DE29915154U1 - Plant and facility for the energetic use of biomass gas in energy conversion plants with combined heat and power - Google Patents
Plant and facility for the energetic use of biomass gas in energy conversion plants with combined heat and powerInfo
- Publication number
- DE29915154U1 DE29915154U1 DE29915154U DE29915154U DE29915154U1 DE 29915154 U1 DE29915154 U1 DE 29915154U1 DE 29915154 U DE29915154 U DE 29915154U DE 29915154 U DE29915154 U DE 29915154U DE 29915154 U1 DE29915154 U1 DE 29915154U1
- Authority
- DE
- Germany
- Prior art keywords
- gas
- plant
- turbine
- combustion chamber
- biomass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002028 Biomass Substances 0.000 title claims description 15
- 238000006243 chemical reaction Methods 0.000 title claims description 7
- 239000007789 gas Substances 0.000 claims description 46
- 238000002485 combustion reaction Methods 0.000 claims description 23
- 239000002737 fuel gas Substances 0.000 claims description 12
- 239000002918 waste heat Substances 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 7
- 238000002309 gasification Methods 0.000 description 6
- 244000309464 bull Species 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/006—General arrangement of incineration plant, e.g. flow sheets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/46—Recuperation of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/10—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
- F23G2201/30—Pyrolysing
- F23G2201/301—Treating pyrogases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
- F23G2201/30—Pyrolysing
- F23G2201/303—Burning pyrogases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2206/00—Waste heat recuperation
- F23G2206/20—Waste heat recuperation using the heat in association with another installation
- F23G2206/203—Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Titel der Erfindung für GebrauchsmusterTitle of invention for utility model
"Anlage und Einrichtung zur energetischen Nutzung von Biomasse in Energiewandlungsanlagen mit Kraft-Wärme-Kopplung""Plant and equipment for the energetic use of biomass in energy conversion plants with combined heat and power"
Die Anlage und die Einrichtung zur energetischen Nutzung von Biomasse in Energiewandlungsanlagen mit Kraft-Wärme-Kopplung kann in thermischen Energiewandlungsanlagen angewendet werden, in denen Biomasse als Primärenergieträger zum Einsatz kommen und die Nutzenergie Wärme und Elektroenergie gleichzeitig als Prozeßgrößen ausgekoppelt und bedarfsstrukturgerecht den Verbrauchern bereitgestellt werden sollen. Dieses Prinzip der Kraft-Wärme-Kopplung bildet die Basis für Heizkraftwerke zentraler und dezentraler Einrichtungen.The system and the equipment for the energetic use of biomass in energy conversion plants with combined heat and power can be used in thermal energy conversion plants in which biomass is used as a primary energy source and the useful energy heat and electrical energy are simultaneously extracted as process variables and made available to consumers in accordance with demand. This principle of combined heat and power forms the basis for cogeneration plants in central and decentralized facilities.
Gas- und Dampfturbinen-Heizkraftwerke, bestehend aus Hauptkomponenten Gasturbine, Abhitzekessel und Dampfturbine, stellen für die fossilen Brennstoffe Erdgas und Heizöl Stand der Technik dar. Die technische Realisierung der Kraft-Wärme-Kopplung als Heiz-Kraftanlage ist gegenüber der getrennten Erzeugung von Elektroenergie und Wärme durch den thermodynamisch begründeten, höchstens Gesamtwirkungsgrad und so wirtschaftliche Effizienz gekennzeichnet.Gas and steam turbine combined heat and power plants, consisting of the main components gas turbine, waste heat boiler and steam turbine, represent the state of the art for the fossil fuels natural gas and heating oil. The technical implementation of combined heat and power as a combined heat and power plant is characterized by the thermodynamically based, maximum overall efficiency and thus economic efficiency compared to the separate generation of electrical energy and heat.
Die erzielbaren Wirkungsgrade erreichen danachThe achievable efficiencies then reach
- energetischer Wirkungsgrad (Brennstoffausnutzung) &eegr;6&Pgr; < 0,85- energy efficiency (fuel utilization) &eegr;6&Pgr;< 0.85
- thermischer Wirkungsgrad (elektrischer) &eegr;,,, < 0,55- thermal efficiency (electrical) &eegr;,,, < 0.55
* * *l 2* I Il I * * *l 2* I Il I
Einen weiteren Vorteil des Gas- und Dampfturbinen-Prozesses stellt die Möglichkeit dar, mit einer Entnahme-Kondensations-Dampfturbine die Gesamtanlage unabhängig von Wärmebedarfsschwankungen mit Auslegungsleistung und somit ohne teillastbedingte Wirkungsgradminderung betreiben zu können.A further advantage of the gas and steam turbine process is the possibility of using an extraction condensing steam turbine to operate the entire plant at design output regardless of fluctuations in heat demand and thus without any reduction in efficiency due to part load.
Gas- und Dampfturbinen-Heizkraftwerke sind durch die thermische und hydraulische Belastung der Gasturbinenbrennkammer in ihrer Leistung nach oben hin konstruktiv begrenzt. Eine untere Grenze resultiert aus der noch ausführbaren Beschaufelung der Dampfturbine sowie aus der durch relativ hohe Investkosten stark beeinflußten Wirtschaftlichkeit. The design limits the output of gas and steam turbine heating power plants due to the thermal and hydraulic load on the gas turbine combustion chamber. A lower limit results from the blading of the steam turbine that can still be carried out and from the economic efficiency, which is strongly influenced by the relatively high investment costs.
Voraussetzung für die energetische Nutzung von Biomasse zum Antrieb von Gasturbinen und Gasmotoren ist die Erzeugung eines Brenngases. Für die Vergasung von Biomasse, vorrangig Holz, existieren verschiedene Verfahren, von denen u.a. die Festbettvergasung im Gleich- oder Gegenstrom und die Wirbelschichtvergasung (jeweils atmosphärisch oder durckaufgeladen) für den Antrieb einer Energiewandlungsmaschine geeignet erscheinen. Es wurden Blockheizkraftwerke mit Gasmotor auf Holzgas- und folglich Schwachgasbasis konzipiert, apparatetechnisch angepaßt und erprobt. Der direkte Kontakt des schadstoffbeladenen Verbrennungsgases und des Schmierungssystems im Motor sowie eine Teilkondensation von Kohlenwasserstoffen durch die thermodynamisch bedingte Mantelkühlung sind Ursachen für nur geringe Standzeiten dieser Anlagen. Darüber hinaus gestatten die Mantelkühlung und die Abgasenthalpienutzung keine nachgeschaltete Dampferzeugung und Dampfturbine, so daß Wärmebedarfsschwankungen immer eine Teillastfahrweise zur Folge haben.The prerequisite for the energetic use of biomass to drive gas turbines and gas engines is the production of a fuel gas. There are various processes for the gasification of biomass, primarily wood, of which fixed bed gasification in co-current or countercurrent and fluidized bed gasification (both atmospherically or supercharged) appear suitable for driving an energy conversion machine. Combined heat and power plants with gas engines based on wood gas and therefore lean gas have been designed, adapted and tested. The direct contact of the pollutant-laden combustion gas and the lubrication system in the engine as well as partial condensation of hydrocarbons due to the thermodynamic jacket cooling are the reasons why these systems only have a short downtime. In addition, the jacket cooling and the use of exhaust gas enthalpy do not allow for downstream steam generation and steam turbine, so that fluctuations in heat demand always result in partial load operation.
Die technische Realisierung eines Gas- und Dampfturbinen-Heizkraftwerkes auf der Basis niederkalorischer Biomassegases setzt folgende Konzeption voraus:The technical realisation of a gas and steam turbine cogeneration plant based on low-calorific biomass gas requires the following concept:
• Biomassevergasung mit definierter Brennstoffstruktur und Rohgasreinigung• Biomass gasification with defined fuel structure and raw gas purification
• Gasturbine mit an Schwachgas angepaßter Brennkammer• Gas turbine with combustion chamber adapted to lean gas
• Abhitzedampferzeuger mit oder ohne Zusatzfeuerung• Heat recovery steam generator with or without additional firing
• Dampfturbine mit energetisch sinnvoller Ausführung als Entnahme-Kondensationsturbine • Steam turbine with energetically sensible design as extraction condensing turbine
Der Einsatz von Abhitzedampferzeugern mit gespeister Dampfturbine gehören zum Stand der Technik.The use of heat recovery steam generators with fed steam turbines is state of the art.
Die Kombination von Biomassevergasung und Gasturbinentechnik scheiterte bisher hauptsächlich an der Qualität des im Vergaser erzeugten Brenngases und einer stabilen Verbrennung des niederkalorischen Brenngases in der Brennkammer der Gasturbine. The combination of biomass gasification and gas turbine technology has so far failed mainly due to the quality of the fuel gas produced in the gasifier and the stable combustion of the low-calorific fuel gas in the combustion chamber of the gas turbine.
Der Einsatz einer Gasturbine setzt teerfreies Brenngas geringer Staubbeladung voraus, hohe Brenngasvolumenströme infolge des geringen Heizwertes erfordern vergrößerte Brennkammern der Gasturbinen, dem jedoch ein verringertes Luftverhältnis entgegensteht. The use of a gas turbine requires tar-free fuel gas with a low dust load; high fuel gas volume flows due to the low calorific value require larger combustion chambers in the gas turbines, which, however, is counteracted by a reduced air ratio.
Daraus resultiert die Forderung nach einer thermodynamisch, hydrodynamisch und stofflich exakt definierten Schnittstelle zwischen Gaserzeugung einschließlich Gasreinigung und Brennkammereintritt der Gasturbine. Die damit festzulegende Koppelparameter sind Voraussetzung für die Gas- und Dampfturbinenanlage.This results in the requirement for a thermodynamically, hydrodynamically and materially precisely defined interface between gas generation including gas cleaning and the combustion chamber inlet of the gas turbine. The coupling parameters to be defined in this way are a prerequisite for the gas and steam turbine plant.
Resultierend aus den Mängeln des Technikstandes besteht das Ziel in der Anordnung einer apparativen Ausrüstung für den Gasturbinen- und/oder Gas-Dampfturbinenprozeß mit Biomassegas als Schwachgas, die die strömungsmechanischen, thermodynamischen und stofflichen Bedingungen für diesen Prozeßablauf erfüllt.As a result of the deficiencies in the current state of technology, the aim is to arrange an apparatus for the gas turbine and/or gas-steam turbine process with biomass gas as a lean gas, which fulfils the fluid mechanical, thermodynamic and material conditions for this process sequence.
Die Lösung dieser Aufgabe besteht daher im Eliminieren der negativen Einflußgrößen, wie niedriger Heizwert und so niedrige Temperatur der Wärmezufuhr im Joule-Prozeß sowie schadstoffbelasteten Brenn- und Verbrennungsgas bis zum Eintritt in den Entspannungsteil der Gasturbine, wodurch der technisch stabile Ablauf des thermodynamischen Kreisprozesses mit Gasturbinen und energetisch effizienter Kraft-Wärme-Kopplung garantiert ist.The solution to this problem therefore consists in eliminating the negative influencing factors, such as low calorific value and low temperature of the heat supply in the Joule process as well as polluted fuel and combustion gas up to the entry into the expansion part of the gas turbine, which guarantees the technically stable course of the thermodynamic cycle with gas turbines and energetically efficient combined heat and power.
Erfindungsgemäß wird das Ziel dadurch erreicht, daß das mit bekannten Biomassevergasungsverfahren erzeugte Brenngas nach chemischer und physikalischer Reinigung nicht direkt zur Verbrennung und Wärmeabgabe der Gasturbinenbrennkammer zugeleitet, sondern einer von der Gasturbine apparativ getrennten und so externen Brennkammer zugeführt wird. Dieser ist ein Oberflächenwärmeübertrager nachgeschaltet, in dem die Wärmezufuhr bei stofflicher Trennung an das sekundärseitig geführte Heißluftturbinenmedium erfolgt. Der Abluftkanal der Heißluftturbine ist sowohl direkt mit der externen Brennkammer zum Zwecke der Nutzung vorgewärmter Verbrennungsluftzufuhr, als auch mit der abgasführenden Leitung nach dem Oberflächenwärmeübertrager zur Stützung der Dampferzeugung in einem Abhitzedampferzeuger und den Betrieb einer nachgeschalteten Dampfturbine verbunden.According to the invention, the aim is achieved in that the fuel gas produced using known biomass gasification processes is not fed directly to the gas turbine combustion chamber for combustion and heat release after chemical and physical purification, but is fed to a combustion chamber that is separated from the gas turbine and is thus external. This is followed by a surface heat exchanger in which the heat is supplied to the hot air turbine medium on the secondary side with material separation. The exhaust air duct of the hot air turbine is connected both directly to the external combustion chamber for the purpose of using preheated combustion air supply and to the exhaust gas line after the surface heat exchanger to support steam generation in a waste heat steam generator and the operation of a downstream steam turbine.
Darüber hinaus besteht eine Verbindung zwischen abgasführender Leitung nach dem Oberflächenwärmeübertrager und der externen Brennkammer.In addition, there is a connection between the exhaust gas line after the surface heat exchanger and the external combustion chamber.
Vorteile der Anlage und EinrichtungAdvantages of the system and facility
• Wegfall einer konstruktiven und auslegungstechnischen Brennkammeranpassung herkömmlicher Gasturbinen, da die Gasturbineneintrittstemperatur unabhängig vom• Elimination of structural and design-related combustion chamber adjustments of conventional gas turbines, since the gas turbine inlet temperature is independent of the
Heizwert des Brenngases über das Temperaturniveau im Oberflächenwärmeübertrager bestimmt wird. Dadurch entfällt auch der damit verbundene zusätzliche Luftstrom zur Brennkammerkühlung und die Vergrößerung der aufzuwendenden Antriebsleistung des Luftverdichters.The calorific value of the fuel gas is determined by the temperature level in the surface heat exchanger. This also eliminates the associated additional air flow for combustion chamber cooling and the increase in the drive power required for the air compressor.
Einsparung eines Brenngasverdichters zur Erzeugung des erforderlichen Gasturbineneintrittsdruckes sowie Reduzierung der energie- und kostenaufwendigen Brenngasreinigung, da die stoffliche Trennung zum Gasturbinenmedium erfolgt.Saving of a fuel gas compressor to generate the required gas turbine inlet pressure as well as reduction of the energy- and cost-intensive fuel gas cleaning, since the material separation from the gas turbine medium takes place.
Die Verwendung der Gasturbinenabluft einerseits als Verbrennungsluft und andererseits als Heizmedium bei der Abwärmenutzung im Abhitzekessel kompensiert den negativen Einfluß niedrigen Heizwertes des Brenngases und erhöht den thermodynamischen Wirkungsgrad der Kraft-Wärme-Kopplung.The use of gas turbine exhaust air on the one hand as combustion air and on the other hand as a heating medium for waste heat utilization in the waste heat boiler compensates for the negative influence of the low calorific value of the fuel gas and increases the thermodynamic efficiency of the combined heat and power generation.
Die Kombination von Nutzung der Gasturbinenabluft zur Verbrennung und Beheizung des Abhitzekessels und Abgasrücksaugung in die externe Brennkammer ermöglicht außerdem die Regelung der Abkühlungsrate des Verbrennungsgases im Oberflächenwärmeübertrager, daß im Abhitzekessel Dampf hoher Temperatur erzeugt und eine nachgeschaltete Dampfturbine mit hohem Wirkungsgrad betrieben und ein effektiver energetischer Wirkungsgrad der Gesamtanlage bei Schwachgaseinsatz zwischen 50 bis 56 % erzielt werden kann.The combination of using the gas turbine exhaust air for combustion and heating of the waste heat boiler and exhaust gas recirculation into the external combustion chamber also enables the cooling rate of the combustion gas to be controlled in the surface heat exchanger, so that high temperature steam can be generated in the waste heat boiler and a downstream steam turbine can be operated with high efficiency, and an effective energy efficiency of the entire plant of between 50 and 56% can be achieved when using lean gas.
• · ■· ■
···· ···· ·* ··· ** ** Ausführungsbeispiel···· ···· ·* ··· ** ** Example
Die Anlage und Einrichtung ist in Abb. 1 schematisch dargestellt. Einer Brennkammer (1) zur Verbrennung von Biomassegas ist der Oberflächenwärmeübertrager (2) nachgeschaltet, in diesem erfolgt die Aufheizung vom Verdichter (3) verdichtete atmosphärische Luft. Sekundärseitig besteht die direkte Verbindung zum Entspannungsteil (4) der Heißluftturbine der mit dem Generator (5) gekoppelt ist. Die Abluftleitung der Heißluftturbine (6) ist direkt sowohl mit der Brennkammer (1) als auch mit der primärseitig abgasführenden Leitung des Oberflächenwärmeübertragers (2) verbunden. Zusätzlich ist die abgasführende Leitung zur Rauchgasrückführung in die Brennkammer (1) direkt mit dieser verbunden.The system and equipment is shown schematically in Fig. 1. A combustion chamber (1) for burning biomass gas is followed by a surface heat exchanger (2), in which atmospheric air compressed by the compressor (3) is heated. On the secondary side, there is a direct connection to the expansion section (4) of the hot air turbine, which is coupled to the generator (5). The exhaust air line of the hot air turbine (6) is directly connected to both the combustion chamber (1) and the exhaust gas line of the surface heat exchanger (2) on the primary side. In addition, the exhaust gas line for returning flue gas to the combustion chamber (1) is directly connected to it.
In Abb. 2 ist die Anlage und Einrichtung in einem ausführbaren Energie- und Stoffstromschema dargestellt.In Fig. 2, the plant and equipment are shown in an executable energy and material flow diagram.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29915154U DE29915154U1 (en) | 1999-08-30 | 1999-08-30 | Plant and facility for the energetic use of biomass gas in energy conversion plants with combined heat and power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29915154U DE29915154U1 (en) | 1999-08-30 | 1999-08-30 | Plant and facility for the energetic use of biomass gas in energy conversion plants with combined heat and power |
Publications (1)
Publication Number | Publication Date |
---|---|
DE29915154U1 true DE29915154U1 (en) | 2000-03-16 |
Family
ID=8078182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE29915154U Expired - Lifetime DE29915154U1 (en) | 1999-08-30 | 1999-08-30 | Plant and facility for the energetic use of biomass gas in energy conversion plants with combined heat and power |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE29915154U1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10052844A1 (en) * | 2000-10-25 | 2002-05-16 | Pps Pipeline Systems Gmbh | Generation of energy through a turbine, using a low calorific gas, controls the flow of air to be heated indirectly by the combustion exhaust to set the temperature of the exhaust gas |
EP1251311A1 (en) | 2001-04-17 | 2002-10-23 | SÜDFLEISCH GmbH | Process for the energy supply of a slaughter house |
DE102009037805B3 (en) * | 2009-08-18 | 2010-10-14 | Gammel Engineering Gmbh | Device for generating power heat, has co-furnace unit working as secondary combustion chamber and provided between output of heat exchanger and input of turbine to increase temperature of hot gases before entering into turbine |
JP2020056541A (en) * | 2018-10-02 | 2020-04-09 | メタウォーター株式会社 | Waste treatment facility |
-
1999
- 1999-08-30 DE DE29915154U patent/DE29915154U1/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10052844A1 (en) * | 2000-10-25 | 2002-05-16 | Pps Pipeline Systems Gmbh | Generation of energy through a turbine, using a low calorific gas, controls the flow of air to be heated indirectly by the combustion exhaust to set the temperature of the exhaust gas |
DE10052844B4 (en) * | 2000-10-25 | 2004-05-06 | Pps Pipeline Systems Gmbh | Method and device for generating energy from gas |
EP1251311A1 (en) | 2001-04-17 | 2002-10-23 | SÜDFLEISCH GmbH | Process for the energy supply of a slaughter house |
DE102009037805B3 (en) * | 2009-08-18 | 2010-10-14 | Gammel Engineering Gmbh | Device for generating power heat, has co-furnace unit working as secondary combustion chamber and provided between output of heat exchanger and input of turbine to increase temperature of hot gases before entering into turbine |
EP2348198A2 (en) | 2009-08-18 | 2011-07-27 | Gammel Engineering Gmbh | Device for combined heat and power production |
JP2020056541A (en) * | 2018-10-02 | 2020-04-09 | メタウォーター株式会社 | Waste treatment facility |
JP7061053B2 (en) | 2018-10-02 | 2022-04-27 | メタウォーター株式会社 | Waste treatment equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69918492T2 (en) | Turbine à gaz à chauffage indirect integree à une une un separation of the gaz de l'air | |
DE69422190T2 (en) | PARTIAL OXYDATION PROCESS WITH ENERGY PRODUCTION | |
DE2743830C2 (en) | Method for operating a combined gas-steam power plant and gas-steam power plant for carrying out the method | |
DE19940763B4 (en) | Combined cycle energy producer with integrated coal gasification | |
EP0750718B1 (en) | Method of operating a gas and steam turbine installation and installation operating according to said method | |
EP2167794B1 (en) | Device and method for the generation of power heat | |
DE3014292A1 (en) | METHOD FOR GENERATING ENERGY FROM CARBONED FUELS | |
DE102011052932A1 (en) | Brennstoffvorwärmsystem | |
DE112011100506T5 (en) | Hierarchical hybrid power generation system and method based on the pyrolysis of the solid fuels and the combustion of the semi-cokes | |
DE69807664T2 (en) | COAL-FIRED GAS TURBINE SYSTEM | |
DE112009000341T5 (en) | Processes and systems for integrated boiler feedwater heating | |
WO1986005234A1 (en) | A combined steam-gas turbine installation | |
EP2467588A1 (en) | Method and device for utilizing biomass | |
EP1577507A1 (en) | Coal fired power plant | |
DE60034529T2 (en) | FUEL GAS EXTENSION TURBINE FOR AN OXYGEN FUEL CARBURETTOR AND ASSOCIATED METHOD | |
DE102007026570A1 (en) | Procedure for the production of electricity, heat and hydrogen and/or methanol, comprises coupling an oxyfuel-steam power plant with a modular high temperature reactor power plant | |
EP3857032B1 (en) | Method for operating a power plant in order to generate electrical energy by combustion of a carbonaceous combustible, and corresponding system for operating a power plant | |
DE29915154U1 (en) | Plant and facility for the energetic use of biomass gas in energy conversion plants with combined heat and power | |
DE202004017725U1 (en) | Power and heat generation plant fueled from biomass digestion, includes gas conditioning equipment, combustor and gas-air heat exchanger with air- and steam turbine generator sets | |
DE202005018849U1 (en) | Plant and device for conversion of fuel energy of renewable raw materials into useful energy has solid matter combustion unit to which is connected surface heat exchanger for utilization of flue gas enthalpy | |
DE19709383A1 (en) | Process for energetically utilising biomass | |
EP0399104B1 (en) | Process for using of refuse as a fuel for an environment-friendly current production | |
DE102006035790B3 (en) | Method for operating a power plant with integrated coal gasification and power plant | |
DE2710833A1 (en) | CRACKING OR REFORMING PROCESS FOR HYDROCARBONS AND INSTALLATION FOR IMPLEMENTING THESE | |
DE20014079U1 (en) | Plant and facility for the energetic use of renewable raw materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R086 | Non-binding declaration of licensing interest | ||
R207 | Utility model specification |
Effective date: 20000420 |
|
R150 | Utility model maintained after payment of first maintenance fee after three years |
Effective date: 20021128 |
|
R151 | Utility model maintained after payment of second maintenance fee after six years |
Effective date: 20050916 |
|
R152 | Utility model maintained after payment of third maintenance fee after eight years |
Effective date: 20070919 |
|
R071 | Expiry of right |