DE2404786A1 - Thermomagnetic generator using Nernst-Ettinghausen effect - comprises layered structure as energy transducer - Google Patents

Thermomagnetic generator using Nernst-Ettinghausen effect - comprises layered structure as energy transducer

Info

Publication number
DE2404786A1
DE2404786A1 DE2404786A DE2404786A DE2404786A1 DE 2404786 A1 DE2404786 A1 DE 2404786A1 DE 2404786 A DE2404786 A DE 2404786A DE 2404786 A DE2404786 A DE 2404786A DE 2404786 A1 DE2404786 A1 DE 2404786A1
Authority
DE
Germany
Prior art keywords
conductor
thermomagnetic generator
thermomagnetic
generator
energy transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2404786A
Other languages
German (de)
Other versions
DE2404786C3 (en
DE2404786B2 (en
Inventor
Josef Haeringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19742404786 priority Critical patent/DE2404786C3/en
Priority claimed from DE19742404786 external-priority patent/DE2404786C3/en
Publication of DE2404786A1 publication Critical patent/DE2404786A1/en
Publication of DE2404786B2 publication Critical patent/DE2404786B2/en
Application granted granted Critical
Publication of DE2404786C3 publication Critical patent/DE2404786C3/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Thermomagnetic generator utilises an e.m.f. set up by establishing a temperature gradient in a conductor and causing the electrons to move by placing the conductor in a magnetic field to deflect towards the tendency to travel from the hot to the cold end of said conductor. The generator uses cryomagnets or superconducting windings to create the required magnetic field. The thermomagnetic generator can be used to convert thermal energy into electric energy in place of generators and turbines, provided that a suitable energy transducer-conductor is used over all temperature ranges. The claimed energy transducer converter specifically consists of several layers of different materials arranged in coils.

Description

Beschreibung lhermomagnetischer Generator Grundlage der Erfindung ist der erste Nernst-Ettinghausen-Effektq Befindet sich ein von einem Wärmestrom durchflossener Elektronen leiter in einem homogenen transversalen MagnetCeldy so bildet sich eine elektrische Spannung senkrecht zum Wärmestrom und zum Magnetfelde Die Höhe der Spannung richtet sich nach der Stärke des Magnetfeldes, der Stärke der Wärmeströmung bzw. des dabei sich bildenden Temperaturgradienten u. der Art des Elektronenleiters. Sie ist bei Thermoelektrikas besonders hoch. Description of thermomagnetic generator, basis of the invention is the first Nernst-Ettinghausen effectq Is one of a heat flow electron conductors flowing through it in a homogeneous transverse MagnetCeldy like this an electrical voltage is generated perpendicular to the heat flow and the magnetic field The level of voltage depends on the strength of the magnetic field, the strength the heat flow or the resulting temperature gradient and the type of the electron conductor. It is particularly high for thermoelectrics.

Da sich bei herkömmlichen Magnetspulen nur geringe Feldstärken erzielen lassen, kommen für die Erzeugung der nötigen magnetischen Induktzon ca. 105 Gauß bzw. 10 Tesla das entspricht Feldstärken von ca. 101 d/m nur supraleitende Magneten bzw. Kryomagneten in Frage0 Da der Elektronenleiter in seinem ganzen Verlauf vom Wärmestrom u.Since only low field strengths can be achieved with conventional magnetic coils let, come for the generation of the necessary magnetic inductive zone approx. 105 Gauss or 10 Tesla that corresponds to field strengths of approx. 101 d / m only for superconducting magnets or cryomagnets in question0 Since the electron conductor in its entire course from Heat flow u.

Magnetfeld durchflossen sein muß (mit Ausnahme an den Enden) gibt es nur zwei Möglichkeiten für den Bau eines größeren thermomagnetischen Generators. Bei A bb. 1 u. ia befinden sich die Supraleiter im Zentrum eines Hohlleiters. Die thermomagnetische Spannung würde längs des Hohlleiters entstehen, wenn eine Temperaturdifferenz am Hohlleiter von außen nach innen besteht. Da es dabei zu erheblichen Wärmeverlusten kommen würde, dürfte sich diese Bauweise nicht durchsetzen.Magnetic field must flow through (with the exception of the ends) there there are only two options for building a larger thermomagnetic generator. At A bb. 1 and others, the superconductors are located in the center of a waveguide. the thermomagnetic tension would arise along the waveguide if there was a temperature difference exists on the waveguide from the outside to the inside. Since this leads to significant heat losses would come, this construction method should not prevail.

Bei Abb. 2 u 2a ist die Supra-Magnetentwicklung außen spulenförmig angeordnet. Die Suprawicklung ist nach dem Spuleninneren und auch nach außen gut wärmeisoliert (a). Innerhalb der inneren Wärmeisolierschicht (a) befindet sich die Kühlwasserschicht (c). Innerhalb der Kühlwasserschicht sind die Thermowicklungen (d) angeordnet. Die Thermowicklungen (d) entstehen aus rechtwinkeligen Leitern, welche spulenförmig voneinander elektrisch isoliert (f) um den inneren Kern in dem sich das heißere Medium befindet, gewickelt sind. Da ein thermoelektrischer Energiewandler eines bestimmten Materials nur in einem begrenzten Temperaturbereich günstig arbeitet, ist es unter Umständen erforderlich, die Thermospule mehrlagig und aus verschiedenen Materialien zu bauen. Die Energiewandlerleiter bestehen bei hohen Temperaturen (über 10000) aus Kohlenstoff (Graphit) oder Metallegierungen bzw. Metallen und bei niedrigen Temperaturen aus n-dotierten Halbleitern z.B, Germanium, Silizium oder Indiumarsenid u. Indiumantimonid. Besonders günstig sind Leiter, die im entsprechenden Temperaturbereich wenig freie Ladungsträger haben, deren Beweglichkeit jedoch sehr hoch ist.In Fig. 2 and 2a the supra-magnet development is coil-shaped on the outside arranged. The super-winding is good on the inside of the coil and also on the outside thermally insulated (a). Inside the inner heat insulating layer (a) is the Cooling water layer (c). The thermal windings are inside the cooling water layer (d) arranged. The thermal windings (d) are made from right-angled conductors, which are electrically isolated from each other in the form of a coil (f) around the inner core in the the hotter medium is wound. As a thermoelectric energy converter a certain material only works favorably in a limited temperature range, it may be necessary to have the thermo coil multilayered and made of different Build materials. The energy converter conductors exist at high temperatures (over 10000) made of carbon (graphite) or metal alloys or metals and at low Temperatures from n-doped semiconductors e.g. germanium, silicon or indium arsenide and indium antimonide. Conductors that are in the corresponding temperature range are particularly favorable have few free charge carriers, but their mobility is very high.

Wirkungsweise: Durch die äußere Supraleiterwicklung (b) wird im Inneren der Spule (diese kann auch ringförmig sein) ein nahezu homogenes Magnetfeld erzeugt, dessen Feldlinien paralell zur Spulenachse verlaufen. Durch das heiße Medium (e) im Inneren der Spule und der Kühlwasserschicht (c) entsteht in den Energiewandlerleitern eine Temperaturdifferenz senkrecht zur Spulenachse. Durch das Magnetfeld senkrecht zur Temperaturdifferenz entsteht in den Energiewandlerleitern eine EMK längs des Energiewandlerleiter3 ähnlich wie sie bei einem sich ändernden Magnetfeld entstehen würde. is wird dabei ein Teil der geleiteten Wärmeenergie direkt in Elektroenergie umgewandelt.Mode of operation: Through the outer superconductor winding (b) is inside the coil (this can also be ring-shaped) generates an almost homogeneous magnetic field, whose field lines run parallel to the coil axis. Through the hot medium (s) inside the coil and the cooling water layer (c) is created in the energy converter conductors a temperature difference perpendicular to the coil axis. Through the magnetic field vertically in addition to the temperature difference, an EMF arises in the energy converter conductors along the Energy converter conductors3 similar to those created by a changing magnetic field would. A part of the conducted thermal energy is converted directly into electrical energy converted.

Anwendung: Wenn für alle Temperaturberelohe geeignete Energiewandlerleiter gefunden werden, so kann der thermomagnetische Generator zur Umwandlung von Wärmeenergie in Elektroenergie an Stelle von Generatoren und Turbinen verwendet werden. Besonders geeignet wäre der thermomagnetische Generator bei der Kerllverschmelzung.Application: If energy converter conductors are suitable for all temperature ranges can be found, so the thermomagnetic generator can be used to convert thermal energy to be used in electrical energy in place of generators and turbines. Particularly The thermomagnetic generator would be suitable for the Kerll fusion.

Bei herkommlicher Kraftwerken kann der thermomagnetische Generator zur Verbesserung des Wirkzngsgrades verwendet werden, indem man einen thermomagnetischen Generator vor und nach der Dampfturbine an Stelle der Wärmetauscher einschaltet. Das Kühlwasser des thermomagnetischen Generators hoher Temperatur - es müßte unter Druck stehen - treibt die Dampfturbine; und der Abdampf der Dampfturbine würde in einem thermomagnetischen Generator niedriger Temperatur abgekühlt werden.In conventional power plants, the thermomagnetic generator can be used to improve the efficiency by adding a thermomagnetic The generator switches on before and after the steam turbine instead of the heat exchanger. The cooling water of the thermomagnetic generator of high temperature - it should be under Stand pressure - drives the steam turbine; and the exhaust steam from the steam turbine would be in a low temperature thermomagnetic generator.

Es wird dadurch die von Wärmekraftwerken ohnehin starke Umweltbelastung durch Abwärme etwas verringert.Thereby it becomes the already strong environmental pollution of thermal power plants somewhat reduced by waste heat.

Claims (2)

PatentansprücheClaims 1.) Thermomagnetischer Generator ist dadurch gekennzeichnet, dab die nach dem 1. Nernst-Ettinghausen-Effekt entstehende EMK ausgenutzt wird.1.) Thermomagnetic generator is characterized in that the EMF arising after the 1st Nernst-Ettinghausen effect is used. 2.) Thermomagnetischer Generator nach Anspruch 1. dadurch gekennzeichnet, daß für das nötige Magnetfeld Kryomagneten bzw. Supraleit er spulen verwendet werden.2.) Thermomagnetic generator according to claim 1, characterized in that that for the necessary magnetic field cryomagnets or superconductor he coils are used. 3e) Thermomagnettscher Generator nach Anspruch 1. u. 2. dadurch gekennzeichnet, daß die Energiewandlerleiter spulenförmig angeordnet sind0 4.) Thermomagnetischer Generator nach Anspruch 1., 2., 3. dadurch gekennzeichnet, dab die Energiewandlerleiter aus mehreren Lagen verschiedenen Materials bestehen.3e) Thermomagnettscher generator according to claim 1 and 2, characterized in that that the energy converter conductors are arranged in the form of a coil0 4.) Thermomagnetic Generator according to claim 1, 2, 3, characterized in that the energy converter conductor consist of several layers of different material. L e e r s e i t eL e r s e i t e
DE19742404786 1974-02-01 Thermomagnetic generator Expired DE2404786C3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19742404786 DE2404786C3 (en) 1974-02-01 Thermomagnetic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19742404786 DE2404786C3 (en) 1974-02-01 Thermomagnetic generator

Publications (3)

Publication Number Publication Date
DE2404786A1 true DE2404786A1 (en) 1975-08-07
DE2404786B2 DE2404786B2 (en) 1976-04-01
DE2404786C3 DE2404786C3 (en) 1976-11-18

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849540A1 (en) * 2002-12-27 2004-07-02 Makaya Zacharie Fouti ASYNCHRONOUS GENERATOR WITH GALVANOMAGNETOTHERMAL EFFECT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849540A1 (en) * 2002-12-27 2004-07-02 Makaya Zacharie Fouti ASYNCHRONOUS GENERATOR WITH GALVANOMAGNETOTHERMAL EFFECT
WO2004061984A1 (en) * 2002-12-27 2004-07-22 Fouti-Makaya Innovations Asynchronous generator with galvano-magnetic-thermal effect
US7439629B2 (en) 2002-12-27 2008-10-21 Fouti-Makaya Innovations Asynchronous generator with galvano-magnetic-thermal effect

Also Published As

Publication number Publication date
DE2404786B2 (en) 1976-04-01

Similar Documents

Publication Publication Date Title
EP2132866B1 (en) Linear machine having a primary part and a secondary part
US3150291A (en) Incremental electrical method and apparatus for energizing high current superconducting electromagnetis
US5426408A (en) Ceramic superconducting magnet using stacked modules
DE102009054790A1 (en) Superconducting device and associated vacuum container
DE2306761A1 (en) ELECTROMAGNETIC COMPONENT
DE1488718A1 (en) Excitation device for electrical synchronous machines
DE1803804C3 (en) Thermal generator for generating direct current for superconducting electrical circuits
CH406388A (en) Magnetohydrodynamic generator
DE2404786A1 (en) Thermomagnetic generator using Nernst-Ettinghausen effect - comprises layered structure as energy transducer
DE102017126803B4 (en) DEVICE AND METHOD FOR CONVERSING THERMAL ENERGY INTO ELECTRICAL ENERGY
DE19600936A1 (en) High temp. superconductor components esp. of hydroplane
DE4128362A1 (en) High temp. superconductor-based hydrogen magnetic - carnot cycle to cool hydrogen@ vapour in hollow cylinder arrangement contg. different magnetic materials
DE2404786C3 (en) Thermomagnetic generator
DE102020118370B3 (en) Device and method for converting thermal energy into electrical energy
WO2020038909A1 (en) Rotor with superconducting winding for continuous current mode operation
US4973874A (en) Electrical generation from low-temperature heat sources and flux pump
DE4203419A1 (en) Liquid hydrogen@ high temp. superconductor vehicle drive unit - contg. rotating combustion engine and electromotor
Stekly et al. A large experimental superconducting magnet for MHD power generation
DE102018218473A1 (en) Rotor, machine and method for magnetizing
Chubraeva Study of the physical properties of metallic glasses at cryogenic temperatures
US3393332A (en) Superconducting alternator
DE60315195T2 (en) ASYNCHRONOUS GENERATOR WITH GALVANOMAGNETOTHERMIC EFFECT
DE1513898A1 (en) Magnetic pathway switching device using superconducting materials
DE102009009127A1 (en) Coil for a superconducting magnetic bearing
JPH01281510A (en) High magnetic field generating device

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977
8339 Ceased/non-payment of the annual fee