DE3814863A1 - Process for producing multilayer ceramic based on silicate - Google Patents

Process for producing multilayer ceramic based on silicate

Info

Publication number
DE3814863A1
DE3814863A1 DE19883814863 DE3814863A DE3814863A1 DE 3814863 A1 DE3814863 A1 DE 3814863A1 DE 19883814863 DE19883814863 DE 19883814863 DE 3814863 A DE3814863 A DE 3814863A DE 3814863 A1 DE3814863 A1 DE 3814863A1
Authority
DE
Germany
Prior art keywords
glass
glass phase
drawn
particles
slip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19883814863
Other languages
German (de)
Inventor
Hans-Peter Dr Rer Nat Urbach
Karl-Heinz Eisenrith
Hubert Dr Rer Nat Baueregger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19883814863 priority Critical patent/DE3814863A1/en
Publication of DE3814863A1 publication Critical patent/DE3814863A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Abstract

In a process for producing multilayer ceramic based on silicate, the starting material used is highly pure amorphous SiO2 having a splinter-like structure, which has been prepared by conversion of quartz sand with added materials into the glass phase, production of glass bodies having a large surface area from the glass phase and leaching of the glass bodies with mineral acids. The SiO2 particles, after milling to give irregular particles having diameters less than 10 mu m, are exposed to a thermal treatment at from 1050 to 1150@C before they are slurried to give a slip which is then drawn into sheets. The sheets are provided with through-contacts (feedthroughs, through-plating) and metallic strip conductors and pressed in stacks to give laminates. The material thus produced has a dielectric constant below 3; owing to the low sintering temperature, low-cost metal pastes can be used for the through-contacts. The process is used in the connection into circuits of electronic components in multilayer technology, in particular for fast computers. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Viel­ schichtenkeramik auf Silikatbasis, bei dem das Ausgangsmaterial als Schlicker verrührt in Folien gezogen wird, die Folien mit Durchkontaktierungen und metallischen Leiterbahnen versehen wer­ den und in Stapeln geschichtet zu Laminaten verpreßt werden, die dann gesintert werden.The invention relates to a method for producing a lot Layered ceramic based on silicate, in which the starting material as a slurry stirred in foils, the foils are drawn with Vias and metallic conductor tracks provided who and stacked in stacks to form laminates, which are then sintered.

Um möglichst kurze Signallaufzeiten zu erzielen, sollten die elektrischen Verbindungen zwischen elektronischen Bauelementen kurz sein. Diese Forderung kann beispielsweise mit einer drei­ dimensionalen Vielschichtkeramik-Verdrahtung gelöst werden. Um benachbarte Leiterbahnebenen elektrisch zu entkoppeln, müssen dielektrische Schichten vorgesehen werden. Diese sollten eine kleine Permittivität haben, um eine hohe Signalgeschwindigkeit zu erzielen.In order to achieve the shortest possible signal transit times, the electrical connections between electronic components be short. This requirement can be, for example, with a three dimensional multilayer ceramic wiring can be solved. Around to electrically decouple adjacent conductor track levels dielectric layers are provided. These should be one have small permittivity to high signal speed to achieve.

Für die Herstellung von Vielschichtenkeramik kommen Materialien wie Siliziumcarbid, Magnesiumtitanat, Lithiumtantalat usw., so­ wie insbesondere Aluminiumoxid und Aluminiumoxid-haltige Kera­ miken zum Einsatz. Derartige Materialien werden als Pulver zu­ sammen mit Lösungsmittel und Binder zu einem Schlicker verarbei­ tet, der anschließend zur Herstellung einer Folie verwendet wird. Nach dem Stanzen der getrockneten Folie werden die Löcher mit einer Metallpaste für die Durchkontaktierung gefüllt. Das Aufbringen der elektrischen Leiterbahnen erfolgt mit Siebdruck­ technik. Durch Stapeln mehrerer Schichten unter Anlegung von Druck entsteht ein Laminat, welches anschließend gesintert wird. Ein Verfahren zur Herstellung eines solchen Laminats ist bei­ spielsweise aus der deutschen Patentschrift 33 24 933 bekannt.Materials come for the production of multilayer ceramics such as silicon carbide, magnesium titanate, lithium tantalate, etc., so such as in particular aluminum oxide and aluminum oxide-containing kera miken to use. Such materials are used as powder Process together with solvent and binder to form a slip tet, which is then used to produce a film becomes. After punching the dried film, the holes filled with a metal paste for the via. The The electrical conductor tracks are applied using screen printing technology. By stacking several layers while applying Print creates a laminate, which is then sintered. A method for producing such a laminate is in US known for example from German patent specification 33 24 933.

Bei Vielschichtenkeramik auf Al2O3-Basis sind die hohen Sinter­ temperaturen (T=1650°C) und langen Brennzeiten (ca. 24 Stun­ den) von Nachteil. Unter diesen Bedingungen kommen nur hochtem­ peraturbeständige Metalle wie zum Beispiel Wolfram, die zur Vermeidung von Oxidation die Gegenwart von Wasserstoff erfor­ dern, in Betracht. Neben diesen verfahrenstechnischen Nachtei­ len spielt die Wechselwirkung des elektrischen Stroms (Signal) mit dem Substratmaterial im interessierenden Frequenzbereich eine bedeutende Rolle. Al2O3 weist zwischen 4 kHz und 5 kHz eine relative Dielektrizitätskonstante Er von ca. 9 auf, wo­ durch die Signallaufzeiten nachteilig beeinflußt werden.With multilayer ceramics based on Al 2 O 3 , the high sintering temperatures (T = 1650 ° C) and long firing times (approx. 24 hours) are a disadvantage. Under these conditions, only high temperature resistant metals such as tungsten, which require the presence of hydrogen to avoid oxidation, come into consideration. In addition to these procedural disadvantages, the interaction of the electrical current (signal) with the substrate material plays an important role in the frequency range of interest. Al 2 O 3 has a relative dielectric constant E r of approximately 9 between 4 kHz and 5 kHz, where it is adversely affected by the signal propagation times.

Aufgabe der Erfindung ist es, ein Substratmaterial für eine dreidimensionale Vielschichtenkeramik zu schaffen, welches eine Dielektrizitätskonstante kleiner 3 aufweist und außerdem keine so hohen Sintertemperaturen bei seiner Herstellung erfordert.The object of the invention is to provide a substrate material for a to create three-dimensional multilayer ceramics, which one Dielectric constant less than 3 and also none requires such high sintering temperatures in its manufacture.

Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß erfindungsgemäß als Ausgangsmaterial amorphes hochreines SiO2 mit splitterähnlicher Struktur verwen­ det wird, welches durch Überführen von Quarzsand mit Zuschlägen in die Glasphase, Herstellen von Glaskörpern mit großer Ober­ fläche aus der Glasphase und Auslaugen der Glaskörper mit mine­ ralischen Säuren hergestellt worden ist, und daß die SiO2-Par­ tikel nach dem Zermahlen zu unregelmäßigen Partikeln mit Durch­ messern kleiner 10 µm einer Temperaturbehandlung bei 1050 bis 1150°C ausgesetzt werden, bevor sie zu dem Schlicker verrührt werden.This object is achieved in a method of the type mentioned in that, according to the invention, amorphous, high-purity SiO 2 with a splinter-like structure is used as the starting material, which is obtained by transferring quartz sand with additives into the glass phase, producing glass bodies with a large surface from the glass phase and Leaching the vitreous with mineral acids has been made, and that the SiO 2 particles after grinding to irregular particles with a diameter of less than 10 µm are subjected to a temperature treatment at 1050 to 1150 ° C before they are stirred into the slip.

In einer Weiterbildung des Erfindungsgedankens ist vorgesehen, als Glaskörper Glasfasern zu verwenden, welche aus der Glaspha­ se gezogen werden und dann in 3 n bis 6 n 98°C heißer Salzsäure ausgelaugt werden. Dabei ist es vorteilhaft, wenn die Glasfa­ sern bei 1000 bis 1350°C mit einem Durchmesser im Bereich von 7 bis 500 µm aus der Glasphase gezogen werden.A further development of the inventive concept provides to use as glass body glass fibers, which from the Glaspha se and then in 3 n to 6 n 98 ° C hot hydrochloric acid be drained. It is advantageous if the Glasfa at 1000 to 1350 ° C with a diameter in the range of 7 up to 500 µm from the glass phase.

Das Herstellverfahren ist in einigen Prozeßschritten ähnlich dem in der europäischen Patentschrift 00 29 157 beschriebenen Faserauslaugverfahren (FA-Verfahren), bei dem zum Herstellen von für Halbleiterbauelemente, insbesondere Solarzellen, ver­ wendbarem Silizium aus billigem Quarzsand mit geeigneten Zu­ schlägen (Al2O3, MgO, Na2O) versehen durch Schmelzen in die Glasphase übergeführt, diese in einen Glaskörper mit großer Oberfläche, zum Beispiel in eine Faserstruktur überführt wird, dann in der Struktur die Verunreinigungen aus dem SiO2-Netzwerk mit heißer Mineralsäure herausgelöst (gelaugt) wird. Das übrig­ bleibende Netzwerk stellt hochreines amorphes SiO2 dar.The production process is similar in some process steps to the fiber leaching process (FA process) described in European patent 00 29 157, in which silicon, which can be used for semiconductor components, in particular solar cells, is made from cheap quartz sand with suitable additives (Al 2 O 3 , MgO, Na 2 O) provided by melting into the glass phase, this is converted into a glass body with a large surface, for example into a fiber structure, then the impurities in the structure are extracted (leached) with hot mineral acid from the SiO 2 network . The remaining network is high-purity amorphous SiO 2 .

Die Reaktivität der Silanol (OH)-Gruppe, kann für die Belegung der Oberfläche mit metallischen Verbindungen (zum Beispiel me­ tallorganischen Verbindungen, Nitrate) der die Vielschichtkera­ mik bildenden SiO2-Substrate genutzt werden. Durch thermisches Behandeln lassen sich solche Verbindungen zersetzen und die FA- SiO2-Partikel können mit einer metallischen Schicht belegt wer­ den, wodurch die Haftung metallischer Leiterbahnen erhöht wird.The reactivity of the silanol (OH) group can be used to cover the surface with metallic compounds (for example, metal-organic compounds, nitrates) of the SiO 2 substrates forming the multilayer ceramic. Such compounds can be decomposed by thermal treatment and the FA-SiO 2 particles can be coated with a metallic layer, which increases the adhesion of metallic conductor tracks.

Das pulvrige Ausgangsmaterial FA-SiO2 besteht aus splitterähnli­ chen Partikeln, deren Dichte ungefähr 1,3 g/cm3 beträgt. Bei einer Temperatur von ca. 1100°C wird die innere Oberfläche der Partikel abgebaut und die Partikeldichte steigt auf ca. 2,0 g/cm3. Mit diesem Prozeßschritt wird eine starke Schrumpfung beim späteren Sintern der Folie verhindert.The powdery starting material FA-SiO 2 consists of splitter-like particles, the density of which is approximately 1.3 g / cm 3 . At a temperature of approx. 1100 ° C, the inner surface of the particles is broken down and the particle density increases to approx. 2.0 g / cm 3 . This process step prevents severe shrinkage during the later sintering of the film.

Für die Herstellung eines optimalen Schlickers soll die Haupt­ menge der Partikel einen Durchmesser kleiner 10 µm aufweisen. Nach dem Vermahlen zeigen die FA-SiO2-Partikel eine unregelmäßi­ ge Gestalt mit abgerundeten Ecken und Kanten. Diese unregelmäßi­ ge Partikelgestalt sorgt in der Keramik für ein Zwischenpartikel­ volumen (geschlossene Poren), das den Wert der relativen Dielek­ trizitätskonstante Er gegenüber dem kompakten Material ernie­ drigt.For the production of an optimal slip, the main quantity of particles should have a diameter of less than 10 µm. After grinding, the FA-SiO 2 particles show an irregular shape with rounded corners and edges. This irregular particle shape in the ceramic provides an intermediate particle volume (closed pores) that lowers the value of the relative dielectric constant E r compared to the compact material.

Weitere Einzelheiten über die Art der Herstellung und die Ei­ geschaften des Materials sind den Fig. 1 und 2 zu entnehmen. Dabei zeigt dieFurther details on the type of manufacture and the egg shafts of the material can be found in FIGS . 1 and 2. The shows

Fig. 1 ein Flußdiagramm über die wesentlichen Verfahrens­ schritte zur Herstellung und die Fig. 1 is a flowchart of the essential process steps for manufacturing and the

Fig. 2 die relativ niedrige Dielektrizitätskonstante Er, die sich aus dem erfindungsgemäßen FA-SiO2 und dem Gas in den geschlossenen Poren zusammensetzt. Fig. 2 shows the relatively low dielectric constant E r , which is composed of the FA-SiO 2 according to the invention and the gas in the closed pores.

AusführungsbeispielEmbodiment

200 g thermisch vorbehandeltes (1100°C) und gemahlenes (Durch­ messer kleiner 10 µm) FA-SiO2 und 96 g Toluol + 64 g Ethanol + 19 g Polyvinylbutyral + 8,2 g Dibutylphtalat werden in einer Ku­ gelmühle vermischt (Dauer ca. 4 Stunden). Die Mischung wird bei Raumtemperatur und stufenweiser Erniedrigung des Druckes (bis ca. 80 mbar) entgast. Der hergestellte Schlicker wird mit einer Folienziehmaschine zu einer Folie verarbeitet (Länge: 80 cm, Breite: 20 cm, Dicke: 340 µm). Die Folie trocknet ca. 18 Stun­ den an Luft und wird eine Woche unter Stickstoff gelagert. Sie wird dann in 14×14 cm2 große Stücke geschnitten. Die Sinte­ rung einer derartigen Folie an Luft bei 1100°C führt zu einer ebenen und rißfreien FA-SiO2-Platte, deren Frequenz abhängige Dielektrizitätskonstante Er in Fig. 2 gezeigt wird.200 g thermally pretreated (1100 ° C) and ground (diameter less than 10 µm) FA-SiO 2 and 96 g toluene + 64 g ethanol + 19 g polyvinyl butyral + 8.2 g dibutyl phthalate are mixed in a ball mill (duration approx. 4 hours). The mixture is degassed at room temperature and gradually lowering the pressure (up to approx. 80 mbar). The slip produced is processed into a film using a film drawing machine (length: 80 cm, width: 20 cm, thickness: 340 μm). The film dries in air for approx. 18 hours and is stored under nitrogen for one week. It is then cut into 14 × 14 cm 2 large pieces. The sintering of such a film in air at 1100 ° C. leads to a flat and crack-free FA-SiO 2 plate, the frequency-dependent dielectric constant E r of which is shown in FIG. 2.

Für die Herstellung der Mehrschichtenkeramik wird die nicht ge­ sinterte Folie gestanzt und mit Metallpaste durchkontaktiert. Nach dem Aufbringen der Leiterbahnen mit dem Siebdruckverfahren werden die Folien planmäßig gestapelt und bei erhöhter Tempera­ tur (ca. 50°C) und Überdruck (50 bar) laminiert. Abschließend wird das Laminat bei 1100°C unter Schutzgasatmosphäre 2 Stunden gesintert.For the production of multilayer ceramics, the is not ge sintered foil punched and plated with metal paste. After applying the conductor tracks using the screen printing process the foils are stacked on schedule and at an elevated tempera laminated. (approx. 50 ° C) and overpressure (50 bar). Finally the laminate is at 1100 ° C under a protective gas atmosphere for 2 hours sintered.

Die niedrige Sintertemperatur (1000°C bis 1300°C) ermöglicht für die Durchkontaktierung und Strukturierung den Einsatz von kostengünstigen Metallpasten (zum Beispiel Nickel-Paste, Kupfer, Silber/Palladium).The low sintering temperature (1000 ° C to 1300 ° C) enables for the through connection and structuring the use of inexpensive metal pastes (e.g. nickel paste, copper, Silver / palladium).

Claims (4)

1. Verfahren zum Herstellen von Vielschichtenkeramik auf Sili­ katbasis, bei dem das Ausgangsmaterial als Schlicker verrührt in Folien gezogen wird, die Folien mit Durchkontaktierungen und metallischen Leiterbahnen versehen werden und in Stapeln ge­ schichtet zu Laminaten verpreßt werden, die dann gesintert wer­ den, dadurch gekennzeichnet, daß als Ausgangsmaterial amorphes, hochreines SiO2 mit splitterähnlicher Struktur verwendet wird, welches durch Überführen von Quarz­ sand mit Zuschlägen in die Glasphase, Herstellen von Glaskör­ pern mit großer Oberfläche aus der Glasphase und Auslaugen der Glaskörper mit mineralischen Säuren hergestellt worden ist, und daß die SiO2-Partikel nach dem Zermahlen zu unregelmäßigen Par­ tikeln mit Durchmessern kleiner 10 µm einer Temperaturbehand­ lung bei 1050 bis 1150°C ausgesetzt werden, bevor sie zu dem Schlicker verrührt werden.1. A process for the production of multilayer ceramics based on silicate, in which the starting material is stirred as a slip and is drawn into foils, the foils are provided with vias and metallic conductor tracks and are stacked in layers to be pressed into laminates, which are then sintered, characterized by that is used as starting material is amorphous, highly pure SiO 2 with sliver of similar structure, which sand by transferring quartz with additives in the glass phase, producing Glaskör pern with large surface from the glass phase and leaching of the glass body is prepared with mineral acids, and that the SiO 2 particles after grinding to irregular particles with diameters smaller than 10 µm are subjected to a temperature treatment at 1050 to 1150 ° C before they are mixed into the slip. 2. Verfahren nach Anspruch 1, dadurch gekenn­ zeichnet, daß als Glaskörper Glasfasern verwendet werden, welche aus der Glasphase gezogen werden und daß die Glasfasern in 3 n bis 6 n 98°C heißer Salzsäure ausgelaugt wer­ den.2. The method according to claim 1, characterized records that used as glass body glass fibers which are drawn from the glass phase and that the Glass fibers in 3 n to 6 n 98 ° C hot hydrochloric acid leached out the. 3. Verfahren nach Anspruch 2, dadurch gekenn­ zeichnet, daß die Glasfasern bei 1000 bis 1350°C mit einem Durchmesser im Bereich von 7 bis 500 µm aus der Glaspha­ se gezogen werden.3. The method according to claim 2, characterized records that the glass fibers at 1000 to 1350 ° C with a diameter in the range of 7 to 500 microns from the glass phase be drawn. 4. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 3 zur Verschaltung von elektronischen Bauelementen mit kurzen Signallaufzeiten in Vielschichtenkeramik-Technik.4. Use of the method according to one of claims 1 to 3 for connecting electronic components with short Signal propagation times in multi-layer ceramic technology.
DE19883814863 1988-05-02 1988-05-02 Process for producing multilayer ceramic based on silicate Withdrawn DE3814863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19883814863 DE3814863A1 (en) 1988-05-02 1988-05-02 Process for producing multilayer ceramic based on silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19883814863 DE3814863A1 (en) 1988-05-02 1988-05-02 Process for producing multilayer ceramic based on silicate

Publications (1)

Publication Number Publication Date
DE3814863A1 true DE3814863A1 (en) 1989-11-16

Family

ID=6353399

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19883814863 Withdrawn DE3814863A1 (en) 1988-05-02 1988-05-02 Process for producing multilayer ceramic based on silicate

Country Status (1)

Country Link
DE (1) DE3814863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248950A1 (en) * 2016-05-24 2017-11-29 Heraeus Quarzglas GmbH & Co. KG Method for producing an opaque quartz glass containing pores

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD11062A (en) *
DE2060745A1 (en) * 1970-12-10 1972-06-22 Orissa Cement Ltd Silica refractory articles - have silica particles below 2mm size
DE2460931A1 (en) * 1974-03-08 1975-09-11 Ibm SUBSTANCE COMPOSITION SINTERABLE AT LOW TEMPERATURES
DE3005014A1 (en) * 1979-02-13 1980-09-04 Elkem Spigerverket As METHOD FOR THE SIMULTANEOUS PRODUCTION OF A METAL-CONTAINING LIQUID SOLUTION AND A SOLID RESIDUE OF SILICATES BY LIQUIDATION BY MEANS OF MINERAL ACIDS
EP0029157A1 (en) * 1979-11-08 1981-05-27 Siemens Aktiengesellschaft Process for producing silicon for use in semiconductor components from quartz sand and its use in solar cells
US4364100A (en) * 1980-04-24 1982-12-14 International Business Machines Corporation Multi-layered metallized silicon matrix substrate
EP0105463A2 (en) * 1982-09-30 1984-04-18 HELIOTRONIC Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH Process of manufacturing a silicon article
DE3612261A1 (en) * 1985-04-12 1986-10-16 Hitachi, Ltd., Tokio/Tokyo MULTI-LAYER CERAMIC PCB
US4736276A (en) * 1985-05-21 1988-04-05 Hitachi, Ltd. Multilayered ceramic wiring circuit board and the method of producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD11062A (en) *
DE2060745A1 (en) * 1970-12-10 1972-06-22 Orissa Cement Ltd Silica refractory articles - have silica particles below 2mm size
DE2460931A1 (en) * 1974-03-08 1975-09-11 Ibm SUBSTANCE COMPOSITION SINTERABLE AT LOW TEMPERATURES
DE3005014A1 (en) * 1979-02-13 1980-09-04 Elkem Spigerverket As METHOD FOR THE SIMULTANEOUS PRODUCTION OF A METAL-CONTAINING LIQUID SOLUTION AND A SOLID RESIDUE OF SILICATES BY LIQUIDATION BY MEANS OF MINERAL ACIDS
EP0029157A1 (en) * 1979-11-08 1981-05-27 Siemens Aktiengesellschaft Process for producing silicon for use in semiconductor components from quartz sand and its use in solar cells
US4364100A (en) * 1980-04-24 1982-12-14 International Business Machines Corporation Multi-layered metallized silicon matrix substrate
EP0105463A2 (en) * 1982-09-30 1984-04-18 HELIOTRONIC Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH Process of manufacturing a silicon article
DE3612261A1 (en) * 1985-04-12 1986-10-16 Hitachi, Ltd., Tokio/Tokyo MULTI-LAYER CERAMIC PCB
US4736276A (en) * 1985-05-21 1988-04-05 Hitachi, Ltd. Multilayered ceramic wiring circuit board and the method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3248950A1 (en) * 2016-05-24 2017-11-29 Heraeus Quarzglas GmbH & Co. KG Method for producing an opaque quartz glass containing pores
US10358373B2 (en) 2016-05-24 2019-07-23 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a pore-containing opaque quartz glass

Similar Documents

Publication Publication Date Title
US5814366A (en) Method of manufacturing multilayered ceramic substrate
DE69632722T2 (en) Gas bonding system for a stiffening substrate of a ceramic circuit board
US4870539A (en) Doped titanate glass-ceramic for grain boundary barrier layer capacitors
DE2504658A1 (en) CERAMIC COMPOSITIONS SINTERABLE AT LOW TEMPERATURES WITH A HIGH DIELECTRICITY CONSTANT AND PROCESS FOR THEIR PRODUCTION.
DE2901172A1 (en) PROCESS FOR MANUFACTURING MULTI-LAYER Sintered CERAMIC GLASS SUBSTRATES WITH CABLE PATTERNS COMPOSED OF GOLD, SILVER OR COPPER, AND SUBSTRATES MANUFACTURED THEREOF
DE10024236A1 (en) Ceramic capacitor and process for its manufacture
DE112007001859B4 (en) Glass ceramic composition, glass ceramic sintered body and multilayer ceramic electronic component
GB1565421A (en) Manufacture of electrical devices
DE3630066C1 (en) Process for the production of sintered metallized aluminum nitride ceramic bodies
JPS5922399B2 (en) multilayer ceramic substrate
DE3227657A1 (en) MULTI-LAYER CIRCUIT BOARD AND METHOD FOR THEIR PRODUCTION
EP0653898A2 (en) Process for manufacturing ceramic heating elements
DE10042909A1 (en) Multilayered ceramic substrate comprises substrate ceramic layers each containing a ceramic material that sinters at a low temperature, a shrinkage-preventing layer containing an inorganic material in the non-sintered state and wiring cable
EP0428880B1 (en) Ceramic compositions and their use
DE112007001868T5 (en) Glass ceramic composition, sintered glass ceramic body and monolithic ceramic electronic component
JP3467872B2 (en) Method for manufacturing multilayer ceramic substrate
DE60126918T2 (en) Dielectric ceramic composition, method for producing a ceramic capacitor, use of a ceramic dielectric, and ceramic capacitor
DE102019119843A1 (en) LAMINATE MADE OF CERAMIC LAYER AND SINTER BODY MADE OF COPPER POWDER PASTE
EP0280819A2 (en) Electrical resistors, electrical resistors paste and method for making the same
DE2460931A1 (en) SUBSTANCE COMPOSITION SINTERABLE AT LOW TEMPERATURES
JP3467873B2 (en) Method for manufacturing multilayer ceramic substrate
DE19548351A1 (en) High dielectric constant multilayer capacitor
DE3814863A1 (en) Process for producing multilayer ceramic based on silicate
DE10309689B4 (en) Ceramic plate with monolithic layer structure and method for its production
DE10234364B4 (en) Glass-ceramic composite, its use as a ceramic film, laminate or micro-hybrid and process for its preparation

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee