DE3727265A1 - Inductive distance pickup - Google Patents
Inductive distance pickupInfo
- Publication number
- DE3727265A1 DE3727265A1 DE19873727265 DE3727265A DE3727265A1 DE 3727265 A1 DE3727265 A1 DE 3727265A1 DE 19873727265 DE19873727265 DE 19873727265 DE 3727265 A DE3727265 A DE 3727265A DE 3727265 A1 DE3727265 A1 DE 3727265A1
- Authority
- DE
- Germany
- Prior art keywords
- resonant circuit
- parallel resonant
- secondary coil
- parallel
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/22—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
- G01D5/2291—Linear or rotary variable differential transformers (LVDTs/RVDTs) having a single primary coil and two secondary coils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D3/00—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
- G01D3/028—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
- G01D3/036—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/204—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
- G01D5/2046—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
Die Erfindung betrifft einen induktiven Wegaufnehmer mit vorzugs weise linear veränderlicher Kopplung zwischen einer Primärspule und einer Sekundärspule.The invention relates to an inductive displacement sensor with preference wise linearly variable coupling between a primary coil and a secondary coil.
Derartige induktive Wegaufnehmer sind insbesondere als linear veränderliche Differenzialtransformatoren oder Kurzschlußringgeber aus gebildet. Bei bekannten Anordnungen wird in die Primärspule eine Si nusspannung eingespeist. Diese Sinusspannung wird linear veränderlich auf die Sekundärseite gekoppelt. Die Sekundärspannung wird demodu liert. Eine solche Anordnung weist einen Temperaturgang sowohl bei der Erzeugung der primären Sinusspannung als auch in dem Demodulator auf. Infolgedessen ist eine Temperaturkompensation der bekannten An ordnung sehr aufwendig.Such inductive displacement transducers are particularly linear variable differential transformers or short-circuit ring encoders educated. In known arrangements, an Si is in the primary coil nut voltage fed. This sine voltage becomes linearly variable coupled to the secondary side. The secondary voltage becomes demodu liert. Such an arrangement has both a temperature response the generation of the primary sine voltage as well as in the demodulator on. As a result, temperature compensation is known order very complex.
Aufgabe der Erfindung ist es, einen induktiven Wegaufnehmer der art weiterzubilden, daß derselbe wesentlich einfacher zu betreiben und eine quasi vollständige Temperaturkompensation gewährleistet ist.The object of the invention is to provide an inductive displacement sensor Art to train that the same much easier to operate and virtually complete temperature compensation is guaranteed.
Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß der Se kundärspule ein Kondensator zur Bildung eines Parallelschwingkreises parallel geschaltet ist, auf dessen Resonanzfrequenz die primäre Erre gerfrequenz abgestimmt ist, und daß die Erregerspannung eine Rechteck impulsfolge ist.This object is achieved according to the invention in that the Se secondary coil a capacitor to form a parallel resonant circuit is connected in parallel, on the resonance frequency of the primary excitation gerfrequenz is tuned, and that the excitation voltage is a rectangle is pulse train.
Eine Rechteckimpulsfolge läßt sich in einfacher Weise temperatur stabil erzeugen, so daß primärseitig immer ein temperaturunabhängiges Erregerssignal zur Verfügung steht. Dieses Erregersignal stößt mit den Impulsflanken der übertragenen Impulsgruppen den Parallelschwingkreis zu Schwingungen an, deren Größe von der linearabhängigen Kopplung ab hängt. Da der Parallelschwingkreis in Resonanz betrieben wird, erge ben sich hohe Sekundärspannungen. Diese Sekundärspannungen werden in einem Diskriminator ausgewertet.A rectangular pulse train can be temperature easily generate stable, so that always a temperature-independent on the primary side Excitation signal is available. This excitation signal hits the Pulse edges of the transmitted pulse groups the parallel resonant circuit to vibrations, the size of which depends on the linearly dependent coupling hangs. Since the parallel resonant circuit is operated in resonance, erge there are high secondary voltages. These secondary voltages are in evaluated by a discriminator.
In Weiterbildung der Erfindung ist vorgesehen, daß der Kondensa tor des Parallelschwingkreises einen entgegengesetzten Temperaturko effizienten wie die Sekundärspule hat, so daß die Resonanzfrequenz des Parallelschwingkreises im wesentlichen temperaturunabhängig ist. Hierdurch erzielt man in einfacher und vollständiger Weise eine Tempe aturkompensation auch auf der Sekundärseite.In a development of the invention it is provided that the condenser gate of the parallel resonant circuit an opposite Temperaturko efficient as the secondary coil has, so the resonance frequency of the parallel resonant circuit is essentially independent of temperature. In this way, a temperature is achieved in a simple and complete manner Ature compensation also on the secondary side.
Eine Ausführungsform der Erfindung wird im folgenden unter Bezug nahme auf die Zeichnung erläutert, die einen induktiven Wegaufnehmer anhand eines linear veränderlichen Differenzialtransfor mators erläutert.An embodiment of the invention is hereinafter referred to took explained on the drawing, which is an inductive Displacement transducer using a linearly variable differential transform mators explained.
In der Figur ist ein linear veränderlicher Differenzialtransfor mator dargestellt.In the figure is a linearly variable differential transform mator shown.
Derselbe umfaßt eine Primärspule 1, ein magnetisches Koppelele ment 2 und zwei Sekundärspulen 3. Das Koppelelement 2 verändert die Kopplung, so daß dadurch eine Wegmessung möglich ist.The same includes a primary coil 1 , a magnetic Koppelele element 2 and two secondary coils 3rd The coupling element 2 changes the coupling, so that a distance measurement is possible.
An die Primärspule ist erfindungsgemäß ein Impulsgenerator 4 zur Erzeugung einer Rechteckimpulsfolge angeschlossen, der mit seiner Im pulsfrequenz den Sekundärschwingkreis nahe seiner Resonanzfrequenz er regt. Eine bevorzugte Impulsfrequenz liegt im Bereich von etwa 10 kHz.According to the invention, a pulse generator 4 is connected to the primary coil for generating a square-wave pulse train which, with its pulse frequency, excites the secondary resonant circuit near its resonance frequency. A preferred pulse frequency is in the range of about 10 kHz.
An die Sekundärspulen 3 ist ein Kondensator 5 angekoppelt, so daß auf der Sekundärseite ein Parallelschwingkreis gebildet ist, auf dessen Resonanzfrequenz die Impulsfrequenz des Impulsgenerators 4 ab gestimmt ist. Der Parallelschwingkreis ist an einen Diskriminator 6 angeschlossen, der die Spannung der sekundärseitigen Schwingung aus wertet und so ein Wegsignal auslöst.A capacitor 5 is coupled to the secondary coils 3 , so that a parallel resonant circuit is formed on the secondary side, on the resonance frequency of which the pulse frequency of the pulse generator 4 is tuned. The parallel resonant circuit is connected to a discriminator 6 , which evaluates the voltage of the secondary-side vibration and thus triggers a path signal.
Die Impulsgruppen der Rechteckimpulsfolge weisen Impulsflanken auf, die den Parallelschwingkreis anregen. Die Größe der Anregung wird durch die Lage des Koppelelements 2 bestimmt. So kann man in den Diskriminator 6 die Größe der Resonanzschwingung und damit die Lage des Koppelelements 2 auswerten.The pulse groups of the rectangular pulse train have pulse edges that excite the parallel resonant circuit. The size of the excitation is determined by the position of the coupling element 2 . In this way, the size of the resonance oscillation and thus the position of the coupling element 2 can be evaluated in the discriminator 6 .
Der Impulsgenerator 4 arbeitet temperaturunabhängig und stellt temperaturunabhängig eine Rechteckimpulsfolge gleichbleibender Ampli tude zur Verfügung. Die Sekundärspulen 3 haben einen Temperaturgang, so daß zunächst die Resonanzfrequenz des Parallelschwingkreises ent sprechend einen Temperaturgang aufweist. Es ist ohne weiteres mög lich, den Kondensator 5 mit einem entgegengesetzten Temperaturgang auszustatten, so daß der Parallelschwingkreis insgesamt keinen Tempe raturgang aufweist. Man erzielt so eine weitgehend temperaturstabile Ausgangsspannung des induktiven Wegaufnehmers.The pulse generator 4 works independently of temperature and provides a rectangular pulse sequence of constant amplitude independent of temperature. The secondary coils 3 have a temperature response, so that first the resonance frequency of the parallel resonant circuit accordingly has a temperature response. It is readily possible Lich to equip the capacitor 5 with an opposite temperature response so that the parallel resonant circuit has no temperature response as a whole. A largely temperature-stable output voltage of the inductive displacement sensor is achieved in this way.
Der Wegaufnehmer nach der Erfindung arbeitet ohne weiteres in einem Zweig ausgehend von der Mittellage des Koppelelements. Wenn man beide Zweige der Lageänderung des Koppelelements auswerten will, so muß man auch die Phase der Resonanzschwingung auswerten, da sich in der neutralen Stellung des Koppelelements die Phase der Resonanz schwingung umkehrt.The displacement sensor according to the invention works easily in a branch starting from the central position of the coupling element. If wants to evaluate both branches of the change in position of the coupling element, so one must also evaluate the phase of the resonance oscillation, because in the neutral position of the coupling element, the phase of the resonance vibration reverses.
Die Anordnung nach der Erfindung läßt sich auch in entsprechen der Weise bei einem Kurzschlußringgeber anwenden.The arrangement according to the invention can also correspond to apply the way to a short-circuit ring encoder.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873727265 DE3727265A1 (en) | 1987-08-15 | 1987-08-15 | Inductive distance pickup |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873727265 DE3727265A1 (en) | 1987-08-15 | 1987-08-15 | Inductive distance pickup |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3727265A1 true DE3727265A1 (en) | 1989-02-23 |
Family
ID=6333848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19873727265 Ceased DE3727265A1 (en) | 1987-08-15 | 1987-08-15 | Inductive distance pickup |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE3727265A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3927833A1 (en) * | 1989-08-23 | 1991-02-28 | Bosch Gmbh Robert | MEASURING CIRCUIT AND APPLICATION THEREOF, IN PARTICULAR WITH INDUCTIVE WAYERS |
DE4105642A1 (en) * | 1991-02-22 | 1992-09-03 | Rainer Thiessen | Temp. compensation for inductive and capacitive transducers for distance measurement - using control signal derived from input parameters to influence evaluation electronics and minimise temp. dependency |
DE19635298A1 (en) * | 1996-08-30 | 1998-03-05 | Schenck Process Gmbh | Measurement coil esp for use in oscillator loop e.g. for machine monitoring |
EP0992765A1 (en) * | 1998-10-09 | 2000-04-12 | Mahr GmbH | Inductive position measurement system |
WO2017100024A1 (en) * | 2015-12-09 | 2017-06-15 | Probe Holdings, Inc. | Inductive differential position sensor with constant current drive |
DE102016223940A1 (en) * | 2016-12-01 | 2018-06-07 | Autoliv Development Ab | Belt buckle for a seat belt device |
CN112414289A (en) * | 2020-11-09 | 2021-02-26 | 安徽感航电子科技有限公司 | Design method of high-stability displacement sensor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4100480A (en) * | 1976-08-20 | 1978-07-11 | Dataproducts Corporation | Position and velocity sensors |
DE3603565A1 (en) * | 1985-02-12 | 1986-08-14 | Sokkisha Co., Ltd., Tokio/Tokyo | MEASURING VALUE WITH MAGNETIC SCALE |
-
1987
- 1987-08-15 DE DE19873727265 patent/DE3727265A1/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4100480A (en) * | 1976-08-20 | 1978-07-11 | Dataproducts Corporation | Position and velocity sensors |
DE3603565A1 (en) * | 1985-02-12 | 1986-08-14 | Sokkisha Co., Ltd., Tokio/Tokyo | MEASURING VALUE WITH MAGNETIC SCALE |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3927833A1 (en) * | 1989-08-23 | 1991-02-28 | Bosch Gmbh Robert | MEASURING CIRCUIT AND APPLICATION THEREOF, IN PARTICULAR WITH INDUCTIVE WAYERS |
DE3927833C2 (en) * | 1989-08-23 | 1998-07-02 | Bosch Gmbh Robert | Measuring circuit and application of the same, especially with inductive displacement sensors |
DE4105642A1 (en) * | 1991-02-22 | 1992-09-03 | Rainer Thiessen | Temp. compensation for inductive and capacitive transducers for distance measurement - using control signal derived from input parameters to influence evaluation electronics and minimise temp. dependency |
DE19635298A1 (en) * | 1996-08-30 | 1998-03-05 | Schenck Process Gmbh | Measurement coil esp for use in oscillator loop e.g. for machine monitoring |
EP0992765A1 (en) * | 1998-10-09 | 2000-04-12 | Mahr GmbH | Inductive position measurement system |
WO2017100024A1 (en) * | 2015-12-09 | 2017-06-15 | Probe Holdings, Inc. | Inductive differential position sensor with constant current drive |
GB2560471A (en) * | 2015-12-09 | 2018-09-12 | Probe Tech Services Inc | Inductive differential position sensor with constant current drive |
US10087740B2 (en) | 2015-12-09 | 2018-10-02 | Probe Technology Services, Inc. | Caliper tool with constant current drive |
GB2560471B (en) * | 2015-12-09 | 2021-06-16 | Probe Tech Services Inc | Inductive differential position sensor with constant current drive |
DE102016223940A1 (en) * | 2016-12-01 | 2018-06-07 | Autoliv Development Ab | Belt buckle for a seat belt device |
CN112414289A (en) * | 2020-11-09 | 2021-02-26 | 安徽感航电子科技有限公司 | Design method of high-stability displacement sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69525405T2 (en) | Comb-shaped drive device for a micromechanical rotational speed sensor and associated measuring method | |
DE60309725T2 (en) | WAVEFORM GENERATOR ELECTRONICS WITH TUNED LC CIRCUITS | |
EP0945736B1 (en) | Magnetometer | |
DE3903278C2 (en) | Inductive displacement sensor arrangement | |
DE3727265A1 (en) | Inductive distance pickup | |
DE2221371B2 (en) | Device for the wireless transmission of a measured value from a transducer to an evaluation circuit | |
DE3519215A1 (en) | PROBE, ESPECIALLY FOR USE ON A WING WHEEL FLOW METER | |
DE2906499C2 (en) | Vibration generator for low operating voltages for ultrasonic liquid atomizers | |
DE2154511A1 (en) | Microwave spectrometer | |
EP0045509B1 (en) | Means for the determination of the intensity of magnetic fields, e.g. earth fields | |
DE3822076C1 (en) | ||
DE3243074A1 (en) | OPTICAL SENSOR | |
DE3039679C2 (en) | Measuring transducer for potential-free measurement of a current | |
EP1612568A1 (en) | Apparatus for measuing the resonant frequency and quality of a resonating circuit in a sensor | |
DE2511413A1 (en) | Electrical transducer measuring pressure force or distance - uses capacitive inductive or resistive diaphragm operated frequency shifter | |
DE892606C (en) | Arrangement for generating rectangular oscillations with easily controllable frequency | |
DE1472360A1 (en) | Electromechanical vibration generator | |
DE2002168B2 (en) | Dielectric humidity measuring device | |
DE1131900B (en) | Process for converting mechanical displacements or vibrations into electrical current or voltage values | |
DE2834763A1 (en) | Workpiece material testing circuit - uses coil executing self-excited electromagnetic oscillations in conjunction with amplifier | |
DE1957361B2 (en) | Capacitance measuring device | |
DE738573C (en) | Receiving arrangement for electrical remote controls | |
DE1766091A1 (en) | Crystal controlled semiconductor oscillator | |
DE718278C (en) | Circuit for the automatic regulation of the frequency of a vibration generator | |
DE102023136433A1 (en) | CONTROL CIRCUIT FOR AN INDUCTIVE POSITION MEASURING TRANSDUCER SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8131 | Rejection |