DE2903308A1 - Integrated circuit wiring structure prodn. - by electron lithography, three anodising stages under different conditions and removal of oxide - Google Patents

Integrated circuit wiring structure prodn. - by electron lithography, three anodising stages under different conditions and removal of oxide

Info

Publication number
DE2903308A1
DE2903308A1 DE19792903308 DE2903308A DE2903308A1 DE 2903308 A1 DE2903308 A1 DE 2903308A1 DE 19792903308 DE19792903308 DE 19792903308 DE 2903308 A DE2903308 A DE 2903308A DE 2903308 A1 DE2903308 A1 DE 2903308A1
Authority
DE
Germany
Prior art keywords
oxide
layer
electron beam
porous
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19792903308
Other languages
German (de)
Inventor
Eduard Dipl Ing Dr Hieke
Hans Kaiser
Nikolaus Dr Kokkotakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19792903308 priority Critical patent/DE2903308A1/en
Publication of DE2903308A1 publication Critical patent/DE2903308A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02258Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by anodic treatment, e.g. anodic oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76888By rendering at least a portion of the conductor non conductive, e.g. oxidation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Prodn. of wiring structures for integrated circuits involves electron beam lithography and anodisation of metal layers. A lacquer (4) sensitive to electron radiation is used in the exposure of areas (5) of the preanodised surface (2,3) of the substrate (1). After lithography, the exposed areas of metal oxide (3,5) are reanodised to form a non-porous (barrier) metal oxide (6). After removing the lacquer (4), a third anodisation stage is carried out, so that the exposed metal oxide film (2,3) is converted to a porous oxide film (7) over its entire surface. Finally, the anodised films (3,6,7) are removed. The entire process is reliable and can be automated. It is possible to produce 2-layer wiring.

Description

Verfahren zum Herstellen von Leitbahnstrukturen fürMethod for producing interconnect structures for

integrierte Halbleiterschiltungen.integrated semiconductor circuits.

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von Leitbahnstrukturen für integrierte Halbleiterschaltungen mit Hilfe der Elektronenstrahllithographie und Anodisierung von Metallschichten.The invention relates to a method for producing interconnect structures for integrated semiconductor circuits with the help of electron beam lithography and anodizing of metal layers.

In der Halbleitertechnologie werden die Muster auf den Kristallchips mittels optischer Methoden angebracht. Bei der derzeitigen Herstellung von integrierten Schaltkreisen werden diese Methoden durch ein Verfahren ersetzt, welches sich für die Fälle eignet, in denen eine höhere Auflösung erzielt werden soll. Dieses Verfahren, bei dem die Halbleiterchips mit Elektronen bestrahlt werden, erfordert die Anwendung von Elektronenstrahl empfindlichen Lacken, welche sich bei Bestrahlung von Elektronen genauso verhalten wie die wohlbekannten Fotolacke bei Bestrahlung mit ultraviolettem Licht.In semiconductor technology, the patterns are on the crystal chips attached using optical methods. In the current production of integrated Circuits, these methods are replaced by a procedure which is suitable for suitable for cases in which a higher resolution is to be achieved. This method, in which the semiconductor chips are irradiated with electrons, the application requires of electron beam sensitive lacquers, which are affected by the irradiation of electrons behave in the same way as the well-known photoresists when exposed to ultraviolet Light.

Aus der Zeitschrift Philips Technische Rundschau 35, Nr. 3, Seiten 72 bis 84 ist zu entnehmen, daß durch die Anwendung der Elektronenstrahltechnik Strukturen, z. B.From the magazine Philips Technische Rundschau 35, No. 3, pages 72 to 84 it can be seen that by using electron beam technology Structures, e.g. B.

Aluminiumleitbahnen, mit sehr guter Randschärfe und Details im Bereich von 0,1 /um herstellbar sind. Dabei wird der bereits im Handel erhältliche positiv-arbeitende elektronenstrahlempfindliche Lack auf der Basis Polymethylmethacrylat (= PMMA-Lack) angewandt.Aluminum conductor tracks, with very good edge definition and details in the area of 0.1 / µm can be produced. The positive-working Electron beam sensitive lacquer based on polymethyl methacrylate (= PMMA lacquer) applied.

Eine mögliche Anwendung des Elektronenstrahlschreibens in der Halbleitertechnologie ist die sogenannte individuelle Verdrahtung. Diese Art der Verdrahtung kann, da sie besser zur Automatisierung geeignet ist, rascher und einfacher als mit der herkömmlichen Fotolithographie, die einen relativ aufwendigen Maskenherstellungsprozeß erfordert, mit dem Elektronenstrahlsclireiben durchgeführt werden. Dabei wird die z. B. mit einem geeigneten Band rechnergesteuerte und mit einem Elektronenstrahl geschriebene und danach entwickelte, freigelegte Leiterbahn, die vorzugsweise aus Aluminium besteht, erhalten, wenn die übrige, meist ganzflächig über einer Schaltung vorhandene Metallschicht entfernt worden ist.One possible application of electron beam writing in semiconductor technology is the so-called individual wiring. This type of wiring can be there it is better suited for automation, faster and easier than with the conventional one Photolithography, which requires a relatively complex mask production process, can be performed with the electron beam rubbing. The z. B. with computer-controlled on a suitable tape and written with an electron beam and then developed, exposed conductor track, which is preferably made of aluminum, obtained when the rest of the metal layer, which is usually present over the entire surface of a circuit has been removed.

Das Elektronenstrahlverfahren arbeitet, wie bereits erwähnt, mit Positivlack unter Anwendung einer Abhebetechnik, die hier eine zur Bildung guter Kontaktwiderstände nötigen hohen Aufdampftemperatur nicht verträgt, da der PMMA-Lack zerstört wird.As already mentioned, the electron beam process works with positive resist using a lift-off technique, which is used here to form good contact resistances The necessary high vapor deposition temperature cannot be tolerated, as the PMMA lacquer will be destroyed.

Gleicherweise kann die Herstellung von Lackstrukturen für die Verdrahtungsebene mit Hilfe eines sogenannten "Negativlackes" erzeugt werden, dessen Resistenzverhalten und Haftung bei Ätz- und ähnlichen Prozessen noch wenig erprobt ist. Schließlich könnte bei Positivlack (= PMMA-Lack) mit der "Umkehrung" etwa des entsprechenden Maskenmagnetbandes gearbeitet werden, welches jedoch eine große Bedeckungsdichte und damit eine lange Schreib- zeit bewirkt. Dabei kann dann eine Ätztechnik zur Strukturierung der Leiterbahnen verwendet werden.Likewise, the production of lacquer structures for the wiring level can be used with the help of a so-called "negative varnish", its resistance behavior and adhesion in etching and similar processes has not yet been tried and tested. In the end could with positive varnish (= PMMA varnish) with the "inversion" about the corresponding Mask magnetic tape can be worked, which, however, has a large coverage density and thus a long writing time causes. A Etching technology can be used to structure the conductor tracks.

Die Erfindung macht sich die Erkenntnis dieses "Umkehrproblems" zunutze und koppelt das Verfahren der Strukturerzeugung von Leitbahnen mittels Elektronenstrahllithographie mit dem bereits aus der DT-OS 23 13 106 bekannten Verfahren der Aluminiumanodisierung. Beim Anlegen einer positiven Spannung (im Bereich von einigen Volt) an eine Aluminiumschicht, die in einem geeigneten Elektrolyten eingebracht wird, bildet sich zufolge der Reaktion des Aluminiums mit den Anionen des Elektrolyten eine Aluminiumoxidschicht aus. Bei unterschiedlichen Anodisierungsbedingungen kann sowohl poröses (porous) als auch nicht poröses bzw. porenfreies (sogenanntes barrier oxide) Oxid gezielt erzeugt werden.The invention makes use of the knowledge of this "inversion problem" and couples the process of creating structures for interconnects by means of electron beam lithography with the aluminum anodizing process already known from DT-OS 23 13 106. When applying a positive voltage (in the range of a few volts) to an aluminum layer, which is placed in a suitable electrolyte, forms as a result of the reaction of the aluminum forms an aluminum oxide layer with the anions of the electrolyte. at different anodizing conditions can be both porous (porous) and non-porous or non-porous (so-called barrier oxide) oxide specifically generated will.

Das Verfahren nach der Lehre der Erfindung ist nun gegenüber dem Stand der Technik dadurch gekennzeichnet, daß a) ein Elektronenstrahl- empfindlicher Lack verwendet wird, bei dem die durch den Elektronenstrahl geschriebenen und belichteten Teile einer vorher ganzflächig auf einem Substrat aufgebrachten und oberflächlich anodisch oxidierten Metallschichtbereiche freigelegt werden, b) im Anschluß an den Elektronenstrahllithographieprozeß die von der Lackschicht freien Metalloxidschichtbereiche zur Überführung in ein nicht poröses Metalloxid (barrier oxide) einem weiteren Anodisierungsprozeß unterworfen werden, c) nach Entfernen der Lackschichtbereiche ein dritter Anodisierungsprozeß durchgeführt wird, wobei die freigelegte Metallschicht in ihrer ganzen Dicke in eine poröse Oxidschicht übergeführt wird und d) abschließend die anodisch oxidierten Metallschichten entfernt werden.The method according to the teaching of the invention is now compared to the prior art the technology characterized in that a) an electron beam sensitive lacquer is used in which the written and exposed by the electron beam Parts of a previously applied over the entire surface of a substrate and superficially anodically oxidized metal layer areas are exposed, b) following the Electron beam lithography process the metal oxide layer areas free of the lacquer layer for conversion into a non-porous metal oxide (barrier oxide) in a further anodizing process be subjected, c) after removing the lacquer layer areas, a third anodizing process is carried out, with the exposed Metal layer in hers entire thickness is converted into a porous oxide layer and d) finally the anodically oxidized metal layers are removed.

In einer Weiterbildung des Erfindungsgedankens ist vorgesehen, in Abänderung des erfindungsgemäßen Verfahrens die durch anodische Oxidation erzeugten Schichten als Schutzoxide zu verwenden und die Kontakte durch Fototechnik freizulegen.In a further development of the inventive concept it is provided in Modification of the method according to the invention generated by anodic oxidation To use layers as protective oxides and to expose the contacts by photo technology.

Es liegt auch im Rahmen des Erfindungsgedankens, das Verfahren auf die erste Verdrahtungsebene auszudehnen, wobei das Oxid nicht entfernt wird und die nur noch geringfügig vorhandenen Erhöhungen eine problemlose und damit sichere Aufbringung der zweiten Verdrahtungsebene erlauben.It is also within the scope of the inventive concept, the method expand the first level of wiring without removing the oxide and the only slightly existing elevations a problem-free and therefore safe Allow application of the second wiring level.

Durch das Verfahren nach der Lehre der Erfindung können aufwendige Prozesse der bekannten Foto- und Elektronenstrahl-Lithographie vermieden werden. Es sind lediglich drei, nacheinander folgende Anodisierungsschritte erforderlich, welche gut zu handhaben und auch für eine Automatisierung geeignet sind. Durch die Verwendung des Positivlackes in Verbindung mit dem Elektronenstrahlschreiben ist eine gute Strukturierung bei einem breiten Variationsbereich der Flankenhöhe des Lackes durchführbar. Außerdem wird die für die Haftung bzw. Übergangswiderstände der Leitbahnen bis jetzt übliche Temperung überflüssig. Spezielle Verdrahtungswünsche können auf einfache Weise gelöst werden.The method according to the teaching of the invention can be expensive Processes of the known photo and electron beam lithography can be avoided. Only three consecutive anodizing steps are required, which are easy to handle and also suitable for automation. Through the Use of the positive resist in connection with electron beam writing is good structuring with a wide range of variation in the flank height of the Lacquer feasible. In addition, it is responsible for the adhesion or contact resistance of the interconnects, the usual tempering is superfluous. Special wiring requests can be solved in a simple way.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels, welches eine Aluminiumanodisierung zur Herstellung von Aluminiumleitbahnstrukturen betrifft, und der Figuren 1 bis 4 noch näher erläutert. Dabei zeigen die Figuren 1 bis 3 im Schnittbild eine Anordnung nach dem ersten, zweiten und dritten Anodisierungsschritt und die Figur 4 im Profil die fertiggestellte Aluminiumleiterbahn.The invention is illustrated below using an exemplary embodiment, which is an anodizing of aluminum for the production of aluminum interconnect structures concerns, and Figures 1 to 4 explained in more detail. Show it Figures 1 to 3 in sectional view an arrangement according to the first, second and third Anodizing step and FIG. 4 shows the finished aluminum conductor track in profile.

Im ersten Anodisierungsprozeß wird, wie aus Figur 1 ersichtlich ist, eine, auf einem mit einer SiO2-Schicht 1 bedeckten Halbleitersubstrat ganzflächig aufgedampfte Aluminiumschicht 2 in der oberflächennahen Zone unter Verwendung von 2 zeiger Schwefelsäure als Elektrolyten bei einer Spannung von einigen Volt (3 V) und einer Dauer von 25 Min. in eine, aus porösem Aluminiumoxid bestehende Schicht 3 (0,1 bis 0,2 /um) übergeführt, da ein Oxid eine bessere Lackhaftung für den dann aufzubringenden Positivlack 4 (Polymethylmethacrylat-Lack = PMMA-Lack) bewirkt.In the first anodizing process, as can be seen from FIG. 1, one, on a semiconductor substrate covered with an SiO2 layer 1 over the entire area vapor-deposited aluminum layer 2 in the zone near the surface using 2 pointers sulfuric acid as an electrolyte at a voltage of a few volts (3 V) and a duration of 25 minutes in a layer consisting of porous aluminum oxide 3 (0.1 to 0.2 / µm) converted because an oxide gives better paint adhesion for the then to be applied positive varnish 4 (polymethyl methacrylate varnish = PMMA varnish) causes.

Daraufhin erfolgt, wie aus Figur 2 ersichtlich ist, der Elektronenstrahllithographieprozeß, wobei die belichteten und entwickelten Bereiche 5 freigelegt werden.As can be seen from FIG. 2, the electron beam lithography process then takes place, whereby the exposed and developed areas 5 are exposed.

In diesen freigelegten Bereichen 5 bewirkt nun ein zweiter Anodisierungsprozeß die Bildung eines sogenannten barrier oxide 6 in Form von nicht porösen Aluminiumoxid (Figur 2). Bei diesem Anodisierungsprozeß, bei dem die PMMA-Lackschicht als Maskierung gegen ein weiteres Wachstum des porösen, anodischen Oxids (pourous oxide) dient, werden die Anodisierungsbedingungen im Vergleich zum ersten Anodisierungsprozeß wie folgt geändert: Es wird hierfür verwendet eine 3 ziege Weinsäurelösung (60 gar/2 » mit Ammoniak auf einen Säurewert (pH) von 5,5 eingestellt. Dieser Prozeß wird mit einer (konstanten) Stromdichte von 3,5 mA/cm­ (angelegte Spannung»40 V) durchgeführt. Mit dieser Anodisierung wird eine 60 nm dicke barrier-Oxid-Schicht erzielt.(Generell gilt, daß das barrier oxide 6 sowohl bei Verwendung eines nicht-Oxid-lösenden Elektrolyten als auch bei einem Oxid-lösenden Anodisierungsprozeß entsteht, je nachdem, ob das gesamte poröse Oxid oder nur der Boden zu barrier Oxid verwandelt werden soll).A second anodizing process now takes place in these exposed areas 5 the formation of a so-called barrier oxide 6 in the form of non-porous aluminum oxide (Figure 2). In this anodizing process, in which the PMMA lacquer layer acts as a mask serves against further growth of the porous, anodic oxide (pourous oxide), become the anodizing conditions compared to the first anodizing process Changed as follows: A 3 goat tartaric acid solution is used for this (60 gar / 2 »Adjusted to an acid value (pH) of 5.5 with ammonia. This process will with a (constant) current density of 3.5 mA / cm (applied voltage> 40 V) carried out. With this anodization, a 60 nm thick barrier oxide layer is achieved (generally it applies that the barrier oxide 6 is used both when a non-oxide-dissolving electrolyte is used as well as in an oxide-dissolving anodizing process, depending on whether the entire porous oxide or just the soil should be transformed into barrier oxide).

Das auf diese Weise erzeugte Aluminiumoxid 6 dient in der Folge als resistente Maske (Barriere) gegenüber dem dritten Anodisierungsprozeß, welcher durchgeführt wird, nachdem die vorher als Maske dienende PMMA-Lackschicht 4 entfernt worden ist. Bei diesem Anodisierungsprozeß entsteht wieder ein poröses Aluminiumoxid 7, da ähnliche Anodisierungsbedingungen (niedrige Spannungswerte z. B.The alumina 6 produced in this way subsequently serves as Resistant mask (barrier) against the third anodizing process, which is carried out after the PMMA lacquer layer 4 previously used as a mask has been removed. In this anodizing process, a porous aluminum oxide 7 is formed again, since it is similar Anodizing conditions (low voltage values e.g.

von 20 V) angewandt werden, wie bei der ersten Anodisiebung. Dabei wird die gesamte freiliegende Aluminiumschicht 2, wie aus Figur 3 ersichtlich ist, in ein Oxid (7) umgewandelt. Dieser Prozeß ist besonders gut beherrschbar, da er sich selbst stoppt, wenn die Schicht durchoxidiert ist.of 20 V) can be used as with the first anodic sieving. Included the entire exposed aluminum layer 2, as can be seen from Figure 3, converted into an oxide (7). This process is particularly easy to control because he stops itself when the layer is completely oxidized.

Das mit -den drei Anodisierungsprozessen erzeugte Aluminiumoxid 3, 6, 7 wird schließlich mit einem geeigneten Ätzverfahrenßz. B. durch Behandlung mit einem Gemisch aus Chromoxid (Cr203) in Phosphorsäure (H3P04) weggeätzt, wobei das in Figur 4 abgebildete Aluminiumprofil 12 auf dem SiO2-Substrat 1 entsteht.The aluminum oxide 3 produced with the three anodizing processes, 6, 7 is finally with a suitable etching process. B. by treatment with a mixture of chromium oxide (Cr203) in phosphoric acid (H3P04) etched away, whereby the The aluminum profile 12 shown in FIG. 4 is produced on the SiO2 substrate 1.

Die genannten Oxidschichten können aber auch als Schutzoxid verwendet werden; dabei müssen die Kontakte mit einer Fototechnik freigelegt werden.The oxide layers mentioned can, however, also be used as protective oxide will; the contacts must be exposed using a photo technique.

9 Patentansprüche 4 Figuren Leerseite9 claims 4 figures Blank page

Claims (9)

Patentansprüche.Claims. 1. Jerfahren zum Herstellen von Leitbahnstrukturen für integrierte Halbleiterschaltungen mit Hilfe der Elektronenstrahllithographie und Anodisierung von Metallschichten, d a d u r c h g e k e n n z e i c h n e t daß a) ein elektronenstrahlempfindlicher Lack (4) verwendet wird, bei dem die durch den Elektronenstrahl geschriebenen und belichteten Teile (5) einer vorher ganzflächig auf ein Substrat (1) aufgebrachten und oberflächlich anodisch oxidierten Metallschichtbereiche (2, 3) freigelegt werden, b) im Anschluß an den Elektronenstrahllithographieprozeß die von der Lackschicht (4) freien Netalloxidschichtbereiche (3, 5) zur Überführung in ein nicht poröses Metalloxid (6) einem weiteren Anodisierungsprozeß unterworfen werden, c) nach Entfernen der Lackschichtbereiche (4) ein dritter Anodisierungsprozeß durchgeführt wird, wobei die freigelegte Metalloxidschicht (2, 3) in ihrer ganzen Dicke in eine poröse Oxidschicht (7) übergeführt wird und d) abschließend die anodisch oxidierten Metallschichten (3, 6, 7) entfernt werden.1. Approach to the production of interconnect structures for integrated Semiconductor circuits using electron beam lithography and anodization of metal layers, indicating that a) an electron beam sensitive Varnish (4) is used, in which the written by the electron beam and exposed parts (5) of a previously applied over the entire surface of a substrate (1) and surface anodically oxidized metal layer areas (2, 3) are exposed, b) after the electron beam lithography process, that of the lacquer layer (4) free netal oxide layer areas (3, 5) for conversion into a non-porous one Metal oxide (6) are subjected to a further anodizing process, c) after removal the lacquer layer areas (4) a third anodizing process is carried out, wherein the exposed metal oxide layer (2, 3) in its entire thickness into a porous oxide layer (7) is transferred and d) finally the anodically oxidized metal layers (3, 6, 7) must be removed. 2. Verfahren nach Anspruch 1, d a d u r c h g e -k e n n z e i c h n e t , daß in Abänderung des Verfahrens die durch anodische Oxidation erzeugten Schichten (3, 6, 7) als Schutzoxid verwendet werden und die Kontakte durch Fototechnik freigelegt werden.2. The method according to claim 1, d a d u r c h g e -k e n n z e i c h n e t that, in a modification of the process, those produced by anodic oxidation Layers (3, 6, 7) are used as protective oxide and the contacts are made by photo technology be exposed. 3. Verfahren nach Anspruch 1 und 2, g e k e n n -z e i c h n e t d u r c h die Anwendung des Verfahrens zur Durchführung einer Zweilagenverdrahtung.3. The method according to claim 1 and 2, g e k e n n -z e i c h n e t d u r c h the application of the method for performing two-layer wiring. 4. Verfahren nach Anspruch 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß ein Positivlack (4) auf der Basis Polymethylmethacrylat (= PMMA) für den Elektronenstrahllithographieprozeß verwendet wird.4. The method according to claim 1 to 3, d a d u r c h g e k e n n z e i c h n e t that a positive varnish (4) based on polymethyl methacrylate (= PMMA) is used for the electron beam lithography process. 5. Verfahren nach Anspruch 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß als Metallschicht (2)die den Anodisierungsprozessen unterworfen wird, eine Aluminiumschicht verwendet wird.5. The method according to claim 1 to 4, d a d u r c h g e k e n n z e i c h n e t that the metal layer (2) which is subjected to the anodizing processes an aluminum layer is used. 6. Verfahren nach Anspruch 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß zur Erzeugung des nicht porösen Aluminiumoxids (6)(barrier oxide) als Elektrolyt eine 3 ziege Weinsäurelösung verwendet wird, welche mit Ammoniak auf einen Säurewert pH = 5,5 eingestellt wird und die Anodisierung mit einer Stromdichte von 3,5 mA/cm­ durchgeführt wird.6. The method according to claim 1 to 5, d a d u r c h g e k e n n z e i c h n e t that for the production of the non-porous aluminum oxide (6) (barrier oxide) a 3 goat tartaric acid solution is used as the electrolyte, which with ammonia is adjusted to an acid value of pH = 5.5 and the anodization with a current density of 3.5 mA / cm is carried out. 7. Verfahren nach Anspruch 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß zur Erzeugung des porösen Aluminiumoxids (3, 7) als Elektrolyt 2 %ige Schwefelsäurelösung verwendet wird und eine Spannung angelegt wird, die im Bereich von 3 bis 30 V liegt.7. The method according to claim 1 to 6, d a d u r c h g e k e n n z e i c h n e t that for the production of the porous aluminum oxide (3, 7) as an electrolyte 2% sulfuric acid solution is used and a voltage is applied which is im Range from 3 to 30 V. 8. Verfahren nach Anspruch 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß die vor dem Elektronenstrahllithographieprozeß aufgebrachte, als Haftvermittler für den Lack dienende Metalloxidschicht (3) in einer Schichtdicke von 0,1 bis 0,2 /um verwendet wird.8. The method according to claim 1 to 7, d a d u r c h g e k e n n z e i c h n e t that the applied before the electron beam lithography process, as Adhesion promoter for the paint serving metal oxide layer (3) in one layer thickness from 0.1 to 0.2 / µm is used. 9. Verfahren nach Anspruch 1 und 4 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß zur Entfernung der anodisch oxidierten Metallschichten (3, 6, 7) im Falle von Aluminiumoxid ein Chromoxid-Phosphorsäure-Ätzmittel verwendet wird.9. The method according to claim 1 and 4 to 8, d a d u r c h G It is not noted that the removal of the anodically oxidized metal layers (3, 6, 7) in the case of aluminum oxide, a chromium oxide-phosphoric acid etchant is used will.
DE19792903308 1979-01-29 1979-01-29 Integrated circuit wiring structure prodn. - by electron lithography, three anodising stages under different conditions and removal of oxide Withdrawn DE2903308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19792903308 DE2903308A1 (en) 1979-01-29 1979-01-29 Integrated circuit wiring structure prodn. - by electron lithography, three anodising stages under different conditions and removal of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19792903308 DE2903308A1 (en) 1979-01-29 1979-01-29 Integrated circuit wiring structure prodn. - by electron lithography, three anodising stages under different conditions and removal of oxide

Publications (1)

Publication Number Publication Date
DE2903308A1 true DE2903308A1 (en) 1980-08-28

Family

ID=6061632

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19792903308 Withdrawn DE2903308A1 (en) 1979-01-29 1979-01-29 Integrated circuit wiring structure prodn. - by electron lithography, three anodising stages under different conditions and removal of oxide

Country Status (1)

Country Link
DE (1) DE2903308A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825454A (en) * 1972-02-18 1974-07-23 Hitachi Ltd Method of forming interconnections

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825454A (en) * 1972-02-18 1974-07-23 Hitachi Ltd Method of forming interconnections

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NL-Z: Philips techn. Rundschau, Bd.35, H.3, S.72-84 *
US-Z: IBM Technical Disclosure Bulletin, Bd. 16, H. 3, S. 1010-1011 *

Similar Documents

Publication Publication Date Title
DE1930669C2 (en) Method for manufacturing an integrated semiconductor circuit
DE2624832C3 (en) Process for the production of resist samples
DE2754396A1 (en) METHOD OF MANUFACTURING THIN FILM PATTERNS
DE2545046C2 (en) A method of forming anodized articles containing a porous metal oxide
EP0051166B1 (en) Process for the stress-free development of irradiated polymethylmethacrylate layers
DE2052424C3 (en) Process for making electrical line connections
DE2522548C3 (en) Method for generating a surface relief pattern
EP0168509A1 (en) Manufacture of connection holes in plastic plates and application of the method
DE3032608A1 (en) Semiconductor device prodn. by ion implantation and oxidn. - to give thick and thin oxide films simultaneously on defect and untreated zones
DE102005041609A1 (en) Method for producing electrical components
DE2643811C2 (en) Lithography mask with a membrane permeable to radiation and process for its manufacture
DE2020531C2 (en) Process for the production of silicon ultra-high frequency planar transistors
DE2903308A1 (en) Integrated circuit wiring structure prodn. - by electron lithography, three anodising stages under different conditions and removal of oxide
DE3885446T2 (en) METHOD FOR PRODUCING MAGNETIC RECORDING MEDIA.
DE2720109A1 (en) METHOD OF MANUFACTURING A METALIZATION PATTERN BY ELECTROPLATING
DE2243682C2 (en) Method of making a conductive electrode pattern
DE1920684A1 (en) Intergrated circuit capacitors of aluminium - and aluminium oxide
DE3712335A1 (en) METHOD FOR PRODUCING A STRUCTURE
DE3305923C2 (en) Process for prebaking substrates coated with positive photoresist based on naphtoquinonediazide and phenol-formaldehyde resin
DE2425379A1 (en) Accurately etching molybdenum with water and hydrogen peroxide - for mfr. of integrated and thin film-circuits, and photomasks
DE1621762B1 (en) METHOD OF MANUFACTURING A DECORATIVE ARTICLE WITH A MULTI-COLORED IMAGE ON ITS SURFACE DUE TO THE INTERFERENCE EFFECT
DE3132452A1 (en) Method for producing a pattern plane which after build-up of metallic patterns by electroplating is planar
DE1496953B2 (en) PROCESS FOR THE SELECTIVE ANODIC OXIDATION OF SPECIFIED AREAS OF A METAL FILM NOT CONTAINING ALUMINUM, IN THE MANUFACTURING OF ELECTRICAL COMPONENTS, IN PARTICULAR MICROCIRCUITS
DE19753948C2 (en) Process for producing a metallic microstructure body by means of electrodeposition
DE2331586C3 (en) Aluminum-tantalum layers for thin-film circuits as well as discrete resistors and capacitors

Legal Events

Date Code Title Description
OAR Request for search filed
OB Request for examination as to novelty
8105 Search report available
8105 Search report available
8139 Disposal/non-payment of the annual fee