DE20220134U1 - Wind energy unit has sensors in the wind blades for dynamic pitch control to equalize drive on all the blades - Google Patents
Wind energy unit has sensors in the wind blades for dynamic pitch control to equalize drive on all the bladesInfo
- Publication number
- DE20220134U1 DE20220134U1 DE20220134U DE20220134U DE20220134U1 DE 20220134 U1 DE20220134 U1 DE 20220134U1 DE 20220134 U DE20220134 U DE 20220134U DE 20220134 U DE20220134 U DE 20220134U DE 20220134 U1 DE20220134 U1 DE 20220134U1
- Authority
- DE
- Germany
- Prior art keywords
- blades
- wind
- pitch control
- sensors
- energy unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005265 energy consumption Methods 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 244000309464 bull Species 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/331—Mechanical loads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
- F05B2270/808—Strain gauges; Load cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
Description
·**··.· · I &Iacgr; Ant&g auf Bintragung eines Gebrauchmusters • * I* : * I I IDaCuiJi: ! · · 27.04.02·**··.· · I &Iacgr; Ant&g to registration of a utility model • * I* : * II IDaCuiJi: ! · · 27.04.02
*.·**·· ·· Ar/tfielder".· "Uckerwerk Energietechnik GmbH*.·**·· ·· Ar/tfielder".· "Uckerwerk Energietechnik GmbH
Titel: Dynamische Pitch-Steuerung für WindenergieanlagenTitle: Dynamic pitch control for wind turbines
Das hier vorgestellte Steuerungssystem dient der dynamischen lastabhängigen Steuerung von Pitch-Systemen an Windenergieanlagen. Die Verstellung der Rotorblätter soll zielgesteuert unabhängig voneinander erfolgen, so dass jedes Rotorblatt den Anströmungswinkel so verändern kann, dass die Leistungsaufnahme bzw. -abgabe jedes einzelnen Blattes gleich groß ist.The control system presented here is used for the dynamic, load-dependent control of pitch systems on wind turbines. The adjustment of the rotor blades should be carried out independently of each other in a targeted manner so that each rotor blade can change the angle of flow so that the power input or output of each individual blade is the same.
Moderne Anlagen verfügen über immer größere Rotordurchmesser, derzeit sind Durchmesser von über 70m keine Seltenheit mehr. Hierdurch kommt es, aufgrund der Höhendifferenzen zwischen dem untersten und obersten Blatt, bereits zu relevanten unterschiedlichen leistungsbeeinflussenden metrologische Bedingungen. Da derzeitige Anlagen nur über ein zentrales Windmesssystem und / oder eine zentrale Leistungserfassung verfügen, kann die Leistungsaufnahme nicht einem einzelnen Blatt zugeordnet werden und somit auch nicht einzeln durch Verstellung der Blätter zielorientiert geregelt werden. Dieser Mangel führt zu ungünstigen Lasten innerhalb des Abtriebstranges sowie im Getriebe der Anlagen. Damit diese Lasten soweit wie möglich reduziert werden können, ist es erforderlich die Leistungsnahme jedes einzelnen Rotorblattes zu erfassen und anschließend durch direkte Verstellung des Pitch-Winkels soweit zu verändern, dass über die gesamte überstrichene Rotorfläche eine nahezu gleichbleibende Leistungsaufnahme erfolgt.Modern systems have ever larger rotor diameters; diameters of over 70m are no longer uncommon. Due to the height differences between the lowest and highest blades, this leads to relevant different metrological conditions that affect performance. Since current systems only have a central wind measurement system and/or a central power recording system, the power consumption cannot be assigned to a single blade and therefore cannot be controlled individually by adjusting the blades. This deficiency leads to unfavorable loads within the drive train and in the system's gearbox. In order to reduce these loads as much as possible, it is necessary to record the power consumption of each individual rotor blade and then change it by directly adjusting the pitch angle so that there is almost constant power consumption across the entire swept rotor area.
Das hier angemeldete System erfasst die an jedem Blatt anliegenden Strömungsgeschwindigkeiten, Druckunterschiede und / oder Spannungen mit Hilfe geeigneter Sensoren (1). Auf Basis dieser Daten kann der die Energieaufnahme jedes einzelnen Blattes rechnerisch ermittelt werden. Die daraus ermittelte Leistungsaufnahme der einzelnen Rotorblätter kann durch eine entsprechend schnell reagierende dynamische Pitch-Steuerung (2) so optimiert werden, dass alle Rotorblätter nahezu die gleiche Kraft in den Antriebsstrang eingeleitet wird.The system registered here records the flow speeds, pressure differences and/or tensions at each blade using suitable sensors (1). On the basis of this data, the energy consumption of each individual blade can be calculated. The resulting power consumption of the individual rotor blades can be optimized by a correspondingly fast-reacting dynamic pitch control (2) so that all rotor blades apply almost the same amount of force to the drive train.
Die Abnahme der Daten erfolgt in den bzw. an den Rotorblättern (3), dadurch ist gewährleistet, dass die Datenerfassung in dem Bereich erfolgt, indem die Leistungsaufnahme der Rotorblätter stattfindet. Die erfassten Daten werden über entsprechende Datenleitungen in das Maschinenhaus der Anlagen geleitet, wo sie in entsprechenden Datenverarbeitungseinheiten (4) soweit aufgearbeitet werden, dass die Pitch-Regelung in der Lage ist die erforderliche Verstellung der Rotorblätter vorzunehmen.The data is collected in or on the rotor blades (3), which ensures that the data is recorded in the area in which the power is consumed by the rotor blades. The recorded data is sent via appropriate data lines to the machine room of the system, where it is processed in appropriate data processing units (4) to such an extent that the pitch control is able to make the necessary adjustment of the rotor blades.
Claims (1)
Auf Basis dieser Daten kann eine gezielte Verstellung des Pitch-Winkels zur Beeinflussung der Energieaufnahme eines jeden einzelnen Rotorblattes vorgenommen werden. Hierdurch kann die Krafteinleitung in den Antriebsstrang der Windenergieanlage über die gesamte überstrichene Fläche gleichmäßiger verteilt werden. By integrating suitable sensors into one or more rotor blades of a wind turbine, the energy consumption of the individual rotor blades can be determined.
Based on this data, the pitch angle can be adjusted in a targeted manner to influence the energy absorption of each individual rotor blade. This allows the force introduced into the drive train of the wind turbine to be distributed more evenly across the entire swept area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20220134U DE20220134U1 (en) | 2002-04-27 | 2002-12-24 | Wind energy unit has sensors in the wind blades for dynamic pitch control to equalize drive on all the blades |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20206707 | 2002-04-27 | ||
DE20220134U DE20220134U1 (en) | 2002-04-27 | 2002-12-24 | Wind energy unit has sensors in the wind blades for dynamic pitch control to equalize drive on all the blades |
Publications (1)
Publication Number | Publication Date |
---|---|
DE20220134U1 true DE20220134U1 (en) | 2003-04-24 |
Family
ID=7970608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE20220134U Expired - Lifetime DE20220134U1 (en) | 2002-04-27 | 2002-12-24 | Wind energy unit has sensors in the wind blades for dynamic pitch control to equalize drive on all the blades |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE20220134U1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007010322A1 (en) * | 2005-07-18 | 2007-01-25 | Clipper Windpower Technology, Inc. | Wind flow estimation and tracking using tower dynamics |
US7317260B2 (en) | 2004-05-11 | 2008-01-08 | Clipper Windpower Technology, Inc. | Wind flow estimation and tracking using tower dynamics |
GB2448940A (en) * | 2007-05-04 | 2008-11-05 | Insensys Ltd | Wind Turbine Monitoring |
DE102008031816A1 (en) * | 2008-06-25 | 2009-12-31 | Lange, Wilhelm, Dr. | Method for operating a wind turbine |
DE102009007013A1 (en) | 2009-01-31 | 2010-08-12 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Engine, especially CROR propulsion, for an aircraft |
CN104122013A (en) * | 2014-07-15 | 2014-10-29 | 西安交通大学 | On-line monitoring method for large-scale wind power tower drum structure stress |
-
2002
- 2002-12-24 DE DE20220134U patent/DE20220134U1/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7317260B2 (en) | 2004-05-11 | 2008-01-08 | Clipper Windpower Technology, Inc. | Wind flow estimation and tracking using tower dynamics |
WO2007010322A1 (en) * | 2005-07-18 | 2007-01-25 | Clipper Windpower Technology, Inc. | Wind flow estimation and tracking using tower dynamics |
GB2448940A (en) * | 2007-05-04 | 2008-11-05 | Insensys Ltd | Wind Turbine Monitoring |
GB2458400A (en) * | 2007-05-04 | 2009-09-23 | Insensys Ltd | Wind turbine monitoring and determination of the angle of inclination of a turbine blade about an axis extending radially from the rotor |
GB2448940B (en) * | 2007-05-04 | 2009-10-14 | Insensys Ltd | Wind turbine monitoring |
GB2458400B (en) * | 2007-05-04 | 2010-02-17 | Insensys Ltd | Wind turbine monitoring |
DE102008031816A1 (en) * | 2008-06-25 | 2009-12-31 | Lange, Wilhelm, Dr. | Method for operating a wind turbine |
DE102009007013A1 (en) | 2009-01-31 | 2010-08-12 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Engine, especially CROR propulsion, for an aircraft |
CN104122013A (en) * | 2014-07-15 | 2014-10-29 | 西安交通大学 | On-line monitoring method for large-scale wind power tower drum structure stress |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009030886A1 (en) | Wind turbine with a variety of wind energy devices and methods for controlling the wind turbine | |
EP3896278B1 (en) | Vertical wind power assembly and method for operating same | |
EP1544458B1 (en) | Blade pitch angle control for wind turbine | |
EP1809899B1 (en) | Wind turbine and method for the automatic correction of wind vane settings | |
DE60013219T2 (en) | Method and apparatus for minimizing torsional stresses in a rotating shaft | |
EP3359810A1 (en) | Method for monitoring a wind turbine | |
EP3421784B1 (en) | Method for operating a wind farm | |
EP2354539A1 (en) | Wind energy plant with an azimuth system and method for adjusting the azimuth of a wind energy plant | |
EP0995904A2 (en) | Wind turbine | |
DE20220134U1 (en) | Wind energy unit has sensors in the wind blades for dynamic pitch control to equalize drive on all the blades | |
DE102015010227A1 (en) | Method for controlling pitch drives of a wind turbine, control device and wind turbine | |
WO2015132187A1 (en) | Rotor blade setting method and device for a wind turbine | |
EP2929179B1 (en) | Wind turbine and method for operating a wind turbine | |
EP2685094B1 (en) | Control of a wind farm | |
EP2677167A2 (en) | Pitch system for wind turbine | |
EP3555462B1 (en) | Method for controlling a wind turbine | |
EP2570655B1 (en) | Device for active adjustment of a blade for small-scale wind energy assembly | |
DE102010027229A1 (en) | Method and device for providing a parking angle correction signal for a predetermined rotor blade of a wind turbine | |
DE102008031484A1 (en) | Method for determining relative blade adjusting angle of wind turbine, involves overlying and analyzing digital photo with virtual templates, where templates contain reference- and/or datum line for rotor rotational plane and chord | |
WO2010083866A2 (en) | Stationary energy production plant having a braking device | |
WO2011138094A1 (en) | Method and arrangement for regulating pressure in a plain bearing of a wind power generator | |
DE102009059668A1 (en) | Wind energy plant for generating electricity, has rotor comprising rotor head and rotor blades, and wind detection system rotatably arranged at carrier at rotor head and detecting wind in predetermined minimum distance | |
DE102016100647A1 (en) | Method for operating a wind turbine and wind turbine | |
DE102007020076B4 (en) | Wind measuring system for a wind turbine | |
DE102015009325A1 (en) | Drive train storage of a wind turbine and wind turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R207 | Utility model specification |
Effective date: 20030528 |
|
R081 | Change of applicant/patentee |
Owner name: UCKERWERK ENERGIETECHNIK GMBH, DE Free format text: FORMER OWNER: UCKERWERK ENERGIETECHNIK GMBH, 17337 UCKERLAND, DE Effective date: 20060621 |
|
R150 | Utility model maintained after payment of first maintenance fee after three years |
Effective date: 20060707 |
|
R151 | Utility model maintained after payment of second maintenance fee after six years |
Effective date: 20090622 |
|
R152 | Utility model maintained after payment of third maintenance fee after eight years | ||
R152 | Utility model maintained after payment of third maintenance fee after eight years |
Effective date: 20111112 |
|
R071 | Expiry of right | ||
R071 | Expiry of right |