DE3372150D1 - Method of making complementary transistor metal oxide semiconductor structures - Google Patents
Method of making complementary transistor metal oxide semiconductor structuresInfo
- Publication number
- DE3372150D1 DE3372150D1 DE8383110499T DE3372150T DE3372150D1 DE 3372150 D1 DE3372150 D1 DE 3372150D1 DE 8383110499 T DE8383110499 T DE 8383110499T DE 3372150 T DE3372150 T DE 3372150T DE 3372150 D1 DE3372150 D1 DE 3372150D1
- Authority
- DE
- Germany
- Prior art keywords
- metal oxide
- oxide semiconductor
- semiconductor structures
- complementary transistor
- transistor metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000295 complement effect Effects 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 title 1
- 229910044991 metal oxide Inorganic materials 0.000 title 1
- 150000004706 metal oxides Chemical class 0.000 title 1
- 239000004065 semiconductor Substances 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/495—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0638—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4966—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
- H01L29/4975—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/446,793 US4462151A (en) | 1982-12-03 | 1982-12-03 | Method of making high density complementary transistors |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3372150D1 true DE3372150D1 (en) | 1987-07-23 |
Family
ID=23773851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE8383110499T Expired DE3372150D1 (en) | 1982-12-03 | 1983-10-21 | Method of making complementary transistor metal oxide semiconductor structures |
Country Status (4)
Country | Link |
---|---|
US (1) | US4462151A (de) |
EP (1) | EP0110103B1 (de) |
JP (1) | JPS59106144A (de) |
DE (1) | DE3372150D1 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4621412A (en) * | 1984-09-17 | 1986-11-11 | Sony Corporation | Manufacturing a complementary MOSFET |
US4749662A (en) * | 1984-12-14 | 1988-06-07 | Rockwell International Corporation | Diffused field CMOS-bulk process |
US4675982A (en) * | 1985-10-31 | 1987-06-30 | International Business Machines Corporation | Method of making self-aligned recessed oxide isolation regions |
CA2048675C (en) * | 1989-03-02 | 1999-02-16 | Albert W. Vinal | Fermi threshold field effect transistor |
US5132236A (en) * | 1991-07-30 | 1992-07-21 | Micron Technology, Inc. | Method of semiconductor manufacture using an inverse self-aligned mask |
DE69332006T2 (de) * | 1992-03-25 | 2002-11-28 | Texas Instruments Inc., Dallas | Planares Verfahren unter Verwendung von gemeinsamen Ausrichtungsmarken für die Wannenimplantierungen |
TW322629B (en) * | 1996-09-06 | 1997-12-11 | Holtek Microelectronics Inc | Manufacturing method of integrated circuit alignment mark |
US6686612B1 (en) | 2002-10-01 | 2004-02-03 | T-Ram, Inc. | Thyristor-based device adapted to inhibit parasitic current |
US6690039B1 (en) | 2002-10-01 | 2004-02-10 | T-Ram, Inc. | Thyristor-based device that inhibits undesirable conductive channel formation |
US7183221B2 (en) * | 2003-11-06 | 2007-02-27 | Texas Instruments Incorporated | Method of fabricating a semiconductor having dual gate electrodes using a composition-altered metal layer |
US8373233B2 (en) * | 2008-11-13 | 2013-02-12 | Applied Materials, Inc. | Highly N-type and P-type co-doping silicon for strain silicon application |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3700507A (en) * | 1969-10-21 | 1972-10-24 | Rca Corp | Method of making complementary insulated gate field effect transistors |
US3806371A (en) * | 1971-07-28 | 1974-04-23 | Motorola Inc | Method of making complementary monolithic insulated gate field effect transistors having low threshold voltage and low leakage current |
US3920481A (en) * | 1974-06-03 | 1975-11-18 | Fairchild Camera Instr Co | Process for fabricating insulated gate field effect transistor structure |
US4002501A (en) * | 1975-06-16 | 1977-01-11 | Rockwell International Corporation | High speed, high yield CMOS/SOS process |
US4045250A (en) * | 1975-08-04 | 1977-08-30 | Rca Corporation | Method of making a semiconductor device |
JPS5286083A (en) * | 1976-01-12 | 1977-07-16 | Hitachi Ltd | Production of complimentary isolation gate field effect transistor |
JPS5333074A (en) * | 1976-09-08 | 1978-03-28 | Sanyo Electric Co Ltd | Production of complementary type insulated gate field effect semiconductor device |
US4183134A (en) * | 1977-02-15 | 1980-01-15 | Westinghouse Electric Corp. | High yield processing for silicon-on-sapphire CMOS integrated circuits |
US4313768A (en) * | 1978-04-06 | 1982-02-02 | Harris Corporation | Method of fabricating improved radiation hardened self-aligned CMOS having Si doped Al field gate |
JPS5529116A (en) * | 1978-08-23 | 1980-03-01 | Hitachi Ltd | Manufacture of complementary misic |
JPS56134757A (en) * | 1980-03-26 | 1981-10-21 | Nec Corp | Complementary type mos semiconductor device and its manufacture |
US4391650A (en) * | 1980-12-22 | 1983-07-05 | Ncr Corporation | Method for fabricating improved complementary metal oxide semiconductor devices |
NL187328C (nl) * | 1980-12-23 | 1991-08-16 | Philips Nv | Werkwijze ter vervaardiging van een halfgeleiderinrichting. |
US4385947A (en) * | 1981-07-29 | 1983-05-31 | Harris Corporation | Method for fabricating CMOS in P substrate with single guard ring using local oxidation |
US4406710A (en) * | 1981-10-15 | 1983-09-27 | Davies Roderick D | Mask-saving technique for forming CMOS source/drain regions |
US4422885A (en) * | 1981-12-18 | 1983-12-27 | Ncr Corporation | Polysilicon-doped-first CMOS process |
-
1982
- 1982-12-03 US US06/446,793 patent/US4462151A/en not_active Expired - Lifetime
-
1983
- 1983-07-29 JP JP58137951A patent/JPS59106144A/ja active Pending
- 1983-10-21 DE DE8383110499T patent/DE3372150D1/de not_active Expired
- 1983-10-21 EP EP83110499A patent/EP0110103B1/de not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS59106144A (ja) | 1984-06-19 |
US4462151A (en) | 1984-07-31 |
EP0110103A1 (de) | 1984-06-13 |
EP0110103B1 (de) | 1987-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS57162338A (en) | Method of etching semiconductor | |
DE3374365D1 (en) | Method of gettering semiconductor devices | |
DE3361832D1 (en) | Semiconductor ic and method of making the same | |
ZA818560B (en) | Method for fabricating improved complementary metal oxide semiconductor devices | |
DE3473531D1 (en) | Method of forming semiconductor devices | |
EP0146895A3 (en) | Method of manufacturing semiconductor device | |
DE3277663D1 (en) | Method of manufacturing semiconductor devices comprising isolating regions | |
JPS551194A (en) | Method of manufacturing mos semiconductor | |
GB2120011B (en) | Method of fabricating dielectrically isolated semiconductor regions | |
GB2128401B (en) | Method of manufacturing semiconductor device | |
DE3276285D1 (en) | Manufacture of integrated circuits by masterslice methods | |
JPS5743469A (en) | Method of producing complementary symmetrical metal oxide semiconductor integrated cirucit | |
DE3278705D1 (en) | Method of forming a metal semiconductor field effect transistor | |
JPS57139936A (en) | Method of characterizing semiconductor wafer | |
DE3471824D1 (en) | Method of manufacturing mos type semiconductor devices | |
DE3372150D1 (en) | Method of making complementary transistor metal oxide semiconductor structures | |
EP0167391A3 (en) | Method of manufacturing semiconductor devices | |
JPS55105373A (en) | Metal oxide semiconductor transistor and method of fabricating same | |
JPS55141759A (en) | Method of fabricating semiconductor circuit | |
JPS5536995A (en) | Method of manufacturing metal nitride oxide semiconductor transistor | |
GB2098798B (en) | Method of making silicon semiconductor devices | |
DE3377439D1 (en) | Method of manufacturing vertical semiconductor devices | |
YU108981A (en) | Method of making semiconductor devices | |
GB2061243B (en) | Method of making semiconductor devices | |
GB2154061B (en) | Methods of manufacturing semiconductor circuit devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |