DE2109475C3 - Method for charging sealed nickel hydrogen batteries - Google Patents

Method for charging sealed nickel hydrogen batteries

Info

Publication number
DE2109475C3
DE2109475C3 DE2109475A DE2109475A DE2109475C3 DE 2109475 C3 DE2109475 C3 DE 2109475C3 DE 2109475 A DE2109475 A DE 2109475A DE 2109475 A DE2109475 A DE 2109475A DE 2109475 C3 DE2109475 C3 DE 2109475C3
Authority
DE
Germany
Prior art keywords
charging
sealed nickel
hydrogen
accumulator
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2109475A
Other languages
German (de)
Other versions
DE2109475A1 (en
DE2109475B2 (en
Inventor
Boris Ioselewitsch Center
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT129571A priority Critical patent/AT310301B/en
Application filed by Individual filed Critical Individual
Priority to DE2109475A priority patent/DE2109475C3/en
Priority to FR7107463A priority patent/FR2128093A1/en
Priority to BE763850A priority patent/BE763850A/en
Publication of DE2109475A1 publication Critical patent/DE2109475A1/en
Publication of DE2109475B2 publication Critical patent/DE2109475B2/en
Application granted granted Critical
Publication of DE2109475C3 publication Critical patent/DE2109475C3/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/00719Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to degree of gas development in the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Cells (AREA)

Description

Die Erfindung ,betrifft Verfahren zum Aufladen von abgedichteten Nickel-Wasserstoff-Akkumulatoren. The invention relates to methods of charging sealed nickel-hydrogen storage batteries.

Es ist ein Verfahren zum Aufladen von abgedichteten, z. B. von Nickel-Kadmium-Akkumulatoren bekannt, wobei das Abschalten vom Ladestromkreis bei der Entwicklung von Sauerstoff erfolgt. Üblicherweise wird das Signal zum Abschalten von der Aufladung durch einen Wellrohr-Druckgeber erteilt.It is a method of charging sealed, e.g. B. known from nickel-cadmium batteries, the disconnection of the charging circuit takes place during the development of oxygen. Usually the signal to switch off the charging is given by a corrugated tube pressure transmitter.

Der Mangel eines solchen Verfahrens besteht darin, daß das Signal zum Abschalten bei einer unvollständigen Aufladung des Akkumulators eintreffen kann. Außerdem sind zum Empfang von mechanischen oder elektrischen Signalen zusätzliche Glieder im Aufbau des Akkumulators erforderlich.The shortcoming of such a method is that the signal to switch off at an incomplete Charging of the accumulator can arrive. Also are used to receive mechanical or Electrical signals require additional elements in the structure of the accumulator.

Die Erfindung bezweckt die Beseitigung der oben erwähnten Mängel.The invention aims to eliminate the above mentioned shortcomings.

Der Erfindung liegt die Aufgabe zugrunde, ein einfaches Verfahren zum Aufladen von abgedichteten Nickel-Wasserstoff-Akkumulatoren zu entwickeln.The invention is based on the object of a simple method for charging sealed To develop nickel-hydrogen accumulators.

Die gestellte Aufgabe wird dadurch gelost, daß während der Aufladung eines abgedichteten Nickel-Wasserstoff-Akkumulators durch Gleichstrom das Abschalten vom Ladestromkreis beim Sinken der Akkumulatorladespannung um 20 bis 40 mV erfolgt.The task at hand is achieved in that a sealed nickel-hydrogen accumulator is being charged by direct current the disconnection of the charging circuit when the battery charging voltage drops by 20 to 40 mV.

Das erfindungsgemäße Verfahren zum Aufladen von abgedichteten Nickel-Wasserstoff-Akkumulatoren ist am einfachsten in seiner Durchführung und ermöglicht es, die Vollständigkeit der Akkumulatorenaufladung bei allen Betriebstemperaturen zu gewährleisten. The inventive method for charging sealed nickel-hydrogen accumulators is the easiest to carry out and allows the batteries to be fully charged to ensure at all operating temperatures.

Nachstehend wird die Erfindung an Hand der Beschreibung von Ausführungsbeispielen und der Zeichnungen näher erläutert. Es zeigtIn the following the invention on the basis of the description of exemplary embodiments and the Drawings explained in more detail. It shows

Fig. 1 Ladekurve (α) und Entladekurve (b) eines abgedichteten Nickel-Wasserstoff-Akkumulators bei + 20° C,Fig. 1 Charge curve (α) and discharge curve (b) of a sealed nickel-hydrogen accumulator at + 20 ° C,

Fig. 2 Ladekurve (α) und Entladekurve (b) eines abgedichteten Nickel-Wasserstoff-Akkumulators bei 0° C,Fig. 2 charging curve (α) and discharge curve (b) of a sealed nickel-hydrogen accumulator at 0 ° C,

Fig. 3 Ladekurve (α) und Entladekurve (b) eines abgedichteten Nickel-Wasserstoff-Akkumulators bei + 40° C.Fig. 3 charging curve (α) and discharge curve (b) of a sealed nickel-hydrogen accumulator at + 40 ° C.

Als positive Elektrode beim abgedichteten Nikkel-Wasserstoff-Akkumulator wird eine Nickeloxidelektrode benutzt. Die vollständige Aufladung der positiven Nickeloxidelektrode und folglich auch des abgedichteten Nickel-Wasserstoff-Akkumulators ist durch die Sauerstoffentwicklung an der Nickeloxidelektrode mit einer dem Ladestromwert proportiona-S len Geschwindigkeit gekennzeichnet.As a positive electrode in the sealed nickel hydrogen accumulator a nickel oxide electrode is used. The complete charging of the nickel oxide positive electrode and consequently also of the sealed nickel-hydrogen accumulator is due to the development of oxygen at the nickel oxide electrode marked with a speed proportional to the charging current value.

Der sich an der positiven Nickeloxidelektrode entwickelnde Sauerstoff wird an der negativen Wasserstoffelektrode ionisiert und verursacht dadurch eine Senkung der Ladespannung des abgedichteten Nikkel-Wasserstoff-Akkumulators. The oxygen developing on the nickel oxide positive electrode becomes hydrogen on the negative electrode ionizes and thereby causes a reduction in the charging voltage of the sealed nickel-hydrogen accumulator.

Die Senkung der Ladespannung um 20... 40 mV kann als Signal zur Abschaltung des Akkumulators vom Ladestromkreis benutzt werden, wobei dieses Signal ein Kennzeichen der vollständigen Aufladung des 1S abgedichteten Nickel-Wasserstoff-Akkumulators im ganzen Bereich der Ladeströme und der Temperaturen darstellt.The lowering of the charging voltage by 20 ... 40 mV can be used as a signal to disconnect the battery from the charging circuit, whereby this signal is an indicator of the complete charging of the 1 S sealed nickel-hydrogen battery in the entire range of charging currents and temperatures.

In Fig. 1, 2 und 3 sind die Ladekurven (α) und Entladekurven (b) eines abgedichteten Nickel-Was-In Fig. 1, 2 and 3 the charging curves (α) and discharge curves (b) of a sealed nickel-water

»o serstoff-Akkumulators dargestellt, die bei +· 20° C. 0" C bzw. + 40° C gemessen wurden. In allen dargestellten Fällen war der Ladestrom dem Entladestrom gleich und betrug 0,25 C. Die Nennkapazität des Akkumulators beträgt 40 Ah- (Amperestunden).»O hydrogen accumulator shown, which at + · 20 ° C. 0 "C or + 40 ° C were measured. In all shown In some cases, the charging current was equal to the discharging current and amounted to 0.25 C. The nominal capacity of the accumulator is 40 Ah- (ampere hours).

»5 In der Ladekurve (a) Fig. 1 (Prüftemperatur + 20° C) ist ein charakteristischer Knick zu bemerken, der eine Folge der Sauerstoffdepolarisation beim Wiederaufladen des Akkumulators ist. Die Aufladung wurde im Augenblick unterbrochen, im dem die Spannung 30 mV weniger als ihr Maximalwert betrug. Die bei der Entladung bis zu einer 1,0-V-Spannung (Entladekurve (b) abgegebene Kapazität ist der wirklichen Kapazität (46 Ah) gleich, was die Vollständigkeit der Akkumulatoraufladung beim Abschalten vom Ladestromkreis nach dem erfindungsgemäßen Verfahren kennzeichnet.»5 In the charging curve (a) Fig. 1 (test temperature + 20 ° C) a characteristic kink can be noticed, which is a consequence of the oxygen depolarization when the battery is being recharged. The charging was interrupted at the moment when the voltage was 30 mV less than its maximum value. The capacity delivered when discharging up to a voltage of 1.0 V (discharge curve ( b) ) is equal to the actual capacity (46 Ah), which characterizes the completeness of the battery charging when the charging circuit is switched off according to the method according to the invention.

In der Ladekurve (β) F i g. 2 (Prüftemperatur 00C) ist ein stärkerer Knick zu bemerken. Die Aufladung wurde im Augenblick unterbrochen, in dem die Span nung 40 mV weniger als ihr Maximalwert betrug. Die Entladekapazität bei einer Entladung bis zu einer 1-V-Spannung (Entladekurve (b) ist ebenfalls gleich der wirklichen Akkumulatorkapazität (46 Ah). Die Ladekurve (β) (Prüftemperatur 4 40° C) hat einen flacheren Lauf. L-ie Aufladung wurde im Augenblick unterbrochen, in dem die Spannung 20 mV weniger als ihr Maximalwert be'.rug.In the charging curve (β) F i g. 2 (test temperature 0 0 C) a stronger kink can be noticed. Charging was interrupted at the moment when the voltage was 40 mV less than its maximum value. The discharge capacity with a discharge up to a voltage of 1 V (discharge curve (b) is also equal to the real accumulator capacity (46 Ah). The charge curve (β) (test temperature 4 40 ° C) has a flatter course. L-ie charging was interrupted at the moment when the voltage was 20 mV less than its maximum value.

Die Entladekapazität bei einer Entladung bis zu einer 1-V-Spannung(siehe Entladekurve (6)) ist 32 Ah gleich, was ebenfalls einer maximalen Akkumulatoraufladung bei + 40° C entspricht.The discharge capacity for a discharge up to 1 V voltage (see discharge curve (6)) is 32 Ah the same, which also corresponds to a maximum battery charge at + 40 ° C.

Offensichtlich ist, daß das Signal zur Abschaltung vom Ladestromkreis nicht nur von einem Akkumulator sondern auch von einer Akkumulatorenbatterie entnommen werden kann. Diese eigenartige Lösung der Aufgabe über das Anzeigen des Aufladungsendes ist wahrscheinlich nur für abgedichtete Nickel-Wasserstoff-Akkumulatoren angebracht, die beim Wiederaufladen eine garantiert hohe Gasaufnahmegeschwindigkeit aufweisen.It is obvious that the signal for disconnection from the charging circuit is not only from an accumulator but can also be taken from an accumulator battery. This strange solution The task of indicating the end of charge is likely only for sealed nickel-hydrogen storage batteries attached, which guarantees a high gas absorption rate when recharging exhibit.

Hierzu 1 Blatt Zeichnungen1 sheet of drawings

Claims (1)

Patentanspruch:Claim: Verfahren zum Aufladen von abgedichteten Nickel-Wasserstoff-Akkumulatoren mit Gleichstrom, wobei die Abschaltung der Akkumulatoren vom Ladestromkreis bei Sauerstoffentwicklung vorgenommen wird, dadurch gekennzeichnet, daß die Abschaltung vom Ladestromkreis nach dem Sinken der Ladespannung um 20 bis 40 mV erfolgt.Method for charging sealed nickel-hydrogen accumulators with direct current, whereby the disconnection of the accumulators from the charging circuit in the event of oxygen development is made, characterized in that the disconnection from the charging circuit takes place after the charging voltage has dropped by 20 to 40 mV.
DE2109475A 1971-02-15 1971-03-01 Method for charging sealed nickel hydrogen batteries Expired DE2109475C3 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT129571A AT310301B (en) 1971-02-15 1971-02-15 Circuit arrangement for charging gas-tight alkaline batteries
DE2109475A DE2109475C3 (en) 1971-02-15 1971-03-01 Method for charging sealed nickel hydrogen batteries
FR7107463A FR2128093A1 (en) 1971-02-15 1971-03-04 Nickel hydrogen cell charging method
BE763850A BE763850A (en) 1971-02-15 1971-03-05 PROCESS FOR CHARGING A WATERPROOF NICKEL-HYDROGEN ACCUMULATOR.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AT129571A AT310301B (en) 1971-02-15 1971-02-15 Circuit arrangement for charging gas-tight alkaline batteries
DE2109475A DE2109475C3 (en) 1971-02-15 1971-03-01 Method for charging sealed nickel hydrogen batteries
FR7107463A FR2128093A1 (en) 1971-02-15 1971-03-04 Nickel hydrogen cell charging method
BE763850A BE763850A (en) 1971-02-15 1971-03-05 PROCESS FOR CHARGING A WATERPROOF NICKEL-HYDROGEN ACCUMULATOR.

Publications (3)

Publication Number Publication Date
DE2109475A1 DE2109475A1 (en) 1972-10-26
DE2109475B2 DE2109475B2 (en) 1973-05-10
DE2109475C3 true DE2109475C3 (en) 1973-12-06

Family

ID=27421494

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2109475A Expired DE2109475C3 (en) 1971-02-15 1971-03-01 Method for charging sealed nickel hydrogen batteries

Country Status (4)

Country Link
AT (1) AT310301B (en)
BE (1) BE763850A (en)
DE (1) DE2109475C3 (en)
FR (1) FR2128093A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225763A (en) * 1991-03-20 1993-07-06 Sherwood Medical Company Battery charging circuit and method for an ambulatory feeding pump

Also Published As

Publication number Publication date
BE763850A (en) 1971-09-06
DE2109475A1 (en) 1972-10-26
DE2109475B2 (en) 1973-05-10
AT310301B (en) 1973-09-25
FR2128093A1 (en) 1972-10-20
FR2128093B1 (en) 1974-02-15

Similar Documents

Publication Publication Date Title
DE2500332C3 (en) Electric display device for the state of charge of a secondary battery
EP0308653B1 (en) Charging method for maintenance-free batteries with an immobilized electrolyte
DE3687655T2 (en) CONTROL OF CHARGING OF PRESSURIZED ELECTRIC GAS-METAL CHARGING CELLS.
DE2748644A1 (en) PROCEDURES FOR CHARGE MAINTENANCE AND CONTINUOUS CHARGE OF ACCUMULATORS
CH626196A5 (en)
DE60035034T2 (en) DEVICE AND METHOD FOR AUTOMATIC RESTORING OF SULFATED BLEIC ACID BATTERIES
DE3312600A1 (en) ARRANGEMENT FOR CAPACITY-RELATED CHARGING OF A BATTERY
DE2746652A1 (en) ENCLOSED ACCUMULATOR
DE1067094B (en) Electric accumulator battery with alkaline electrolyte and negative zinc electrodes
DE2100011B2 (en) METHOD AND DEVICE FOR MEASURING AND DISPLAYING THE CHARGE STATE OF NICKEL-CADMIUM ACCUMULATORS
DE102012018126A1 (en) Device for monitoring secondary lithium-ion-cell in lithium-ion-battery, has reference electrode and negative electrode connected with measuring unit for determining electrical voltage between reference and negative electrodes
DE2109475C3 (en) Method for charging sealed nickel hydrogen batteries
DE69830888T2 (en) Method for the temperature-dependent charging of an auxiliary power source which is subject to a self-discharge
DE1496344B2 (en) Accumulator cell that contains a control electrode in addition to the positive and negative main electrodes
DE3218148A1 (en) Method and device for indicating the state of charging and for controlling the charging-up of a drive accumulator
DE1613742A1 (en) Method and device for monitoring the discharge of secondary cells
EP0330981B1 (en) Method for charging rechargeable batteries
EP0391242A3 (en) Inspection method of the charging state of a rechargable closed battery
DE2903244C3 (en) Method of charging a ventilated electrochemical cell containing an alkaline electrolyte
EP0055349A2 (en) Method of regulating the charging current of galvanic elements with recombination of gases developed during charging
DE2231348B2 (en) Alkaline electrolyte for galvanic cells with hydrogen storage electrodes
DE1596246C3 (en) Gas-tight sealed accumulator in which the hydrogen produced is consumed
DE1496344C (en) Accumulator cell, which contains a control electrode in addition to positive and negative main electrodes
CH492327A (en) Method and device for limiting the charging process in an electrical accumulator
AT307533B (en) Battery made of air-zinc accumulators

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977
EHJ Ceased/non-payment of the annual fee