shows the vortex tube in longitudinal section. A throttle on the left-hand side forces the colder gas component close to the axis to escape through a panel to the right.

Das Wirbelrohr trennt also einen homogenen Gasstrahl in einen Anteil mit tiefer und hoher Temperatur.The vortex tube thus separates a homogeneous gas jet in a portion with low and high temperature.

Genauso ist es möglich Gasgemische wegen der unter­ schiedlichen Dichte ihrer Komponenten zu trennen, sowie feste Partikel aus dem Gas auszuschleudern (z. B. Entrußung von Abgasen). Bei Verbrennungsprozessen können Wirbelrohre zur Erhöhung des Wirkungsgrades eingesetzt werden.It is also possible to use gas mixtures because of the below separate the different densities of their components,  as well as ejecting solid particles from the gas (e.g. Exhaust emissions). In combustion processes can use vortex tubes to increase efficiency be used.

In vorliegender Erfindung wird mittels einer Laval­ düse das Gas mit Überschallgeschwindigkeit in den Wälzbehälter eingeleitet (siehe Fig. 3).In the present invention, the gas is introduced into the rolling container at supersonic speed by means of a Laval nozzle (see FIG. 3).

Dadurch erreicht man 2 Effekte, die beide eine Ver­ besserung des Wirkungsgrades des Wirbelrohrs bewirken:This gives you two effects, both of which are ver Improve the efficiency of the vortex tube:

Zum Ersten wird bei gleichem Überdruck eine wesentlich höhere Eintrittsgeschwindigkeit erreicht. Dies bedingt größere kinetische Energie und dadurch stärkere Abkühlung bzw. höhere Zentrifugalkraft.First, with the same overpressure, one becomes essential reached higher entry speed. This requires greater kinetic energy and therefore stronger Cooling down or higher centrifugal force.

Zweitens erhöhen die im Wälzbehälter auftretenden Verdichtungsstöße die innere Reibung, und die kinetische Energie wird in verstärktem Maß von den achsfernen Schichten abgegeben.Second, increase those that occur in the rolling container Shocks the internal friction, and the kinetic energy is increased by the delivered off-axis layers.

Durch diese Erfindung wird die Wirkung des Wirbelrohrs sowohl als Kälteprozeß als auch bei der Trennung von Gas- und Isotopengemischen entscheidend verbessert.By this invention the effect of the vortex tube both as a cold process and in the separation of Gas and isotope mixtures significantly improved.

Ein Ausführungsbeispiel für eine Kühlung mit Hilfe eines Wirbelrohrs sei unter Bezugnahme auf Fig. 4 erläutert. Bei modernen Verkehrsflugzeugen wird die Passagierkabine druckbelüftet. Dazu entnimmt man den Triebwerken Druckluft im Bereich des Verdichters. Diese Verdichterzapfluft weist Temperaturen um 250°C auf und muß deshalb zunächst gekühlt werden. Diese Kühlung soll mit einem Wirbelrohr gemäß Anordnung Fig. 4 durchgeführt werden. Die heiße Zapfluft wird zuerst durch den Wärmetauscher (1) geleitet, in dem sie durch Kühlluft aus der Umgebung vorgekühlt wird. Im Wirbel­ rohr (2) wird sie nun in einen heißen und einen kalten Anteil getrennt. Im Mischventil (5) werden anschließend der heiße und kalte Luftstrom entsprechend den Bedürf­ nissen der Klimatisierung wieder gemischt.An exemplary embodiment for cooling with the aid of a vortex tube will be explained with reference to FIG. 4. In modern commercial aircraft, the passenger cabin is pressurized. To do this, compressed air is drawn from the engines in the area of the compressor. This compressor bleed air has temperatures of around 250 ° C and must therefore first be cooled. This cooling is to be carried out with a vortex tube according to the arrangement in FIG. 4. The hot bleed air is first passed through the heat exchanger ( 1 ), where it is pre-cooled by cooling air from the surroundings. In the vortex tube ( 2 ) it is now separated into a hot and a cold portion. In the mixing valve ( 5 ), the hot and cold air flow is then mixed again according to the needs of the air conditioning.

Überschüssige Heißluft wird vor dem Wärmetauscher (1) wieder in den Kreislauf eingeleitet. Ein Wasser­ abscheider (3) im Kaltluftkanal fällt bei der Ab­ kühlung entstandene Wassertröpfchen aus. Ein integrierter Temperaturfühler gibt Signale an das Ventil (4), über das bei Bedarf Heißluft zugemischt werden kann, um Eisbildung im Kaltluftkanal und im Wasserabscheider zu vermeiden.Excess hot air is reintroduced into the circuit before the heat exchanger ( 1 ). A water separator ( 3 ) in the cold air duct precipitates water droplets that occur during cooling. An integrated temperature sensor sends signals to the valve ( 4 ), via which hot air can be added if necessary to prevent ice formation in the cold air duct and in the water separator.

Man beachte die erwünschte Rückwirkung des Mischventils (5) auf die Wirkung des Wirbelrohrs (2). So wird bei reduzierter Abnahme von heißer Luft die Abgabe von kalter Luft durch die Blendenöffnung erhöht.Note the desired reaction of the mixing valve ( 5 ) to the effect of the vortex tube ( 2 ). With reduced consumption of hot air, the release of cold air through the aperture is increased.

Die Vorteile dieser Ausführung gegenüber derjenigen mittels einer Expansionsturbine, wie sie zur Zeit zur Anwendung kommt, sind:The advantages of this design over that by means of an expansion turbine, as is currently the case are used are:

  • 1. Wegfall eines Wärmetauschers1. Elimination of a heat exchanger
  • 2. Geringeres Gewicht, dadurch größere Nutzlast2. Lighter weight, therefore greater payload
  • 3. Keine beweglichen Teile, dadurch zuverlässiger 3. No moving parts, therefore more reliable  
  • 4. Weniger Leistungsverlust der Triebwerke durch geringere Zapfluftentnahme.4. Less loss of power from the engines less bleed air extraction.

Claims (1)

Wirbelrohr zum Erzeugen von tiefen und hohen Temperaturen sowie zur Trennung von Gas- und Isotopengemischen und zur Abtrennung von festen Partikeln aus einer Gasströmung, dadurch gekennzeichnet, daß das Gas durch eine Lavaldüse in den Wälzbehälter einströmt und dadurch auf Überschallgeschwindigkeit beschleu­ nigt wird.Vortex tube for generating low and high temperatures as well as for the separation of gas and isotope mixtures and for the separation of solid particles from a gas flow, characterized in that the gas flows into the rolling container through a Laval nozzle and is thereby accelerated to supersonic speed.
DE3825155A 1988-07-23 1988-07-23 Vortex tube with ultrasonic inflow Ceased DE3825155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE3825155A DE3825155A1 (en) 1988-07-23 1988-07-23 Vortex tube with ultrasonic inflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3825155A DE3825155A1 (en) 1988-07-23 1988-07-23 Vortex tube with ultrasonic inflow

Publications (1)

Publication Number Publication Date
DE3825155A1 true DE3825155A1 (en) 1988-12-22

Family

ID=6359452

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3825155A Ceased DE3825155A1 (en) 1988-07-23 1988-07-23 Vortex tube with ultrasonic inflow

Country Status (1)

Country Link
DE (1) DE3825155A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228890A (en) * 1990-03-23 1993-07-20 Sunstrom Safety Ab Cyclone separator
DE19916684A1 (en) * 1999-04-14 2000-10-26 Joachim Schwieger Heat transformation using vortex installation; involves guiding steam into vortex stream, to produce temperature zones, in which steam is evaporated and cooled to operate turbine
US20120180668A1 (en) * 2011-01-19 2012-07-19 Anatoli Borissov Supersonic Swirling Separator 2 (Sustor2)
US8522859B2 (en) 2005-10-10 2013-09-03 Mg Innovations Corp. Phase change material heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE803301C (en) * 1948-10-02 1951-04-02 Adolf Messer G M B H Process for cold start-up of plants for liquefying or decomposition of gases or gas mixtures
DE926729C (en) * 1950-10-24 1955-04-21 Robert Von Dipl-Ing Linde Device for cooling a compressed gas stream

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE803301C (en) * 1948-10-02 1951-04-02 Adolf Messer G M B H Process for cold start-up of plants for liquefying or decomposition of gases or gas mixtures
DE926729C (en) * 1950-10-24 1955-04-21 Robert Von Dipl-Ing Linde Device for cooling a compressed gas stream

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Zeitschrift für Naturforschung, 1951, S.25-28 *
Zeitschrift für Naturforschung, 1961, S.569-577 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228890A (en) * 1990-03-23 1993-07-20 Sunstrom Safety Ab Cyclone separator
DE19916684A1 (en) * 1999-04-14 2000-10-26 Joachim Schwieger Heat transformation using vortex installation; involves guiding steam into vortex stream, to produce temperature zones, in which steam is evaporated and cooled to operate turbine
DE19916684C2 (en) * 1999-04-14 2001-05-17 Joachim Schwieger Process for heat transformation using a vortex unit
US6516617B1 (en) 1999-04-14 2003-02-11 Joachim Schwieger Method for transforming heat using a vortex aggregate
US8522859B2 (en) 2005-10-10 2013-09-03 Mg Innovations Corp. Phase change material heat exchanger
US20120180668A1 (en) * 2011-01-19 2012-07-19 Anatoli Borissov Supersonic Swirling Separator 2 (Sustor2)
US8790455B2 (en) * 2011-01-19 2014-07-29 Anatoli Borissov Supersonic swirling separator 2 (Sustor2)

Similar Documents

Publication Publication Date Title
EP3797217B1 (en) Aircraft propulsion system with exhasut-gas treatment device and method for treating an exhaust-gas stream
DE69215872T2 (en) TURBINE BYPASS SYSTEM FOR DRIVE FLUID INLET
DE102021201629A1 (en) EXHAUST TREATMENT DEVICE FOR AN AIRCRAFT ENGINE
DE60110426T2 (en) AIR CONDITIONING SYSTEM WITH TWO AIR CYCLE MACHINES
DE2926369C2 (en)
EP0232782B1 (en) Cooling method and apparatus for thermal turbine vanes
DE2834256C2 (en) Arrangement for air conditioning of aircraft cabins
DE3009510C2 (en) Device for separating foreign bodies from the intake air of a gas turbine engine
EP1386837B1 (en) Airconditioning system for aircraft
EP0247388B1 (en) Rocket propulsion system having air-breathing possibilities
EP1176090B1 (en) Air conditioning system for aircraft
EP3758823A1 (en) Reduction of contrails during operation of aircraft
DE4320302A1 (en) Arrangement for energy generation on board an aircraft, in particular a passenger aircraft
DE102015223548A1 (en) Aircraft air conditioning system with ambient air supply and method for operating such an aircraft air conditioning system
DE648878C (en) Process for converting heat energy into kinetic or potential energy in a nozzle of the appropriate profile
DE3825155A1 (en) Vortex tube with ultrasonic inflow
WO2017013077A1 (en) Drive device for an aircraft and an aircraft comprising such a drive device
DE102004017879B4 (en) Air treatment system
DE60008064T2 (en) Method and device for supplying fresh air to an aircraft with jet propulsion
DE4103655C1 (en) Air cooler for car passenger compartment - has heat exchanger with two chambers, with second one as high velocity track for heat absorbing gas
DE102016223528A1 (en) Cabin exhaust supports operable aircraft air conditioning with an electrically powered ambient air compressor
CH248608A (en) Method for operating gas turbine systems, in particular for aircraft and water vehicles.
DE926729C (en) Device for cooling a compressed gas stream
DE3402618A1 (en) DEVICE FOR AIR CONDITIONING
DE3425115A1 (en) Gas turbine plant with supercharged, partially closed cycle with direct combustion in the operating gas flow

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8127 New person/name/address of the applicant

Owner name: HECKEL, HAGEN, 8893 HILGERTSHAUSEN-TANDERN, DE

8131 Rejection