DE3711790C2 - - Google Patents

Info

Publication number
DE3711790C2
DE3711790C2 DE3711790A DE3711790A DE3711790C2 DE 3711790 C2 DE3711790 C2 DE 3711790C2 DE 3711790 A DE3711790 A DE 3711790A DE 3711790 A DE3711790 A DE 3711790A DE 3711790 C2 DE3711790 C2 DE 3711790C2
Authority
DE
Germany
Prior art keywords
layer
heat
resistant metal
silicon substrate
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE3711790A
Other languages
German (de)
Other versions
DE3711790A1 (en
Inventor
Shuji Nakao
Natsuo Itami Hyogo Jp Ajika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of DE3711790A1 publication Critical patent/DE3711790A1/en
Application granted granted Critical
Publication of DE3711790C2 publication Critical patent/DE3711790C2/de
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines elektrischen Kontaktes in einer Halbleitereinrichtung nach dem Oberbegriff des Patentanspruches 1.The invention relates to a method for producing a electrical contact in a semiconductor device according to the preamble of claim 1.

Ein derartiges Verfahren ist aus dem J. Vac. Sci. Technol. A3 (6), Nov/Dec 1985 S. 2264 bis 2267 bekannt.Such a method is known from J. Vac. Sci. Technol. A3 (6), Nov / Dec 1985 pp. 2264 to 2267.

In den Fig. 1A, 1B und 1C sind schematische Schnittansich­ ten gezeigt, die die Verfahrensschritte bei diesem konventionellen Verfahren zum Bilden einer Kontaktbarrie­ renstruktur darstellen, die eine wärmefeste Metallsilizid­ schicht auf einen Siliziumsubstrat und eine wärmefeste Metall­ nitridschicht auf der Silizidschicht aufweist. Zum Beispiel wird zuerst eine Titanschicht 2 durch Zerstäuben, Verdampfen, CVD oder ähnliches auf einer Hauptoberfläche eines Siliziumsub­ strates 1 abgeschieden, welches mit elektrischen Kontakten zu versehen ist, wie in Fig. 1A gezeigt ist. Das Substrat 1 mit der Titanschicht 2 wird dann in einer nitridierenden Atmosphäre erwärmt, die ein Gas wie Stickstoff oder Ammoniak enthält, wo­ durch der obere Schichtabschnitt der Titanschicht 2 in eine Titannitridschicht 4 umgewandelt wird, und gleichzeitig wird der verbleibende untere Abschnitt in eine Titansilizidschicht 3 umgewandelt, wie in Fig. 1B gezeigt ist. Schließlich wird eine Metallschicht 5 einer Legierung wie Aluminium-Silizium zum Bilden von Anschlußleitungen durch Zerstäuben, CVD oder ähnliches abgeschieden, wie in Fig. 1C gezeigt ist. In Figs. 1A, 1B and 1C are schematic Schnittansich are shown ten representing the process steps in this conventional method of forming a contact Barrie renstruktur which a heat-resistant metal silicide layer on a silicon substrate and a heat-resistant metal nitride layer on the silicide layer has. For example, a titanium layer 2 is first deposited by sputtering, evaporation, CVD or the like on a main surface of a silicon substrate 1 to be provided with electrical contacts as shown in FIG. 1A. The substrate 1 with the titanium layer 2 is then heated in a nitriding atmosphere containing a gas such as nitrogen or ammonia, where it is converted by the upper layer portion of the titanium layer 2 in a titanium nitride layer 4, and simultaneously, the remaining lower section into a titanium silicide layer 3 is converted as shown in Fig. 1B. Finally, a metal layer 5 of an alloy such as aluminum-silicon is deposited to form leads by sputtering, CVD or the like, as shown in Fig. 1C.

Die Silizidschicht 3 wird vorgesehen, damit der Kontaktwider­ stand beim Herstellen von elektrischen Kontakten zu dem Sili­ ziumsubstrat 1 verringert wird. Dagegen dient die Nitridschicht 4 als eine Barriere, die die Zwischendiffusion zwischen dem Siliziumsubstrat 1 und der Metallschicht 5 verhindert.The silicide layer 3 is provided so that the contact resistance was reduced when making electrical contacts to the silicon substrate 1 . In contrast, the nitride layer 4 serves as a barrier that prevents the intermediate diffusion between the silicon substrate 1 and the metal layer 5 .

Die silizidierende Reaktion der wärmefesten Metallschicht 2 wird durch Siliziumatome durchgeführt, die von dem Silizium­ substrat 1 in die Metallschicht 2 diffundieren. Wenn daher die silizidierende Reaktion weit fortschreitet, wird die Oberflä­ chenschicht des Siliziumsubstrates aufgezehrt, und dann wer­ den die P-N-Übergänge zerstört. Darum ist es vorzuziehen, daß die Silizidschicht 3 nur zu der notwendigen minimalen Dicke wächst. Andererseits ist es nötig, daß die Nitridschicht 4 dicker als eine gewisse effektive Dicke ist, damit sie als Barriere zum Unterdrücken der Zwischendiffusion dient. Mit dem oben beschriebenen Verfahren, bei dem die Nitridschicht 4 und die Silizidschicht 3 gleichzeitig durch Erwärmen in einer ni­ trierenden Atmosphäre gebildet werden, kann die Titanschicht 2 nur bis zu ungefähr ¼ der Dicke die Tiefe nitriert werden, und die verbleibenden ¾ der Dicke der Titanschicht 2 werden sili­ zidiert. Es ist schwierig, dieses Dickenverhältnis zwischen der Nitridschicht 4 und der Silizidschicht 3 zu verändern.The silicidating reaction of the heat-resistant metal layer 2 is carried out by silicon atoms which diffuse from the silicon substrate 1 into the metal layer 2 . Therefore, if the siliciding reaction progresses far, the surface layer of the silicon substrate is consumed, and then who destroys the PN junctions. It is therefore preferable that the silicide layer 3 only grow to the necessary minimum thickness. On the other hand, it is necessary that the nitride layer 4 be thicker than a certain effective thickness so that it serves as a barrier for suppressing the intermediate diffusion. With the above-described method in which the nitride layer 4 and the silicide layer 3 are simultaneously formed by heating in a nitriding atmosphere, the titanium layer 2 can only be nitrided to about 1/4 of the thickness and the remaining ¾ of the thickness of the titanium layer 2 are silicided. It is difficult to change this thickness ratio between the nitride layer 4 and the silicide layer 3 .

Aus J. Appl. Phys. 52(9), Sept. 1981, S. 5722-5726 ist es bekannt, auf ein Siliziumsubstrat eine zweischichtige Metallkontaktschicht zu bringen, bei der als untere Schicht TiN durch reaktives Sputtern aufgebracht wird und darüber eine Metallschicht niedrigen Widerstandes abgeschieden wird, so daß das Wegfressen des Siliziumsubstrates verhindert wird. Es ist jedoch keine Silizidierung des Titanes vorgesehen.From J. Appl. Phys. 52 (9), Sept. 1981, pp. 5722-5726 it is known to have a two-layer on a silicon substrate Bring metal contact layer, as the bottom layer TiN is applied by reactive sputtering and above a low resistance metal layer is deposited, so that the silicon substrate is prevented from being eaten away. However, no silicidation of the titanium is provided.

Aus IBM TDB, Bd. 25, Nr. 12, Mai 1983, S. 6398-6399 ist ein Verfahren zur Herstellung von Kontakten für flache Übergänge bekannt, bei dem zunächst eine mit Stickstoff dotierte Ti-Schicht aufgebracht und anschließend simultan in eine Doppelschicht aus Titannitrid und Titansilizid umgewandelt wird. From IBM TDB, Vol. 25, No. 12, May 1983, pp. 6398-6399 a method of making contacts for flat Transitions known, initially with one with nitrogen doped Ti layer applied and then simultaneously in a double layer of titanium nitride and titanium silicide is converted.  

Aus der JP 59-34 639 (A) vom 25. Februar 1984 in "Patent Abstracts of Japan", E-249, 8. Juni 1984, Bd. 8. Nr. 123 ist es bekannt, mit Hilfe eines Nitriergas enthaltenden Plasmas die Oberflächen eines Siliziumsubstrates zu nitrieren. Eine Nitrierung von Metallschichten ist nicht vorgesehen.From JP 59-34 639 (A) of February 25, 1984 in "Patent Abstracts of Japan ", E-249, June 8, 1984, Vol. 8. No. 123 is known, using a plasma containing nitriding gas Nitride surfaces of a silicon substrate. A Nitriding metal layers is not intended.

Aufgabe der Erfindung ist es, ein Verfahren nach dem Ober­ begriff des Patentanspruches 1 zu schaffen, mit dem eine auf dem Siliziumsubstrat aufgebrachte hochtemperaturstabile Metallschicht in eine Doppelschicht aus einer Nitridschicht und einer Silizidschicht mit einem bestimmten Dickenverhält­ nis derart ausgebildet werden kann, daß die Silizidschicht ausreichend dünn wird und das Siliziumsubstrat nicht so weit aufgezehrt wird.The object of the invention is a method according to the Ober to create the concept of claim 1 with which high-temperature stable applied to the silicon substrate Metal layer in a double layer from a nitride layer and a silicide layer with a certain thickness ratio nis can be formed such that the silicide layer becomes sufficiently thin and the silicon substrate is not consumed so far becomes.

Diese Aufgabe wird durch das in Patentanspruch 1 gekenn­ zeichnete Verfahren gelöst.This object is characterized by the claim 1 drawn procedures solved.

Im weiteren wird ein Ausführungsbeispiel der Erfindung an­ hand der Figuren beschrieben. Von den Figuren zeigtAn exemplary embodiment of the invention is described below described by hand of the figures. From the figures shows

Fig. 1A, 1B und 1C schematische Schnittansichten der Verfahrens­ schritte bei dem konventionellen Verfahren und Fig. 1A, 1B and 1C are schematic sectional views of the process steps in the conventional method, and

Fig. 2A, 2B und 2C schematische Schnittansichten der Verfahrens­ schritte bei dem erfindungsgemäßen Verfahren. Fig. 2A, 2B and 2C are schematic sectional views of the process steps in the inventive method.

Bezugnehmend auf die Fig. 2A, 2B und 2C: dort sind schemati­ sche Schnittansichten gezeigt, die die Verfahrensschritte bei dem erfindungsgemäßen Verfahren darstellen. Fig. 2A zeigt den gleichen Schritt wie Fig. 1A des erwähnten Standes der Technik. In Fig. 2B wird jedoch die Titanschicht 2 bis zu einer gewünsch­ ten Tiefe zum Bilden einer Titannitridschicht 4 nitridiert durch Anwenden eines Plasmas 6, welches Stickstoff bei einer niedrigeren Temperatur enthält und keine Silizidierung der Ti­ tanschicht verursacht. Das Plasma 6 kann aus einem Gas, welches N₂, NH₃ oder ähnliches enthält, erzeugt werden. Danach wird die verbleibende Titanschicht 2 zwischen dem Siliziumsubstrat 1 und der Nitridschicht 4 in eine Titansilizidschicht 3 durch eine Wärmebehandlung umgewandelt, wie in Fig. 2C gezeigt ist.Referring to Figures 2A, 2B and 2C. There schemati cal sectional views are shown illustrating the process steps in the inventive method. Fig. 2A shows the same step as Fig. 1A of the prior art mentioned. In Fig. 2B, however, the titanium layer 2 is nitrided to a desired depth to form a titanium nitride layer 4 by using a plasma 6 which contains nitrogen at a lower temperature and does not cause siliciding of the titanium layer. The plasma 6 can be generated from a gas containing N₂, NH₃ or the like. Thereafter, the remaining titanium layer 2 between the silicon substrate 1 and the nitride layer 4 is converted into a titanium silicide layer 3 by a heat treatment, as shown in FIG. 2C.

Da, wie oben beschrieben, die Titanschicht 2 bis zu einer ge­ wünschten Tiefe vor der Silizierung der Titanschicht nitriert werden kann, wird es möglich, eine Silizidschicht 3 einer be­ vorzugten Dicke zu erzielen, ohne daß Schäden in den P-N-Über­ gängen des Siliziumsubstrates 1 verursacht werden.Since, as described above, the titanium layer 2 can be nitrided to a desired depth prior to the siliconization of the titanium layer, it becomes possible to achieve a silicide layer 3 of a preferred thickness without damage in the PN junctions of the silicon substrate 1 caused.

Obwohl Titan für eine wärmefeste Metallschicht in der oben be­ schriebenen Ausführungsform angenommen wurde, ist es klar, daß andere verschiedene wärmefeste Metalle wie Tantal, Molybdän, Wolfram, Zirkon, Chrom, Vanadium und Niob ebenfalls genommen werden können.Although titanium is used for a heat-resistant metal layer in the above embodiment was adopted, it is clear that other various heat-resistant metals such as tantalum, molybdenum, Tungsten, zircon, chrome, vanadium and niobium also taken can be.

Claims (3)

1. Verfahren zuzr Herstellung eines elektrischen Kontaktes in einer Halbleitereinrichtung mit einer Doppelschicht aus einer Nitridschicht (4) und einer Silizidschicht (3) auf einem Siliziumsubstrat (1) mit folgenden Schritten:
  • - Abscheiden einer wärmefesten Metallschicht (2) auf dem Substrat (1)
  • - Umwandeln des oberen, dem Siliziumsubstrat (1) abgewandten Schichtabschnitts der wärmefesten Metallschicht (2) in eine Nitridschicht (4)
  • - Umwandeln des unteren, dem Siliziumsubstrat (1) zugewandten Schichtabschnitts der wärmefesten Metallschicht (2) in einer Silizidschicht (3),
1. A method for producing an electrical contact in a semiconductor device with a double layer comprising a nitride layer ( 4 ) and a silicide layer ( 3 ) on a silicon substrate ( 1 ) with the following steps:
  • - depositing a heat-resistant metal layer ( 2 ) on the substrate ( 1 )
  • - Converting the upper layer section of the heat-resistant metal layer ( 2 ) facing away from the silicon substrate ( 1 ) into a nitride layer ( 4 )
  • Converting the lower layer section of the heat-resistant metal layer ( 2 ) facing the silicon substrate ( 1 ) into a silicide layer ( 3 ),
dadurch gekennzeichnet, daß zunächst das Umwandeln des oberen Schichtabschnitts in die Nitridschicht (4) bis zu einer gewünschen Tiefe durch Anwenden eines Stickstoff enthaltenden Plasmas bei einer solch niedrigen Temperatur durchgeführt wird, daß keine Silizidierung der wärmefesten Metallschicht (2) verursacht wird und daß danach die Umwand­ lung des verbliebenden unteren Schichtabschnitts zwischen der Nitridschicht (4) und dem Substrat in die Silizidschicht (3) durch eine Wärmebehandlung erfolgt, so daß die Nitrid­ schicht (4) mit einer hinreichend großen Dicke zum Verhindern der Interdiffusion zwischen dem Substrat (1) und einer auf der Nitridschicht (4) abgeschiedenen weiteren Metall­ schicht (5) und die Silizidschicht (3) mit nur einer notwen­ digen minimalen Dicke gebildet wird. characterized in that first the conversion of the upper layer section into the nitride layer ( 4 ) to a desired depth is carried out by applying a nitrogen-containing plasma at such a low temperature that no silicidation of the heat-resistant metal layer ( 2 ) is caused and that after that Conversion of the remaining lower layer section between the nitride layer ( 4 ) and the substrate in the silicide layer ( 3 ) by a heat treatment, so that the nitride layer ( 4 ) with a sufficiently large thickness to prevent interdiffusion between the substrate ( 1 ) and one on the nitride layer ( 4 ) deposited another metal layer ( 5 ) and the silicide layer ( 3 ) is formed with only a necessary minimum thickness. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das wärmefeste Metall aus der Gruppe ausgewählt ist, die Titan, Tantal, Molybdän, Wolfram, Zirkon, Chrom, Vanadium und Niob enthält.2. The method according to claim 1, characterized in that the heat-resistant metal from the group is selected, the titanium, tantalum, molybdenum, tungsten, zircon, Contains chromium, vanadium and niobium.
DE19873711790 1986-05-13 1987-04-08 Method of fabricating a semiconductor device Granted DE3711790A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111308A JPS62265718A (en) 1986-05-13 1986-05-13 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
DE3711790A1 DE3711790A1 (en) 1987-11-19
DE3711790C2 true DE3711790C2 (en) 1991-04-11

Family

ID=14557933

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873711790 Granted DE3711790A1 (en) 1986-05-13 1987-04-08 Method of fabricating a semiconductor device

Country Status (2)

Country Link
JP (1) JPS62265718A (en)
DE (1) DE3711790A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593511A (en) 1994-06-03 1997-01-14 Sony Corporation Method of nitridization of titanium thin films
DE19645033C2 (en) * 1995-11-01 2002-09-12 Hyundai Electronics Ind Process for forming a metal wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464942B1 (en) * 2000-06-30 2005-01-05 주식회사 하이닉스반도체 Method for forming epitaxial titanium silicide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593511A (en) 1994-06-03 1997-01-14 Sony Corporation Method of nitridization of titanium thin films
DE19645033C2 (en) * 1995-11-01 2002-09-12 Hyundai Electronics Ind Process for forming a metal wire

Also Published As

Publication number Publication date
JPS62265718A (en) 1987-11-18
DE3711790A1 (en) 1987-11-19

Similar Documents

Publication Publication Date Title
DE60023573T2 (en) Method for producing a capacitor with tantalum pentoxide in an integrated circuit
DE4400200C2 (en) Semiconductor device with improved wiring structure and method of manufacturing the same
DE4342047B4 (en) Semiconductor component with a diffusion barrier layer arrangement and method for its production
DE3240866A1 (en) SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
DE4200809C2 (en) Method for forming a metallic wiring layer in a semiconductor device
DE4010618C2 (en) Method of manufacturing a semiconductor device
DE69832226T2 (en) Method for producing a semiconductor device with aluminum contacts or vias
DE4440857A1 (en) Gate oxide formation for semiconductor device
DE3211761A1 (en) METHOD FOR MANUFACTURING INTEGRATED MOS FIELD EFFECT TRANSISTOR CIRCUITS IN SILICON GATE TECHNOLOGY WITH SILICIDE-COVERED DIFFUSION AREAS AS LOW-RESISTANT CONDUCTORS
DE4400726A1 (en) Metal vapor deposition method on an integrated circuit device
DE4214091C2 (en)
DE3326142A1 (en) INTEGRATED SEMICONDUCTOR CIRCUIT WITH AN EXTERNAL CONTACT LAYER LEVEL MADE OF ALUMINUM OR ALUMINUM ALLOY
DE10136400B4 (en) Method for producing a metal carbide layer and method for producing a trench capacitor
DE2817258A1 (en) METHOD OF PRODUCING AN INSULATING LAYER FIELD EFFECT TRANSISTOR STRUCTURE
DE10131716B4 (en) A method of manufacturing a capacitor for a semiconductor memory device by a two-stage thermal treatment
DE4423558B4 (en) Semiconductor component with a conductive layer, MOS field effect transistor with a conductive layer and method for their production
DE3743591C2 (en)
DE3122437A1 (en) METHOD FOR PRODUCING A MOS COMPONENT
DE3414781A1 (en) Multi-layer connection structure of a semi-conductor device
DE3033513A1 (en) METHOD FOR PRODUCING A MULTIPLE LAYER JOINT
DE3711790C2 (en)
DE60037337T2 (en) MANUFACTURE OF A TUNGSTEN GATE ELECTRODE
DE102006053930B4 (en) Manufacturing method for a transistor gate structure
DE102004063149B4 (en) Method for producing a semiconductor device
EP0965654B1 (en) Process for manufacturing metal-containing layers

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8320 Willingness to grant licences declared (paragraph 23)
8328 Change in the person/name/address of the agent

Representative=s name: PRUFER & PARTNER GBR, 81545 MUENCHEN