DE3707631A1 - Multiple thermocouple having a very low temperature coefficient as a monolithically integrated chip for precise differential temperaure measurements in radiation sensors and multiple thermoconverters - Google Patents

Multiple thermocouple having a very low temperature coefficient as a monolithically integrated chip for precise differential temperaure measurements in radiation sensors and multiple thermoconverters

Info

Publication number
DE3707631A1
DE3707631A1 DE19873707631 DE3707631A DE3707631A1 DE 3707631 A1 DE3707631 A1 DE 3707631A1 DE 19873707631 DE19873707631 DE 19873707631 DE 3707631 A DE3707631 A DE 3707631A DE 3707631 A1 DE3707631 A1 DE 3707631A1
Authority
DE
Germany
Prior art keywords
thermocouples
thermocouple
thermoconverters
temperature
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19873707631
Other languages
German (de)
Inventor
Manfred Dipl Ing Klonz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19873707631 priority Critical patent/DE3707631A1/en
Publication of DE3707631A1 publication Critical patent/DE3707631A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The precise differential temperature measurement in radiation sensors and in multiple thermoconverters (for measuring alternating voltage and alternating current) requires multiple thermocouples having a very low temperature coefficient for changes in room temperatures, while increasing the sensitivity of the temperature measurement requires multiplication of the thermocouples in a very small space. Both requirements are fulfilled, according to the invention, by constructing the series circuit (1) of thermocouples using thin-film technology on a preferably < 100 > oriented silicon wafer (2) having oxidised surfaces for the purpose of electrical insulation. To reduce the thermal conduction, a window covered only with a thin silicon dioxide skin is made by isotropically or anisotropically etching the silicon in the region of the multiple thermocouple. The thermocouples and the heater (5) or the radiation-absorbing layer are applied to the window. The frame (2) of the window acts as the heat sink and the reference temperature for all the thermocouples. Using this construction, compared with earlier constructions, an improvement in the sensitivity to 10<-9> W/Hz and temperature coefficients for the... by the choice of the material and the geometry of the thermocouples ... Original abstract incomplete. <IMAGE>

Description

Die Erfindung betrifft ein Vielfachthermoelement mit sehr kleinem Temperaturkoeffizienten als monolithisch integrierter Chip für prä­ zise Temperaturdifferenzmessungen bei Strahlungssensoren und Vielfachthermokonvertern nach dem Oberbegriff des Anspruches.The invention relates to a multiple thermocouple with a very small Temperature coefficients as a monolithically integrated chip for pre Precise temperature difference measurements with radiation sensors and Multiple thermal converters according to the preamble of the claim.

Sowohl bei Strahlungssensoren wie auch bei Vielfachthermokonvertern wird die Temperaturerhöhung infolge einfallender Strahlung auf eine lichtabsorbierende Schicht zum Strahlungssensor bzw. infolge Joulescher Wärme des elektrischen Stromes in einem Heizer beim Thermokonverter mit Thermoelementen gemessen. Zur Erhöhung der Empfindlichkeit sowie zur gleichmäßigen Wärmeableitung wird eine Reihenschaltung von möglichst vielen Thermoelementen verwendet. Bei Erhöhung der Anzahl der Thermoelemente wird jedoch die Wärmeablei­ tung aus der Meßstelle erhöht, und deren Temperatur wird verringert. Zur Minimierung der Wärmeableitung müssen die Thermoelemente aus sehr dünnen Drähten hergestellt (Durchmesser bis herab zu 20 µm) werden, wodurch die Herstellung sehr schwierig wird. Die Empfindlich­ keit der Anordnung wird weiter erhöht, wenn für die Thermoelemente Materialien mit großem Seebeckfkoeffizienten gewählt werden. Gleich­ zeitig ist aber für einen solchen hochempfindlichen Temperatursensor ein kleiner TK bei Änderung der Umgebungstemperatur notwendig, um seine Empfindlichkeit ausnutzen zu können.Both with radiation sensors and with multiple thermoconverters the temperature increase due to incident radiation to a light-absorbing layer to the radiation sensor or as a result Joule heat of the electric current in a heater at Thermal converter measured with thermocouples. To increase the Sensitivity and for even heat dissipation becomes a Series connection of as many thermocouples as possible. At Increasing the number of thermocouples, however, will heat dissipation tion increased from the measuring point, and its temperature is reduced. To minimize heat dissipation, the thermocouples must be off made of very thin wires (diameter down to 20 µm) become very difficult to manufacture. The sensitive speed of the arrangement is further increased if for the thermocouples Materials with a large Seebeckf coefficient can be selected. Soon is timely for such a highly sensitive temperature sensor a small TK is necessary in order to change the ambient temperature to be able to use its sensitivity.

Ein Verfahren zur Herstellung der Reihenschaltung von mehreren Ther­ moelementen pro mm für Vielfachthermokonverter wird von /Klonz 1987/ angegeben.A method of making the series connection of multiple Ther elements per mm for multiple thermal converters is from / Klonz 1987 / specified.

Dabei wird ein Wickel aus CuNi44-Draht partiell von den "warmen" bis zu den "kalten" Verbindungsstellen mit Kupfer beschichtet. A coil of CuNi44 wire is partially from the "warm" to to the "cold" connection points coated with copper.  

Bei dieser Konstruktion wird wie bei keiner anderen bisher ange­ gebenen Konstruktion für Vielfachthermoelemente ein sehr kleiner TK der Thermospannung bei Änderung der Umgebungstemperatur dadurch er­ reicht /Klonz 1987/, daß die TK der Thermospannung und der Wärmeleit­ werte der Thermoelemente durch geeignete Wahl der Schichtdicke des Kupfers einander kompensieren.This construction has been used like no other design for multiple thermocouples a very small TK the thermal voltage when the ambient temperature changes enough / Klonz 1987 / that the TK of thermal voltage and thermal conductivity values of the thermocouples by suitable choice of the layer thickness of the Copper compensate each other.

Durch Aufbringen eines Heizers auf die "warmen" Verbindungsstellen wird aus diesem Temperatursensor ein Vielfachthermokonverter, mit dem die im Heizer durch einen Wechselstrom bzw. durch einen äquivalenten Gleichstrom hervorgerufenen Übertemperaturen verglichen werden können. Der Wechselstrom kann dabei im Frequenzbereich bis zu einigen MHz liegen.By applying a heater to the "warm" connection points becomes a multiple thermal converter from this temperature sensor which in the heater by an alternating current or by an equivalent DC-induced excess temperatures can be compared. The alternating current can be in the frequency range up to a few MHz lie.

Durch exakt gleiche Geometrie aller Thermoelemente, die die Wärmeab­ leitung vom Heizer besorgen, gelingt es, eine periodische Temperatur­ verteilung auf dem Heizer zu erzeugen, wodurch wiederum systematische Änderungen der Temperaturverteilung infolge Joulescher Wärme bei Gleichstrom durch thermoelektrische Effekte im Heizer vermieden wer­ den, so daß die Rückführung von Wechselströmen auf äquivalente Gleichströme mit einer Unsicherheit von einigen 10-7 möglich ist, und auf diese Weise die Messung von Wechselgrößen sehr genau durchge­ führt werden kann.By exactly the same geometry of all thermocouples that provide the heat dissipation from the heater, it is possible to generate a periodic temperature distribution on the heater, which in turn prevents systematic changes in the temperature distribution due to Joule heat with direct current through thermoelectric effects in the heater, so that the return of alternating currents to equivalent direct currents with an uncertainty of a few 10 -7 is possible, and in this way the measurement of alternating quantities can be carried out very precisely.

Die Herstellung dieser Vielfachthermokonverter ist sehr aufwendig, da Drähte mit Durchmessern von 10 µm bis 20 µm unter einem Mikroskop ge­ handhabt, miteinander und mit der Wärmesenke verklebt und spezielle Punktschweiß- und Lichtbogenschweißtechniken angewendet werden müssen. Die Grundplatte, auf die das Vielfachthermoelement auf­ gesetzt wird, besteht aus einer präzis angefertigten und damit teuren Cu-Platte, die wegen ihres guten Wärmeleitwertes die Wärme­ senke und Referenztemperatur für die Temperaturdifferenzmessung dar­ stellt. Die Einzelanfertigung dieser Vielfachthermokonverter führt zu sehr hohen Stückpreisen. Die Schwierigkeiten der Fertigung und der hohe Preis stehen einer wünschenswerten breiten Einführung dieses Konvertertyps in die industrielle Wechselstrom-Meßtechnik ent­ gegen. Nachteilig ist weiterhin, daß dieser Aufbau infolge seiner Größe eine Integration dieses Bauelementes in moderne integrierte elektronische Schaltkreise nicht zuläßt.The production of these multiple thermal converters is very complex because Wires with diameters from 10 µm to 20 µm under a microscope handles, glued to each other and to the heat sink and special Spot welding and arc welding techniques are used have to. The base plate on which the multiple thermocouple is placed is composed of a precisely made and therefore expensive copper plate, which because of its good thermal conductivity, the heat sink and reference temperature for the temperature difference measurement poses. The individual production of these multiple thermal converters leads at very high unit prices. The difficulties of manufacturing and the high price represent a desirable broad introduction  this type of converter in industrial AC measurement technology ent against. Another disadvantage is that this structure due to its Size an integration of this component in modern integrated electronic circuits.

Der Erfindung liegt die Aufgabe zugrunde, eine Konstruktion für das Vielfachthermoelement zu finden, die eine billige Massenfertigung bei Einhaltung der Spezifikation, besonders der vernachlässigbar kleinen thermoelektrischen Effekte und des kleinen TK des beschrie­ benen Vielfachthermokonverters bzw. Vielfachthermoelementes für Strahlungsmessungen ermöglicht und die in integrierte Schaltkreise integriert werden kann. The invention has for its object a construction for Multiple thermocouple to find which is a cheap mass production in compliance with the specification, especially the negligible small thermoelectric effects and the small TC of the described benen multiple thermoconverters or multiple thermocouples for Radiation measurements and integrated circuits can be integrated.  

Lösungsolution

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die bisherige dreidimensionale Thermoelementenreihenschaltung planar angeordnet und in Dünnfilmtechnik hergestellt wird ((1) in Bild 1 und Schnitt A-A in Bild 2).This object is achieved according to the invention in that the previous three-dimensional thermocouple series connection is arranged in a planar manner and manufactured using thin-film technology (( 1 ) in Figure 1 and section AA in Figure 2).

Die Grundplatte bildet ein Silizium-Wafer (2) mit vorzugsweiser ⟨100⟩ Orientierung der Kristallachsen des Einkristalls, der auf beiden Sei­ ten zur elektrischen Isolierung der Thermoelemente eine Oxid- oder Nitridschicht (3) besitzt. Im Bereich der Thermoelemente wird zur Verringerung der Wärmeableitung vom Heizer zum Silizium von unten her ein maßhaltiges Fenster (4) durch isotropes oder anisotropes Ätzen eingebaut, das dann nur noch von der oberseitigen Isolierschicht über­ spannt wird. Auf dieses Fenster werden die Thermoelemente (1) und der Heizer (5) bzw. an seiner Stelle eine lichtabsorbierende Schicht aufge­ dampft oder gesputtert. Die Strukturen werden mit Hilfe von Masken und Fotolithografie hergestellt. Die Anschlüsse zu den Thermoelemen­ ten und zum Heizer und die kalten Verbindungsstellen der thermo­ elemente liegen auf dem Si-Rahmen (2), der infolge seiner guten Wärme­ leitung die Wärmesenke und Referenztemperatur für die Temperaturdif­ ferenzmessung bildet.The base plate forms a silicon wafer ( 2 ) with preferably ⟨100⟩ orientation of the crystal axes of the single crystal, which has an oxide or nitride layer ( 3 ) on both sides for electrical insulation of the thermocouples. In order to reduce the heat dissipation from the heater to the silicon, a dimensionally stable window ( 4 ) is installed in the area of the thermocouples by isotropic or anisotropic etching, which is then only stretched over by the insulating layer on the top. In this window, the thermocouples ( 1 ) and the heater ( 5 ) or in its place a light-absorbing layer is vaporized or sputtered. The structures are made using masks and photolithography. The connections to the thermocouples and to the heater and the cold connection points of the thermocouples lie on the Si frame ( 2 ), which, due to its good heat conduction, forms the heat sink and reference temperature for the temperature difference measurement.

Für die Thermoelementenreihenschaltung können alle Materialpaarungen (Metalle, Metallegierungen und Halbleiter), die einen kleinen posi­ tiven TK der Thermospannung und wenigstens das Material eines Schen­ kels einen negativen TK des Wärmeleitwertes und einen positiven TK des elektrischen Widerstandes haben, verwendet werden. Die Geometrie dieses Schenkels (Breite und Dicke) muß so gewählt werden, daß seine TK′s den TK der Thermospannung kompensieren. Diesem Schenkel kann wahlweise das Material des anderen Schenkels in galvanischem Kontakt unterlegt werden.All material pairings can be used for the thermocouple series connection (Metals, metal alloys and semiconductors) that a small posi tiv TK of thermal voltage and at least the material of a Schen a negative TK of the thermal conductivity and a positive TK of electrical resistance can be used. The geometry this leg (width and thickness) must be chosen so that its TK’s compensate the TK of the thermal voltage. This leg can either the material of the other leg in galvanic contact be underlaid.

Der Heizer wird aus Widerstandsmaterial mit vernachlässigbar kleinem TK ausgeführt.The heater is made of resistance material with a negligibly small size TK executed.

Der Siliziumchip wird in einem Keramikhalterung in gutem Wärmekontakt eingebaut und die Kontaktierung erfolgt durch Bonden.The silicon chip is in a ceramic holder in good thermal contact installed and the contact is made by bonding.

Die mit dieser Erfindung erzielten Vorteile bestehen besonders darin, daß Handarbeit unter einem Mikroskop und Schweißtechnik bei der Ein­ zelanfertigung des dreidimensionalen Vielfachthermoelementes durch Masken- und Aufdampftechniken bei der Herstellung der Dünnfilm­ strukturen von Thermoelementen und Heizern bzw. lichtabsorbierenden Schichten sowie die mechanische Formgebung von Metall durch präzise Ätztechnik in Silizium ersetzt werden.The advantages achieved with this invention are in particular that manual work under a microscope and welding technology at the one Individual manufacturing of the three-dimensional multiple thermocouple by Mask and vapor deposition techniques in the manufacture of thin film structures of thermocouples and heaters or light-absorbing Layers as well as the mechanical shaping of metal through precise Etching technology in silicon to be replaced.

Mit diesem Verfahren können in reproduzierbarer Weise auf einem 3-Zoll-Wafer 20 bis 50 Vielfachthermokonverter oder Strahlungssen­ soren gleichzeitig hergestellt werden, wodurch eine erhebliche Kostensenkung gegenüber der dreidimensionalen Konstruktion erzielt werden kann.With this method you can reproducibly on a 3-inch wafers 20 to 50 multiple thermal converters or radiation sensors sensors are manufactured simultaneously, creating a significant Cost reduction compared to the three-dimensional construction achieved can be.

Literatur:Literature:

Entwicklung von Vielfachthermokonvertern zur genauen Rückführung von Wechselgrößen auf äquivalente Gleichgrößen. Dissertation TU Braunschweig, 1985.Development of multiple thermal converters for precise Reduction of alternating quantities to equivalent direct quantities. Dissertation TU Braunschweig, 1985.

Claims (1)

. Vielfachthermoelement mit sehr kleinem Temperaturkoeffizienten als monolithisch integrierter Chip für präzise Temperaturdifferenzmes­ sungen bei Strahlungssensoren und Vielfachthermokonvertern, dadurch gekennzeichnet, daß die Thermoelementenreihenschaltung in Dünnfilm-Technik auf einem vorzugsweise ⟨100⟩ orientierten Silizium­ wafer hergestellt wird, dessen Oberfläche zur elektrischen Isolie­ rung eine Oxid- oder Nitridschicht und der im Bereich des Vielfach­ thermoelementes ein Fenster enthält, das in reproduzierbarer Geo­ metrie gegenüber der Thermoelementenreihenschaltung durch isotropes oder anisotropes Ätzen des Siliziums hergestellt wird, und dessen Rahmen die Funktion der Wärmesenke und der Referenztemperatur für alle Thermoelemente übernimmt, gegen die als Strahlungssensor die Temperaturdifferenz einer lichtabsorbierenden Schicht oder als Vielfachthermokonverter die Temperaturdifferenz eines Heizers mit in reproduzierbarer Geometrie angeordneten Thermoelementen gemessen wird, deren Material und Geometrie für die Thermoelementenausgangs­ spannungen einen Temperaturkoeffizienten (TK) bei Änderung der Umge­ bungstemperatur von weniger als 10-5 K-1 ergeben, weil der positive TK der Thermospannung durch den negativen TK des Wärmeleitwerts und/oder durch den positiven TK des elektrischen Widerstandes eines Thermoelementenschenkels, der partiell von dem Material des anderen Schenkels überdeckt wird, infolge geeigneter Schichtdicke dieses Schenkels kompensiert wird, und der Heizer aus Widerstandsmaterial mit vernachlässigbar kleinem TK ausgeführt wird.. Multiple thermocouple with a very low temperature coefficient as a monolithically integrated chip for precise temperature difference measurements in radiation sensors and multiple thermoconverters, characterized in that the thermocouple series circuit is manufactured in thin film technology on a preferably ⟨100⟩ oriented silicon wafer, the surface of which is an oxide or electrical insulation Nitride layer and in the area of the multiple thermocouple contains a window that is produced in a reproducible geometry compared to the thermocouple series connection by isotropic or anisotropic etching of the silicon, and whose frame takes over the function of the heat sink and the reference temperature for all thermocouples, against which the radiation sensor Temperature difference of a light-absorbing layer or as a multiple thermal converter, the temperature difference of a heater is measured with thermocouples arranged in reproducible geometry, the Material and geometry for the thermocouple output voltages result in a temperature coefficient (TK) when the ambient temperature changes by less than 10 -5 K -1 , because the positive TK of the thermal voltage by the negative TK of the thermal conductivity and / or by the positive TK of the electrical resistance a thermocouple leg, which is partially covered by the material of the other leg, is compensated for by a suitable layer thickness of this leg, and the heater is made of resistance material with a negligibly small TK.
DE19873707631 1987-03-10 1987-03-10 Multiple thermocouple having a very low temperature coefficient as a monolithically integrated chip for precise differential temperaure measurements in radiation sensors and multiple thermoconverters Withdrawn DE3707631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873707631 DE3707631A1 (en) 1987-03-10 1987-03-10 Multiple thermocouple having a very low temperature coefficient as a monolithically integrated chip for precise differential temperaure measurements in radiation sensors and multiple thermoconverters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873707631 DE3707631A1 (en) 1987-03-10 1987-03-10 Multiple thermocouple having a very low temperature coefficient as a monolithically integrated chip for precise differential temperaure measurements in radiation sensors and multiple thermoconverters

Publications (1)

Publication Number Publication Date
DE3707631A1 true DE3707631A1 (en) 1988-09-22

Family

ID=6322671

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873707631 Withdrawn DE3707631A1 (en) 1987-03-10 1987-03-10 Multiple thermocouple having a very low temperature coefficient as a monolithically integrated chip for precise differential temperaure measurements in radiation sensors and multiple thermoconverters

Country Status (1)

Country Link
DE (1) DE3707631A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425165A2 (en) * 1989-10-26 1991-05-02 Hughes Aircraft Company Low-temperature refrigerating device using current-carrying superconducting mode/nonsuperconducting mode junctions
DE4110653A1 (en) * 1990-07-12 1992-01-23 Landis & Gyr Betriebs Ag Thermoelectric transducer with several thermoelement pairs - has first junction points with rows of first and second conductive material w.r.t. reference direction
DE4104327A1 (en) * 1991-02-13 1992-08-20 Fraunhofer Ges Forschung Peltier element for heat removal from silicon@ dice - is formed on a cantilevered part of a silicon substrate to avoid the degradation caused by a cooling substrate
WO1994016463A1 (en) * 1993-01-13 1994-07-21 Kinard Joseph R Multilayer thin film multijunction integrated micropotentiometers
WO1994016464A1 (en) * 1993-01-13 1994-07-21 Kinard Joseph R Multilayer film multijunction thermal converters
US5462608A (en) * 1993-04-06 1995-10-31 Imra Europe Sa Peltier effect device to detect in particular a condensation risk on a surface being in contact with a wet air volume
DE19520777C1 (en) * 1995-06-07 1996-08-29 Inst Physikalische Hochtech Ev Temperature-compensated micro-flowmeter with mirror-symmetrical layout
US5597957A (en) * 1993-12-23 1997-01-28 Heimann Optoelectronics Gmbh Microvacuum sensor having an expanded sensitivity range
DE19710946A1 (en) * 1997-03-15 1998-09-24 Braun Ag Thermopile sensor and radiation thermometer with a thermopile sensor
DE4102524C2 (en) * 1990-01-30 2000-05-25 Citizen Watch Co Ltd Infrared sensor
DE10104219A1 (en) * 2001-01-31 2002-08-22 Infineon Technologies Ag Active cooling device for semiconductor module has cooling provided by thermoelectric active cooling layer regulated by measured temperature of semiconductor module
US8517605B2 (en) 2009-09-18 2013-08-27 Northwestern University Bimetallic integrated on-chip thermocouple array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111717A (en) * 1977-06-29 1978-09-05 Leeds & Northrup Company Small-size high-performance radiation thermopile
US4558342A (en) * 1983-05-31 1985-12-10 Rockwell International Corporation Thermoelectric infrared detector array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111717A (en) * 1977-06-29 1978-09-05 Leeds & Northrup Company Small-size high-performance radiation thermopile
US4558342A (en) * 1983-05-31 1985-12-10 Rockwell International Corporation Thermoelectric infrared detector array

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Entwicklung von Vielfachthermokonvertoren zur genauen Rückführung von Wechselgrößen auf äquivalente Gleichgrößen", Dissertation der TU Braunschweig, 1985 *
US-Z: IEEE Transactions on Electron Devices, Bd. ED-33, 1986, Nr.1, S.72-79 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425165A3 (en) * 1989-10-26 1991-10-09 Hughes Aircraft Company Low-temperature refrigerating device using current-carrying superconducting mode/nonsuperconducting mode junctions
EP0425165A2 (en) * 1989-10-26 1991-05-02 Hughes Aircraft Company Low-temperature refrigerating device using current-carrying superconducting mode/nonsuperconducting mode junctions
DE4102524C2 (en) * 1990-01-30 2000-05-25 Citizen Watch Co Ltd Infrared sensor
DE4110653A1 (en) * 1990-07-12 1992-01-23 Landis & Gyr Betriebs Ag Thermoelectric transducer with several thermoelement pairs - has first junction points with rows of first and second conductive material w.r.t. reference direction
DE4104327A1 (en) * 1991-02-13 1992-08-20 Fraunhofer Ges Forschung Peltier element for heat removal from silicon@ dice - is formed on a cantilevered part of a silicon substrate to avoid the degradation caused by a cooling substrate
WO1994016463A1 (en) * 1993-01-13 1994-07-21 Kinard Joseph R Multilayer thin film multijunction integrated micropotentiometers
WO1994016464A1 (en) * 1993-01-13 1994-07-21 Kinard Joseph R Multilayer film multijunction thermal converters
US5393351A (en) * 1993-01-13 1995-02-28 The United States Of America As Represented By The Secretary Of Commerce Multilayer film multijunction thermal converters
US5462608A (en) * 1993-04-06 1995-10-31 Imra Europe Sa Peltier effect device to detect in particular a condensation risk on a surface being in contact with a wet air volume
US5597957A (en) * 1993-12-23 1997-01-28 Heimann Optoelectronics Gmbh Microvacuum sensor having an expanded sensitivity range
DE19520777C1 (en) * 1995-06-07 1996-08-29 Inst Physikalische Hochtech Ev Temperature-compensated micro-flowmeter with mirror-symmetrical layout
DE19710946A1 (en) * 1997-03-15 1998-09-24 Braun Ag Thermopile sensor and radiation thermometer with a thermopile sensor
US6203194B1 (en) 1997-03-15 2001-03-20 Braun Gmbh Thermopile sensor for radiation thermometer or motion detector
DE10104219A1 (en) * 2001-01-31 2002-08-22 Infineon Technologies Ag Active cooling device for semiconductor module has cooling provided by thermoelectric active cooling layer regulated by measured temperature of semiconductor module
DE10104219B4 (en) * 2001-01-31 2006-05-24 Infineon Technologies Ag Arrangement for active cooling of a semiconductor device and method for operating the device
US8517605B2 (en) 2009-09-18 2013-08-27 Northwestern University Bimetallic integrated on-chip thermocouple array

Similar Documents

Publication Publication Date Title
DE4102524C2 (en) Infrared sensor
DE4031248C2 (en)
DE3707631A1 (en) Multiple thermocouple having a very low temperature coefficient as a monolithically integrated chip for precise differential temperaure measurements in radiation sensors and multiple thermoconverters
DE69416367T2 (en) Method and apparatus for measuring thermal conductivity
DE69510432T2 (en) Infrared radiation sensor
DE3877795T2 (en) FLOW SENSOR.
DE2204153C3 (en) Temperature sensor for very low temperatures
DE3628017A1 (en) THERMAL FLOW SENSOR
DE2644283B2 (en) Method of making a thermoelectric !! Building block
EP0693677B1 (en) Current supply device, especially for electrically powered measuring instruments
EP1248968B1 (en) Arrangement for temperature monitoring and regulation
DE1541797B1 (en) Contact for determining the specific resistance of thin semiconductor material layers
Kinard et al. Development of thin-film multijunction thermal converters at NIST
EP0016263A1 (en) Thin film resistor having a high temperature coefficient and method of manufacturing the same
DE10333084A1 (en) Thermal generator used e.g. as a current source comprises thermal segments displaced relative to each other so that one end of the thermal element chain protrudes over one edge of a neighboring thermal segment
DE3324272A1 (en) THERMISTOR BOLOMETER
EP0060427B1 (en) Sensor device for the measurement of physical quantities, as well as a process for its manufacture, and its application
DE102005003723A1 (en) Thermopile e.g. for measuring temperature differences, has thin-film or thick-film conductor paths on substrate
DE102018130547A1 (en) Sensor element, method for its production and thermal flow sensor
DE3110047A1 (en) Sensor for measuring physical data, process for its production and its use
JPH05188021A (en) Probe for measuring thermophysical property value of thin film
DE19832597A1 (en) Thin film supporting base structure
DE4410315A1 (en) Micro-sensor for measurement of heat conductivity of thin films
EP4055358B1 (en) Sensor element for measuring an object temperature and method for assessing the measurement quality of such a sensor element
DE2908919C2 (en) Process for the manufacture of a thin film temperature sensor

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8130 Withdrawal