DE3703793A1 - Detector element - Google Patents

Detector element

Info

Publication number
DE3703793A1
DE3703793A1 DE19873703793 DE3703793A DE3703793A1 DE 3703793 A1 DE3703793 A1 DE 3703793A1 DE 19873703793 DE19873703793 DE 19873703793 DE 3703793 A DE3703793 A DE 3703793A DE 3703793 A1 DE3703793 A1 DE 3703793A1
Authority
DE
Germany
Prior art keywords
paddle
detector element
electronics
element according
gold layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19873703793
Other languages
German (de)
Other versions
DE3703793C2 (en
Inventor
Peter P Dr Deimel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19873703793 priority Critical patent/DE3703793A1/en
Publication of DE3703793A1 publication Critical patent/DE3703793A1/en
Application granted granted Critical
Publication of DE3703793C2 publication Critical patent/DE3703793C2/de
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/148Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors using semiconductive material, e.g. silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

The invention relates to a detector element for measuring forces and accelerations with an electronic system which is integrated in a semiconductor carrier and measures the capacitive change of a paddle as a function of the inclination or acceleration so that piezoresistors no longer have to be used for such detector elements. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Detektorelement zur Messung von Kräf­ ten und Beschleunigungen.The invention relates to a detector element for measuring force accelerations.

Bisherige Detektorelemente dieser Art arbeiten auf der Basis sogenannter piezoresistiver Messungen, also mit Piezowiderständen. Die Probleme, die mit Piezowiderständen gegeben sind, sind hinlänglich bekannt.Previous detector elements of this type work on the basis of so-called Piezoresistive measurements, i.e. with piezoresistors. The problems that with piezoresistors are well known.

Aufgabe der vorliegenden Erfindung ist es, ein Detektorelement der ein­ gangs genannten Art zu schaffen, das die Nachteile des Standes der Tech­ nik beseitigt und ohne Verwendung von Piezowiderständen zuverlässig Be­ schleunigungen und Kräfte messen kann.The object of the present invention is to provide a detector element gangs mentioned to create the disadvantages of the prior art Tech nik eliminated and reliable without using piezoresistors can measure accelerations and forces.

Diese Aufgabe wird durch die im Anspruch 1 aufgeführten Maßnahmen ge­ löst. In den Unteransprüchen sind Ausgestaltungen und Weiterbildungen aufgezeigt und in der Beschreibung ist ein Ausführungsbeispiel erläutert sowie in den Figuren der Zeichnung skizziert. Es zeigtThis task is ge by the measures listed in claim 1 solves. Refinements and developments are in the subclaims shown and an embodiment is explained in the description as well as sketched in the figures of the drawing. It shows

Fig. 1 eine perspektivische Ansicht eines Ausführungsbeispiels des vor­ geschlagenen Detektorelements in vergrößerter Darstellung; Figure 1 is a perspective view of an embodiment of the struck detector element in an enlarged view.

Fig. 2 einen Schnitt entlang der Linie A-A gemäß Fig. 1; FIG. 2 shows a section along the line AA according to FIG. 1;

Fig. 3 ein Ausführungsbeispiel mit Maßangaben zur Veranschaulichung mit welchen Dimensionierungen gearbeitet werden kann. Fig. 3 shows an embodiment with dimensions to illustrate which dimensions can be used.

Das in Fig. 1 dargestellte Ausführungsbeispiel des nach der Erfindung konzipierten Detektorelementes setzt sich aus einer Trägerplatte 10 aus Silizium (Si) bestimmter Stärke zusammen, auf der eine Isolierschicht 11 aus SiO2 bzw. SiN x aufgetragen ist. Auf der Oberfläche dieser Isolatorschicht wird nun entsprechend der vorgesehenen Größe des als Kondensators zur Elektronik vorgesehenen Paddels 14 eine Goldschicht 12 aufgetragen. The exemplary embodiment shown in FIG. 1 of the detector element designed according to the invention is composed of a carrier plate 10 made of silicon (Si) of a certain thickness, on which an insulating layer 11 made of SiO 2 or SiN x is applied. A gold layer 12 is then applied to the surface of this insulator layer in accordance with the size of the paddle 14 provided as a capacitor for the electronics.

In der Silizium-Trägerplatte 10 ist funktionsgerecht die Elektronik 15 integriert, wobei die Elektronikbausteine auf Silizium selbst, oder in Form von auf die Isolierschicht aufgedampfter elektronischer Funktions­ elemente hergestellt werden. Die Goldschicht 12 führt - wie in der Fig. 1 veranschaulicht - zur Kontaktierung derselben bis zum entsprechenden Schalt- bzw. Kontaktelement hin.In the silicon carrier plate 10 , the electronics 15 are integrated in a functional manner, the electronic components being produced on silicon itself, or in the form of electronic functional elements vapor-deposited on the insulating layer. The gold layer 12 leads - as illustrated in FIG. 1 - to contact it up to the corresponding switching or contact element.

In der Goldschicht 12 wird nun sowohl die Kontur des konzipierten Pad­ dels 14 mit seinem Paddelsteg 14 a ausgeätzt, als auch durch die Ätzlö­ cher 13 a die unter der Goldschicht liegende Isolatorfläche ausgeätzt. Je nach Breite des rechnerisch ermittelten Paddelsteges können zur Erlan­ gung eines gleichmäßigen "Unterhöhlungsraumes" 16 auch in dem Paddelsteg 14 a Ätzlöcher 13 a angeordnet sein. Im vorliegenden Ausführungsbeispiel ist dies nicht erforderlich.In the gold layer 12, both the contour of the pad designed trade paddle 14 with its web 14 a will now be etched, as well as by the cher Ätzlö 13 etched a is the lying below the gold layer insulator surface. Depending on the width of the computationally determined paddle web 16 can also be arranged in the paddle web 14 a etching holes 13 a to achieve a uniform “undercave space” 16 . In the present exemplary embodiment, this is not necessary.

Wie aus der Fig. 2 ersichtlich, ist nach dem Ätzvorgang, der mittels bestimmter Säuren oder anderer entsprechender, für kristallines Silizium und deren Verbindungen geeigneter Ätzmittel gebildete Unterhöhlungsraum 16 gebildet worden, in dem es nunmehr dem Paddel 14 möglich ist, frei am Paddelsteg 14 a hängend in vertikaler Richtung auszuschlagen. Dadurch er­ gibt sich nun eine Messung von Neigung und Beschleunigung mit einem in­ tegrierten Detektor auf Halbleiterbasis, der die kapazitive Änderung als Funktion der Neigung oder Beschleunigung mißt. Die nach der Erfindung herzustellenden Detektorelemente beruhen auf der Ausnützung der aniso­ tropen Ätzgeschwindigkeit des verwendeten Ätzmittels und schaffen ein Detektorelement, das ohne Verwendung von Piezowiderständen arbeitet.As can be seen from FIG. 2, after the etching process, the undercutting space 16 formed by means of certain acids or other corresponding etching means formed for crystalline silicon and their connections, in which it is now possible for the paddle 14 , is free on the paddle web 14 a hanging in a vertical direction. As a result, he now gives himself a measurement of inclination and acceleration with an integrated semiconductor-based detector which measures the capacitive change as a function of the inclination or acceleration. The detector elements to be produced according to the invention are based on the utilization of the anisotropic etching speed of the etchant used and create a detector element which works without the use of piezoresistors.

Zur Veranschaulichung, wie klein ein solches Detektorelement gebaut bzw. konzipiert werden kann, sind in den Fig. 2 und 3 Maßangaben eines Ausführungsbeispiels angegeben.To illustrate how small such a detector element can be built or designed, dimensions of an exemplary embodiment are given in FIGS. 2 and 3.

Claims (5)

1. Detektorelement zur Messung von Kräften und Beschleunigungen, dadurch gekennzeichnet, daß unter Ausnützung anisotro­ per Ätzgeschwindigkeiten von beispielsweise Säuren an kristallinem Sili­ zium ein mit einer Elektronik (15) integriertes Detektorelement (100) auf Halbleiterbasis hergestellt wird, mit dem die kapazitive Änderung als Funktion der Neigung oder Beschleunigung gemessen werden kann.1. Detector element for measuring forces and accelerations, characterized in that, using anisotropically by etching speeds of, for example, acids on crystalline silicon, an electronics ( 15 ) integrated detector element ( 100 ) is produced on a semiconductor basis, with which the capacitive change as a function the inclination or acceleration can be measured. 2. Detektorelement nach Anspruch 1, dadurch gekenn­ zeichnet, daß auf einem mit einer Isolierschicht (11) versehe­ nen Siliziumträger (10) eine Goldschicht (12) aufgebracht ist, aus der mittels Säuren oder entsprechend anderen bekannten Ätzmitteln ein Paddel (14) mit Paddelsteg (14 a) als Verbindungselement zu der im Siliziumträ­ ger (10) integrierten Elektronik (15) geätzt wird, wobei Goldschicht (12) und Paddel (14) den Kondensator zur Elektronik bilden.2. Detector element according to claim 1, characterized in that on a provided with an insulating layer ( 11 ) NEN silicon carrier ( 10 ) a gold layer ( 12 ) is applied, from which a paddle ( 14 ) with paddle bridge by means of acids or other known etchants ( 14 a) is etched as a connecting element to the electronics ( 15 ) integrated in the silicon carrier ( 10 ), the gold layer ( 12 ) and paddle ( 14 ) forming the capacitor for the electronics. 3. Detektorelement nach den Ansprüchen 1 oder 2, dadurch ge­ kennzeichnet, daß in der als Paddelfläche vorgesehenen Goldschicht (12) Ätzlöcher (13 a) angeordnet sind, die in Verbindung mit den die Paddelkontur bildenden Ätzflächen (13) die Schaffung eines gleichmäßigen "Unterhöhlungsraumes" (16) für Paddel (14) und Paddelsteg (14 a) ermöglichen.3. Detector element according to claims 1 or 2, characterized in that in the gold layer ( 12 ) provided as paddle surface, etching holes ( 13 a) are arranged which, in conjunction with the etching surfaces ( 13 ) forming the paddle contour, create a uniform "undercutting space "( 16 ) for paddle ( 14 ) and paddle bridge ( 14 a) allow. 4. Detektorelement nach den Ansprüchen 1 bis 3, dadurch ge­ kennzeichnet, daß mehrere Paddel (14) mit der Elektronik (15) parallel geschaltet sind.4. Detector element according to claims 1 to 3, characterized in that several paddles ( 14 ) with the electronics ( 15 ) are connected in parallel. 5. Detektorelement nach den Ansprüchen 1 bis 4, dadurch ge­ kennzeichnet, daß die Elektronik (15) zur Messung der Kapa­ zitätsveränderung konzipiert ist.5. Detector element according to claims 1 to 4, characterized in that the electronics ( 15 ) is designed to measure the change in capacity.
DE19873703793 1987-02-07 1987-02-07 Detector element Granted DE3703793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873703793 DE3703793A1 (en) 1987-02-07 1987-02-07 Detector element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873703793 DE3703793A1 (en) 1987-02-07 1987-02-07 Detector element

Publications (2)

Publication Number Publication Date
DE3703793A1 true DE3703793A1 (en) 1988-08-18
DE3703793C2 DE3703793C2 (en) 1988-12-01

Family

ID=6320482

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873703793 Granted DE3703793A1 (en) 1987-02-07 1987-02-07 Detector element

Country Status (1)

Country Link
DE (1) DE3703793A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622975A1 (en) * 1987-11-09 1989-05-12 Vaisala Oy CAPACITIVE ACCELEROMETER AND METHOD FOR MANUFACTURING THE SAME
DE4003473A1 (en) * 1990-02-06 1991-08-08 Bosch Gmbh Robert CRYSTAL-ORIENTED MOTION SENSOR AND METHOD FOR THE PRODUCTION THEREOF
DE4224383A1 (en) * 1991-07-24 1993-01-28 Hitachi Ltd Capacitive type acceleration meter for protective airbag system - has notches on facing surfaces of fixed and movable electrodes to reduce air damping effect and improve response
EP0527342A1 (en) * 1991-07-22 1993-02-17 Motorola, Inc. Differential capacitor structure and fabricating method
DE19541388A1 (en) * 1995-11-07 1997-05-15 Telefunken Microelectron Micromechanical acceleration sensor
FR2842593A1 (en) * 2002-07-19 2004-01-23 Spacemetric Sa ELECTRONIC TILT INDICATOR

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939094C1 (en) * 1999-08-18 2001-09-27 Infineon Technologies Ag Inclinometer and use of a semiconductor sensor as an inclinometer
US20120018821A1 (en) * 2009-03-31 2012-01-26 Femto Tools Gmbh Micro force sensor package for sub-millinewton electromechanical measurements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223987A1 (en) * 1981-07-02 1983-01-20 Centre Electronique Horloger S.A., 2000 Neuchâtel ACCELEROMETER
FR2585474A1 (en) * 1985-07-25 1987-01-30 Litton Systems Inc INTEGRATED ACCELEROMETER WITH FORCE COMPENSATION

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3223987A1 (en) * 1981-07-02 1983-01-20 Centre Electronique Horloger S.A., 2000 Neuchâtel ACCELEROMETER
FR2585474A1 (en) * 1985-07-25 1987-01-30 Litton Systems Inc INTEGRATED ACCELEROMETER WITH FORCE COMPENSATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US-Z: IEEE Trans. on Electron Devices, Vol. ED-26, No. 12, Dec. 1979, S. 1911-1917 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622975A1 (en) * 1987-11-09 1989-05-12 Vaisala Oy CAPACITIVE ACCELEROMETER AND METHOD FOR MANUFACTURING THE SAME
DE4003473A1 (en) * 1990-02-06 1991-08-08 Bosch Gmbh Robert CRYSTAL-ORIENTED MOTION SENSOR AND METHOD FOR THE PRODUCTION THEREOF
EP0527342A1 (en) * 1991-07-22 1993-02-17 Motorola, Inc. Differential capacitor structure and fabricating method
DE4224383A1 (en) * 1991-07-24 1993-01-28 Hitachi Ltd Capacitive type acceleration meter for protective airbag system - has notches on facing surfaces of fixed and movable electrodes to reduce air damping effect and improve response
DE4224383C2 (en) * 1991-07-24 1999-07-15 Hitachi Ltd Capacitive acceleration sensor for airbag systems
DE19541388A1 (en) * 1995-11-07 1997-05-15 Telefunken Microelectron Micromechanical acceleration sensor
US5905203A (en) * 1995-11-07 1999-05-18 Temic Telefunken Microelectronic Gmbh Micromechanical acceleration sensor
FR2842593A1 (en) * 2002-07-19 2004-01-23 Spacemetric Sa ELECTRONIC TILT INDICATOR
WO2004010078A2 (en) * 2002-07-19 2004-01-29 Spacemetric S.A. Electronic appliance indicating inclination
WO2004010078A3 (en) * 2002-07-19 2004-04-08 Spacemetric S A Electronic appliance indicating inclination

Also Published As

Publication number Publication date
DE3703793C2 (en) 1988-12-01

Similar Documents

Publication Publication Date Title
EP0394305B1 (en) Device for measuring acceleration
DE19906067B4 (en) Semiconductor Physical Size Sensor and Method of Making the Same
DE102008040525B4 (en) Micromechanical sensor element
DE3708036C2 (en)
DE2429894B2 (en) POLYCRYSTALLINE MONOLITHIC PRESSURE SENSOR AND METHOD OF ITS MANUFACTURING
DE2705068A1 (en) SOLID ENERGY CONVERTER AND METHOD FOR MANUFACTURING THE SAME
DE4316279A1 (en) Semiconductor accelerometer esp. for triggering airbag in motor vehicle - has silicon plate forming weight, frame and diaphragm sections with metal foil weight and piezoresistances
EP0494143B1 (en) Device for measuring mechanical forces and dynamic effects
DE4133009A1 (en) CAPACITIVE PRESSURE SENSOR AND PRODUCTION METHOD THEREFOR
DE3621585A1 (en) INTEGRATED COMPENSATION ACCELERATOR
DE4203833C2 (en) Process for the manufacture of silicon semiconductor accelerometer devices
DE3703793A1 (en) Detector element
DE102006053290B4 (en) accelerometer
DE4030466C2 (en) Piezo resistance device
DE3837883A1 (en) CAPACITIVE ACCELEROMETER AND METHOD FOR THE PRODUCTION THEREOF
DE4003473C2 (en)
DE3824695C2 (en)
DE4228795C2 (en) Yaw rate sensor and manufacturing method
DE3814949C1 (en)
DE1959527B2 (en) Semiconductor component for converting mechanical stresses into electrical signals, process for its production and use
DE3742673A1 (en) Microstress sensor
DE102007048882A1 (en) Acceleration sensor, has micromechanical functional part arranged over substrate, where functional part is fastened to substrate by two torsion springs over common hanging part that is fastened to substrate by two anchors
DE4426590A1 (en) Capacitive semiconductor acceleration sensor
DE102016107059A1 (en) Integrated semiconductor device and manufacturing method
DE1465112A1 (en) Semiconductor layers deposited in a vacuum for elasto resistance elements

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE

8339 Ceased/non-payment of the annual fee