DE3804069A1 - Process for producing solar silicon - Google Patents
Process for producing solar siliconInfo
- Publication number
- DE3804069A1 DE3804069A1 DE3804069A DE3804069A DE3804069A1 DE 3804069 A1 DE3804069 A1 DE 3804069A1 DE 3804069 A DE3804069 A DE 3804069A DE 3804069 A DE3804069 A DE 3804069A DE 3804069 A1 DE3804069 A1 DE 3804069A1
- Authority
- DE
- Germany
- Prior art keywords
- silicon
- phosphorus
- boron
- solar
- solar cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 54
- 239000010703 silicon Substances 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000008569 process Effects 0.000 title claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052796 boron Inorganic materials 0.000 claims abstract description 31
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 24
- 239000011574 phosphorus Substances 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000002425 crystallisation Methods 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 238000001953 recrystallisation Methods 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 230000008025 crystallization Effects 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 7
- 230000001419 dependent effect Effects 0.000 claims description 4
- 150000003018 phosphorus compounds Chemical class 0.000 claims description 3
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 11
- 238000009792 diffusion process Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 4
- 239000002800 charge carrier Substances 0.000 abstract description 2
- 238000000746 purification Methods 0.000 abstract 1
- 229910052814 silicon oxide Inorganic materials 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000006004 Quartz sand Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- LBZRRXXISSKCHV-UHFFFAOYSA-N [B].[O] Chemical class [B].[O] LBZRRXXISSKCHV-UHFFFAOYSA-N 0.000 description 1
- AOQZCUVGSOYNCB-UHFFFAOYSA-N [B].[Si]=O Chemical compound [B].[Si]=O AOQZCUVGSOYNCB-UHFFFAOYSA-N 0.000 description 1
- HIVGXUNKSAJJDN-UHFFFAOYSA-N [Si].[P] Chemical compound [Si].[P] HIVGXUNKSAJJDN-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/028—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
- H01L31/0288—Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Herstellen von für Solarzellen geeignetem Silizium aus Reinsilizium, welches neben Bor prozeßbedingt auch Sauerstoff enthält.The invention relates to a method for producing for Silicon made of pure silicon suitable for solar cells Boron also contains oxygen due to the process.
Die Umwandlung von Sonnenlicht in elektrischen Strom mit Hilfe von Solarzellen aus kristallinem Silizium ist bislang auf spezielle und kleinere Anwendungen beschränkt. Eine breitere Nutzung der Solarenergie zur Stromerzeugung durch diese umweltfreundliche Technik läßt sich nur mit einer Senkung der hohen Kosten des derzeit für Solarzellen verwendeten elektronischen Siliziums (EG-Si) erreichen. Dies ist nur möglich, wenn das teuere elektronische Silizium durch ein geeignetes kostengünstigeres Silizium ersetzt wird, und die Kosten von derzeit ca. 20,- DM pro Watt Spitzenleistung auf ca. 3,- bis 4,- DM pro Watt gesenkt werden können.The conversion of sunlight into electricity with the help of solar cells made of crystalline silicon has so far been special and restricted to smaller applications. A wider one Use of solar energy to generate electricity through this environmentally friendly Technology can only be achieved by lowering the high Cost of the electronic currently used for solar cells Reach silicon (EG-Si). This is only possible if that expensive electronic silicon through a suitable cheaper Silicon is being replaced, and the cost is currently around 20, - DM per watt peak performance to approx. 3, - to 4, - DM per Watts can be reduced.
Das Basismaterial zur Fertigung kristalliner Siliziumsolarzellen wird heute ausschließlich nach dem sogenannten Siemens-C- Prozeß gewonnen, bei dem hochreines Silizium durch Reduktion von Trichlorsilan mit Wasserstoff bei ca. 1000°C gewonnen wird. Dieser Prozeß liefert ein Silizium von außerordentlich hoher Reinheit, das für die Halbleiterindustrie gut geeignet ist, dessen hohe Kosten aber einen breiten Einsatz des Materials zur Herstellung von Solarzellen ausschließen. Für die Photovoltaik industrie wird derzeit sogenanntes off-grade Silizium verwendet, das als Silizium minderer Qualität beim Siemens-C-Prozeß oder als Abfallmaterial beim Czochralski-Ziehprozeß anfällt und den hohen Anforderungen der Halbleiterindustrie nicht genügt. Bei dem derzeitig kleinen Marktvolumen für Solarzellen vermag dieses Abfallmaterial den Bedarf an Solarsilizium zu decken. Doch bei weiterer Expansion des Marktes ist ein neues Verfahren zum Herstellen geeigneten Siliziums gefordert. Dieses Material muß ebenfalls hohen Reinheitsanforderungen genügen. So konnte zum Beispiel Davies in einem Artikel in IEEE Trans. ED 27 (1980) auf Seiten 677 bis 687 zeigen, daß in einkristallinem Silizium schon Konzentrationen um 10¹² cm-3 an Übergangselementen einen drastischen Einfluß auf den Wirkungsgrad daraus gefertigter Solarzellen ausüben.The base material for the production of crystalline silicon solar cells is now obtained exclusively by the so-called Siemens-C process, in which high-purity silicon is obtained by reducing trichlorosilane with hydrogen at approx. This process produces a silicon of extraordinarily high purity, which is well suited for the semiconductor industry, but the high costs of which preclude the material from being widely used for the production of solar cells. So-called off-grade silicon is currently used for the photovoltaic industry, which is produced as low-quality silicon in the Siemens C process or as waste material in the Czochralski pulling process and does not meet the high requirements of the semiconductor industry. Given the currently small market volume for solar cells, this waste material can meet the demand for solar silicon. But as the market continues to expand, a new process for producing suitable silicon is required. This material must also meet high purity requirements. For example, Davies, in an article in IEEE Trans. ED 27 (1980) on pages 677 to 687, was able to show that in single-crystalline silicon, concentrations of around 10 12 cm -3 at transition elements already have a drastic influence on the efficiency of solar cells made therefrom.
Einen aussichtsreichen Weg zur Herstellung kostengünstigen Siliziums stellt die Umsetzung von hochreinem Siliziumdioxid mit hochreinem Kohlenstoff im Lichtbogenofen dar. Aulich et al beschreiben zum Beispiel in J. Mater. Sci. 19 (1984) auf Seiten 339 bis 345 die Verwendung von Quarzsand und Ruß, welche in einem besonderen Verfahren gereinigt werden, als Ausgangsmaterialien für diesen Prozeß. Das so erzeugte Reinsilizium wird anschließend zur Entfernung von Kohlenstoff und gelösten Restverunreinigungen einer gerichteten Erstarrung unterworfen. Dadurch wird erreicht, daß die Verunreinigungen in den Oberflächenschichten der erhaltenen Siliziumblöcke konzentriert sind, das heißt in der Boden- und Deckenschicht sowie den Seitenwänden, welche durch Absägen und/oder Sandstrahlen entfernt werden können. Das auf diese Weise gewonnene p-leitende Silizium enthält erfahrungsgemäß weniger als 1 ppmw metallische Verunreinigungen und hat je nach Reinheitsgrad der Ausgangssubstanzen einen Borgehalt von 0,5 bis 1 ppmw.A promising way to manufacture inexpensive silicon provides the implementation of high-purity silicon dioxide high-purity carbon in the arc furnace. Aulich et al describe for example in J. Mater. Sci. 19 (1984) on pages 339 to 345 the use of quartz sand and soot, which in a special process to be cleaned as starting materials for this process. The pure silicon thus produced is then for the removal of carbon and dissolved residual impurities subject to directional solidification. Thereby is achieved that the impurities in the surface layers of the silicon blocks obtained are concentrated means in the floor and ceiling layer as well as the side walls, which can be removed by sawing and / or sandblasting. The p-type silicon obtained in this way contains experience has shown that less than 1 ppmw metallic impurities and has a boron content depending on the degree of purity of the starting substances from 0.5 to 1 ppmw.
Untersuchungen haben nun ergeben, daß der Wirkungsgrad von Solarzellen im besonderen Maße vom Borgehalt des Siliziums abhängig ist. Abb. 1 verdeutlicht dies, wobei in dem Diagramm der Wirkungsgrad η kristalliner versetzungsfreier Solarzellen gegen den spezifischen Widerstand des Siliziummaterials aufgetragen ist. Wie aus der Abbildung hervorgeht, nimmt der Wirkungsgrad η deutlich ab, sobald der spezifische Widerstand ρ durch Zugabe von Bor unter 0,4 Ohm × cm absinkt. Weiterhin wird festgestellt, daß auch die Diffusionslänge L D der Minoritätsladungsträger bei erhöhter Bordotierung stark abnimmt, zum Beispiel von ca. 90 µm bei ρ = 1 Ohm × cm auf ca. 5 µm bei ρ = 0,1 Ohm × cm. Die Gründe für die starke Abnahme der Diffusionslänge bei diesen relativ niedrigen Borkonzentrationen sind bislang ungeklärt. Möglicherweise kommt es aufgrund der hohen Sauerstoffkonzentration im Czochralski-gezogenen Silizium zur Bildung elektrisch aktiver Bor-Sauerstoff-Komplexe, die zur Reduzierung von L D führen. An versetzungsfreien einkristallinen Scheiben aus Solarsilizium (Borgehalt ungefähr 1 ppmw), die durch tiegelfreies Zonenziehen gewonnen wurden und daher eine niedrige Sauerstoffkonzentration von nur ca. 10¹⁵ cm-3 aufweisen, wurden Diffusionslängen von ca. 170 µm gemessen. Dieser starke Einfluß der Bordotierung bei gleichzeitig hoher Sauerstoffkonzentration auf den Wirkungsgrad von Solarzellen, sowie die Tatsache, daß sich Bor mit seinem hohen Verteilungskoeffizienten von ca. 0,8 nur sehr schwer aus dem Silizium entfernen läßt, macht es bisher notwendig, die Wahl der Ausgangsstoffe auf extrem borarme SiO₂- und Rußmaterialien zu beschränken. Dies verursacht hohe Kosten, da die meisten preiswerten Ausgangsmaterialien wie zum Beispiel natürlicher Quarz einen höheren Borgehalt aufweisen.Studies have now shown that the efficiency of solar cells is particularly dependent on the boron content of the silicon. Fig. 1 illustrates this, with the efficiency η of crystalline dislocation-free solar cells plotted against the resistivity of the silicon material. As can be seen in the figure, the efficiency η decreases significantly as soon as the specific resistance ρ drops below 0.4 Ohm × cm by adding boron. Furthermore, it is found that the diffusion length L D of the minority charge carriers also decreases sharply with increased on-board doping, for example from approx. 90 μm at ρ = 1 ohm × cm to approx. 5 μm at ρ = 0.1 ohm × cm. The reasons for the sharp decrease in diffusion length at these relatively low boron concentrations have not yet been clarified. The high oxygen concentration in the Czochralski-grown silicon may lead to the formation of electrically active boron-oxygen complexes, which lead to a reduction in L D. Diffusion lengths of approx. 170 µm were measured on dislocation-free single-crystal disks made of solar silicon (boron content approx. 1 ppmw), which were obtained by crucible-free zone pulling and therefore have a low oxygen concentration of only approx. 10¹⁵ cm -3 . This strong influence of boron doping with a high oxygen concentration on the efficiency of solar cells, as well as the fact that boron with its high distribution coefficient of approx. 0.8 is very difficult to remove from the silicon, has made it necessary to choose the starting materials to limit to extremely low boron SiO₂ and soot materials. This causes high costs because most inexpensive starting materials such as natural quartz have a higher boron content.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung von für Solarzellen geeignetem Silizium anzugeben, welches auch die Verwendung borhaltiger Ausgangsmaterialien erlaubt und zu Solarzellen mit einem Wirkungsgrad von größer gleich 10 Prozent führt.The object of the present invention is therefore a method for the production of silicon suitable for solar cells, which also involves the use of boron-containing starting materials allowed and to solar cells with an efficiency of greater leads 10 percent.
Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß der Borgehalt des Reinsiliziums durch Zugabe phosphorhaltiger Materialien zumindest teilweise kompensiert wird, und das kompensierte Silizium anschließend durch ein Kristallisations- bzw. Rekristallisationsverfahren in Solarsilizium überführt wird.This task is accomplished by a method of the type mentioned at the beginning Art solved according to the invention in that the boron content of the pure silicon at least by adding phosphorus-containing materials is partially compensated, and the compensated silicon then by a crystallization or recrystallization process is converted into solar silicon.
Weitere Ausgestaltungen der Erfindung sind den Unteransprüchen zu entnehmen.Further embodiments of the invention are the subclaims refer to.
Untersuchungen haben ergeben, daß zum Beispiel bei Verwendung von brasilianischem Quarz mit einem natürlichen Borgehalt von ca. 10¹⁷ cm-3 in einer Verfahrensabfolge, bestehend aus einer Reinigungsprozedur (zum Beispiel Auslaugen von Glasfasern mit Säure), einem Reduktionsprozeß (zum Beispiel carbothermische Reduktion im Lichtbogenofen mit hochreinem Kohlenstoff) und einer anschließenden Rekristallisation (zum Beispiel Czochralski- Ziehen) mit Hilfe des erfindungsgemäßen Verfahrens ein Solarsilizium erzeugt werden kann, das eine spezifische Leitfähigkeit ρ von ca. 1 Ohm cm (p-Typ) aufweist, und das gut zur Herstellung von Solarzellen geeignet ist. Die Diffusionslänge L D dieses Materials ist durch die Borkompensation deutlich erhöht, wodurch auch ein höherer Wirkungsgrad daraus gefertigter Solarzellen garantiert ist. Je höher die L D eines Siliziummaterials ist, desto größer ist auch der Wirkungsgrad der entsprechenden Solarzelle. Als besonders vorteilhaft erweist es sich, wenn durch die teilweise Kompensation des im Reinsilizium enthaltenen Bors durch Phosphor für das Solarsilizium der spezifische Widerstand ρ auf einen Wert von ca. 1 Ohm cm (p-Silizium) erhöht wird. Doch muß der optimale Wert für jedes Kristallisationsverfahren einzeln ermittelt werden.Studies have shown that, for example, when using Brazilian quartz with a natural boron content of approx. 10¹⁷ cm -3 in a process sequence consisting of a cleaning procedure (e.g. leaching glass fibers with acid), a reduction process (e.g. carbothermal reduction in an electric arc furnace with high-purity carbon) and a subsequent recrystallization (for example Czochralski pulling) using the method according to the invention, a solar silicon can be produced which has a specific conductivity ρ of approx. 1 ohm cm (p-type), and which is good for the production of Solar cells is suitable. The boron compensation significantly increases the diffusion length L D of this material, which also guarantees a higher efficiency of solar cells made from it. The higher the L D of a silicon material, the greater the efficiency of the corresponding solar cell. It proves to be particularly advantageous if the specific resistance ρ is increased to a value of approximately 1 ohm cm (p-silicon) by the partial compensation of the boron contained in the pure silicon by phosphorus for the solar silicon. However, the optimal value for each crystallization process must be determined individually.
Die Erhöhung der Diffusionslänge und damit des Solarzellenwirkungsgrads durch P-Kompensation von Bor gilt generell für Silizium mit relativ hohem Sauerstoffgehalt. Ein solcher ergibt sich zwangsläufig aus dem jeweiligen Darstellungsverfahren für Silizium, solange nicht unter Sauerstoffausschluß gearbeitet wird.The increase in the diffusion length and thus the solar cell efficiency P compensation of boron generally applies to silicon with a relatively high oxygen content. Such results necessarily from the respective representation process for Silicon as long as it has not been used in the absence of oxygen becomes.
Die eigentliche Kompensation erfolgt durch Zugabe phosphorhaltiger Materialien zum Reinsilizium bzw. zu einer Schmelze desselben vor dem letzten Kristallisationsprozeß wie ein Verfahren zum Beispiel in der DE-OS 36 11 950 beschrieben ist. Zwar ist die Kompensation grundsätzlich auch schon vor dem Reduktionsprozeß möglich, doch läßt sich dann der Kompensationsgrad wegen der dabei erfolgenden Abreicherung an Phosphor nur schlecht kontrollieren und nicht exakt einstellen. Als Phosphorquelle bietet sich stark phosphorhaltiges Silizium an, welches zum Beispiel in einem CVD-Verfahren durch Abscheidung aus der Gasphase in Anwesenheit phosphorhaltiger Gase (zum Beispiel Phosphin, PH₃) hergestellt worden sein kann. Doch sind auch anorganische Phosphor verbindungen bzw. Salze als Phosphorquelle geeignet. Dazu bieten sich Kalziumphosphat und Phorphorpentoxid an.The actual compensation is done by adding phosphorus Materials for pure silicon or for a melt thereof before the last crystallization process like a process is described for example in DE-OS 36 11 950. Is the compensation basically also before the reduction process possible, but can then the degree of compensation because of control the depletion of phosphorus that occurs and not set exactly. As a source of phosphorus silicon that contains a lot of phosphorus, for example in a CVD process by deposition from the gas phase in Presence of gases containing phosphorus (for example phosphine, PH₃) may have been produced. But are also inorganic phosphorus Compounds or salts suitable as a source of phosphorus. To Calcium phosphate and phosphorus pentoxide are ideal.
Die zuzugebende Menge an Phosphor berechnet sich unter Berücksichtigung des Borgehalts des Reinsiliziums und der Verteilungs koeffizienten von Bor und Phosphor, welche wiederum vom angewendeten Kristallisationsverfahren und der Kristallisationsgeschwindigkeit abhängig sind. Zur Berechnung der zur Kompensation erforderlichen Äquivalente an Phosphor kann folgende Faustformel herangezogen werden,The amount of phosphorus to be added is calculated taking into account the content of pure silicon and the distribution coefficients of boron and phosphorus, which in turn depends on the applied Crystallization process and the rate of crystallization are dependent. To calculate the compensation required Equivalents of phosphorus can use the following rule of thumb be used
in der bedeuten:
P = Anzahl zuzugebender Phosphoräquivalente
(B) = Borkonzentration im Reinsilizium in Äquivalenten pro
Volumen
VK B = vom Kristallisationsverfahren abhängiger Verteilungskoeffizient
des Bor
VK P = entsprechender Verteilungskoeffizient für Phosphor
S = empirischer Faktor zur Vermeidung von Überkompensation,
der die Einstellung einer vorgegebenen Leitfähigkeit bzw.
eines vorgegebenen spezifischen Widerstands erlaubt
Vol = Volumen des Reinsilizium.in which mean:
P = number of phosphorus equivalents to be added
(B) = boron concentration in pure silicon in equivalents per volume
VK B = distribution coefficient of boron dependent on the crystallization process
VK P = corresponding distribution coefficient for phosphorus
S = empirical factor to avoid overcompensation, which allows the setting of a given conductivity or a given specific resistance
Vol = volume of pure silicon.
Mit der Erfindung ist es also möglich, auch stärker borhaltige Siliziumoxidausgangsmaterialien für die Herstellung von Solarsilizium heranzuziehen und somit durch preisgünstigere Rohstoffe die Kosten für den Herstellungsprozeß von Solarsilizium bei gleichbleibender Qualität zu reduzieren. Durch die Kompensation steigt der spezifische Widerstand und die Diffusionslänge des Solarsiliziums, ebenso der Wirkungsgrad der daraus gefertigten Solarzellen.With the invention it is therefore possible to also contain more boron Silicon oxide raw materials for the manufacture of solar silicon and thus through cheaper raw materials the cost of the manufacturing process of solar silicon to reduce consistent quality. By compensation the specific resistance and the diffusion length of the Solar silicon, as well as the efficiency of those made from it Solar cells.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels noch näher erläutert.The invention is described below using an exemplary embodiment explained in more detail.
Ausgangsmaterial ist Quarzsand, der unter Verwendung geeigneter Zuschläge von Karbonaten der Erdalkalimetalle und Aluminiumoxid durch Schmelzen in eine homogene Glasphase überführt wird. Aus dieser Schmelze werden Glaskörper großer Oberfläche gefertigt und mit heißer Mineralsäure ausgelaugt. Nähere Einzelheiten sind dem zitierten Artikel von Aulich et al zu entnehmen. Die daraus resultierende hochreine Siliziumdioxid wird mit hochreinem Kohlenstoff in einem Lichtbogenofen zu Reinsilizium reduziert. (Siehe dazu auch die deutsche Patentanmeldung P 37 32 073.4). Der Borgehalt der erhaltenen Siliziumschmelze beträgt ca. 10¹⁷ cm-3. Mit einer oben beschriebenen Faustformel berechneten Menge an stark phosphorhaltigem CVD-Silizium wird unter Berücksichtigung eines Verteilungskoeffizienten des Bor von ca. 0,8 ein Großteil des Bor kompensiert. Aus der Schmelze werden anschließend in einem Czochralski-Zug versetzungsfreie Einkristallkörper gewonnen und aus diesem kristalline Solarzellen mit pn-Übergängen gefertigt. In der Tabelle werden die physikalischen Daten dieser Solarzellen den Daten von parallel dazu gefertigten Solarzellen gegenübergestellt, die in einem identischen Verfahren, allerdings ohne Phosphorkompensation hergestellt wurden. Bei einer 85%igen Phosphorkompensation des Borgehalts sind deutliche Verbesserungen der Solarzellenkenndaten festzustellen. Ein deutlicher Anstieg zeigt sich zum Beispiel im spezifischen Widerstand von 0,2 auf 1 Ohm cm, im Füllfaktor FF von 63 auf 75 und vor allem im Wirkungsgrad η von 6,8 auf 9,2%. Da sonst übereinstimmende Meßbedingungen angewandt wurden, werden durch die Tabelle die Vorteile des erfindungsgemäßen Verfahrens aufgezeigt.The starting material is quartz sand, which is converted into a homogeneous glass phase by melting using suitable aggregates of carbonates of the alkaline earth metals and aluminum oxide. Glass bodies with a large surface area are produced from this melt and leached with hot mineral acid. Further details can be found in the article cited by Aulich et al. The resulting high-purity silicon dioxide is reduced to pure silicon with high-purity carbon in an arc furnace. (See also German patent application P 37 32 073.4). The boron content of the silicon melt obtained is approximately 10¹⁷ cm -3 . Using a rule of thumb described above, the amount of high phosphorus-containing CVD silicon is compensated for, taking into account a boron distribution coefficient of approximately 0.8, a large part of the boron. Dislocation-free single crystal bodies are then obtained from the melt in a Czochralski train and are produced from this crystalline solar cells with pn junctions. The table compares the physical data of these solar cells with the data of solar cells manufactured in parallel, which were produced in an identical process, but without phosphorus compensation. With an 85% phosphorus compensation of the boron content, significant improvements in the solar cell characteristics can be observed. A clear increase can be seen, for example, in the specific resistance from 0.2 to 1 ohm cm, in the fill factor FF from 63 to 75 and above all in the efficiency η from 6.8 to 9.2%. Since otherwise matching measurement conditions were used, the table shows the advantages of the method according to the invention.
Claims (7)
P = Anzahl zuzugebender Phosphoräquivalente
(B) = Borkonzentration im Reinsilizium in Äquivalenten pro Volumen
VK B = vom Kristallisationsverfahren abhängiger Verteilungskoeffizient von Bor
VK P = entsprechender Verteilungskoeffizient für Phosphor
Vol = Volumen des Reinsilizium
S = empirischer Faktor zur Vermeidung von Überkompensation, der die Einstellung einer vorgegebenen Leitfähigkeit erlaubt2. The method according to claim 1, characterized in that the amount of added phosphorus-containing material required for compensation is calculated according to the following rule of thumb: where mean:
P = number of phosphorus equivalents to be added
(B) = boron concentration in pure silicon in equivalents per volume
VK B = distribution coefficient of boron dependent on the crystallization process
VK P = corresponding distribution coefficient for phosphorus
Vol = volume of pure silicon
S = empirical factor to avoid overcompensation, which allows the setting of a given conductivity
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3804069A DE3804069A1 (en) | 1988-02-10 | 1988-02-10 | Process for producing solar silicon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3804069A DE3804069A1 (en) | 1988-02-10 | 1988-02-10 | Process for producing solar silicon |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3804069A1 true DE3804069A1 (en) | 1989-08-24 |
Family
ID=6347084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE3804069A Withdrawn DE3804069A1 (en) | 1988-02-10 | 1988-02-10 | Process for producing solar silicon |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE3804069A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10058320A1 (en) * | 2000-11-24 | 2002-06-06 | Mitsubishi Material Silicon | Silicon wafer used in the production of a single crystal silicon ingot consists of a perfect domain with a lower detection boundary of agglomerates |
NO322246B1 (en) * | 2004-12-27 | 2006-09-04 | Elkem Solar As | Process for preparing directed solidified silicon ingots |
US8529695B2 (en) | 2000-11-22 | 2013-09-10 | Sumco Corporation | Method for manufacturing a silicon wafer |
US8968467B2 (en) | 2007-06-27 | 2015-03-03 | Silicor Materials Inc. | Method and system for controlling resistivity in ingots made of compensated feedstock silicon |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4097584A (en) * | 1976-05-25 | 1978-06-27 | Siemens Aktiengesellschaft | Method of producing silicon useful for semiconductor component manufacture |
US4169740A (en) * | 1977-12-20 | 1979-10-02 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschafter E.V. | Method of doping a body of amorphous semiconductor material by ion implantation |
DE3013319A1 (en) * | 1979-04-11 | 1980-10-16 | Dow Corning | METHOD FOR PRODUCING SUITABLE SILICON FOR SOLAR CELLS |
DE3210141A1 (en) * | 1982-03-19 | 1983-09-22 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR THE PRODUCTION OF SILICON USED IN PARTICULAR SOLAR CELLS |
DE3611950A1 (en) * | 1986-04-09 | 1987-10-22 | Siemens Ag | Process for separating off solid reaction products, such as carbon, from carbothermically produced silicon |
-
1988
- 1988-02-10 DE DE3804069A patent/DE3804069A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4097584A (en) * | 1976-05-25 | 1978-06-27 | Siemens Aktiengesellschaft | Method of producing silicon useful for semiconductor component manufacture |
US4169740A (en) * | 1977-12-20 | 1979-10-02 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschafter E.V. | Method of doping a body of amorphous semiconductor material by ion implantation |
DE3013319A1 (en) * | 1979-04-11 | 1980-10-16 | Dow Corning | METHOD FOR PRODUCING SUITABLE SILICON FOR SOLAR CELLS |
DE3210141A1 (en) * | 1982-03-19 | 1983-09-22 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR THE PRODUCTION OF SILICON USED IN PARTICULAR SOLAR CELLS |
DE3611950A1 (en) * | 1986-04-09 | 1987-10-22 | Siemens Ag | Process for separating off solid reaction products, such as carbon, from carbothermically produced silicon |
Non-Patent Citations (1)
Title |
---|
JP 60 240165 A: Englishsprachiges Abstract * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8529695B2 (en) | 2000-11-22 | 2013-09-10 | Sumco Corporation | Method for manufacturing a silicon wafer |
DE10058320A1 (en) * | 2000-11-24 | 2002-06-06 | Mitsubishi Material Silicon | Silicon wafer used in the production of a single crystal silicon ingot consists of a perfect domain with a lower detection boundary of agglomerates |
DE10058320B4 (en) * | 2000-11-24 | 2006-03-30 | Mitsubishi Materials Silicon Corp. | Production process for silicon wafers |
DE10058320B8 (en) * | 2000-11-24 | 2006-12-28 | Mitsubishi Materials Silicon Corp. | Production process for silicon wafers |
NO322246B1 (en) * | 2004-12-27 | 2006-09-04 | Elkem Solar As | Process for preparing directed solidified silicon ingots |
WO2007001184A1 (en) * | 2004-12-27 | 2007-01-04 | Elkem Solar As | Method for producing directionally solidified silicon ingots |
JP2008525297A (en) * | 2004-12-27 | 2008-07-17 | エルケム ソウラー アクシエセルスカプ | Method for producing directional solidified silicon ingot |
AU2005333767B2 (en) * | 2004-12-27 | 2010-05-20 | Rec Solar Norway As | Method for producing directionally solidified silicon ingots |
US8968467B2 (en) | 2007-06-27 | 2015-03-03 | Silicor Materials Inc. | Method and system for controlling resistivity in ingots made of compensated feedstock silicon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2508803C3 (en) | Process for the production of plate-shaped silicon crystals with a columnar structure | |
DE3415799C2 (en) | ||
DE69325764T2 (en) | Process for the production of an improved solar cell from columnar, granular, polycrystalline silicon | |
DE2638270A1 (en) | PROCESS FOR MANUFACTURING LARGE AREA, CANTILEVER PLATES MADE OF SILICON | |
EP0468094B1 (en) | Process for producing a chalcopyrite solar cell | |
DE19710672C2 (en) | Quartz glass crucible for pulling single crystals and process for its manufacture | |
DE2743141C2 (en) | Semiconductor component with a layer of amorphous silicon | |
DE112021003911T5 (en) | A process for the production of silicon oxide and doped amorphous silicon thin films in the TOPCon battery | |
EP2426084B1 (en) | Process for production of polycrystalline silicon | |
DE2944975A1 (en) | METHOD FOR CLEANING SILICON | |
DE3786148T2 (en) | METHOD FOR HETERO-EPITACTIC BREEDING. | |
DE2652218A1 (en) | PROCESS FOR PRODUCING SUBSTRATE-BOND LARGE-AREA SILICON | |
DE2533166A1 (en) | PHOTO ELEMENT AND METHOD OF MANUFACTURING THE PHOTO ELEMENT | |
DE19927604A1 (en) | Silicon with structured oxygen doping, its production and use | |
DE1544190B2 (en) | Method for introducing imperfections in diamond | |
DE3804069A1 (en) | Process for producing solar silicon | |
DE3877601T2 (en) | METHOD FOR PRODUCING A SUPRAL-CONDUCTIVE WIRE. | |
DE3333960A1 (en) | METHOD FOR PRODUCING DISPLACEMENT-FREE SINGLE-CRYSTAL RODS MADE FROM SILICON | |
DE3331048C1 (en) | Method and device for mass production of silicon wafers for photovoltaic energy converters | |
WO1995009435A1 (en) | Process for producing microcrystalline films and uses thereof | |
EP0089610A1 (en) | Process for the production of silicon, especially applicable to solar cells | |
DE1667604B1 (en) | PROCESS FOR THE PRODUCTION OF CRYSTALLINE CADMIUM TELLURIDE | |
EP0745704A2 (en) | Process for preparing an epitaxially coated semiconducting wafer | |
DE102020000902A1 (en) | Apparatus for producing polycrystalline silicon and polycrystalline silicon | |
EP0586366B1 (en) | Hydrothermal process for the growth of large crystals or crystal layers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8120 | Willingness to grant licences paragraph 23 | ||
8139 | Disposal/non-payment of the annual fee |