DE202016000557U1 - Denitrification Biopolymer Reactor (DBR) - Google Patents

Denitrification Biopolymer Reactor (DBR) Download PDF

Info

Publication number
DE202016000557U1
DE202016000557U1 DE202016000557.0U DE202016000557U DE202016000557U1 DE 202016000557 U1 DE202016000557 U1 DE 202016000557U1 DE 202016000557 U DE202016000557 U DE 202016000557U DE 202016000557 U1 DE202016000557 U1 DE 202016000557U1
Authority
DE
Germany
Prior art keywords
denitrification
biopolymer
biopolymers
process water
pha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202016000557.0U
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE202016000557.0U priority Critical patent/DE202016000557U1/en
Publication of DE202016000557U1 publication Critical patent/DE202016000557U1/en
Expired - Lifetime legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2833Anaerobic digestion processes using fluidized bed reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

Biopolymer-Wirbelbett-Reaktor (BWR) zwecks Denitrifikation aquatischer Prozesswasser unter Einsatz von PHA- und PHB-Biopolymeren, dadurch gekennzeichnet, dass in einem geschlossenen Behälter eine starke Pumpe in dem Behälter für eine starke Auftriebsverwirbelung sorgt, die die Biopolymere in ständiger Schwebe halten.Biopolymer fluidized bed reactor (BWR) for denitrification of aquatic process water using PHA and PHB biopolymers, characterized in that, in a closed container, a strong pump in the container provides high buoyancy turbulence which keeps the biopolymers in constant suspension.

Description

Biopolymer-Wirbelbett-Reaktoren (BWR) dienen der Denitrifikation nitrathaltiger Prozesswasser aquatischer Systeme. Hierbei haben kohlenstoffhaltige Biopolymere auf der Grundlage von Polyhydroxyalkonoate (PHA) und Polyhydroxybutyrat (PHB) eine zentrale Bedeutung.Biopolymer fluidized bed reactors (BWR) serve the denitrification of nitrate-containing process water of aquatic systems. Here, carbon-containing biopolymers based on polyhydroxyalkonates (PHA) and polyhydroxybutyrate (PHB) are of central importance.

Im Gegensatz zur aeroben Nitrifikation, wird bei der Denitrifikation Nitrat bakteriell aus organischer, kohlenstoffhaltiger Materie zur Energiegewinnung verwendet. Dabei wird das Nitrat auf molekularen Stickstoff zurück reduziert, der größtenteils in die Atmosphäre entweicht. Viele aerobe Mikroorganismen sind in der Lage nach kurzer Adaptionszeit zu denitrifizieren, vorausgesetzt, außer Nitrat und Nitrit als Elektronenakzeptor, es liegt ein ausreichendes Angebot an leicht verwertbaren organischen Stoffen vor. Bei einem zu geringem Zufluss solcher Stoffe, ist eine Kohlenstoffzugabe für eine effektive N2-Entstehung nötig.In contrast to aerobic nitrification, nitrate is bacterial from organic, carbonaceous matter used for energy during denitrification. In doing so, the nitrate is reduced back to molecular nitrogen, which largely escapes into the atmosphere. Many aerobic microorganisms are able to denitrify after a short adaptation time, provided, except nitrate and nitrite as the electron acceptor, there is a sufficient supply of readily usable organic substances. With too little influx of such substances, a carbon addition for an effective N2 formation is necessary.

Bei der Wahl geeigneter Kohlenstoffquellen sind Flüssigkeiten per se ungünstig, weil sie keine bakterielle Besiedelung ermöglichen und somit keine Vermehrungsrate durch Rasenbildung ermöglichen. Kohlenstoffquellen sollten möglichst keine Heteroatome enthalten, insbesondere keine Stickstoff-, Phosphor- oder Schwefelatome, weil unerwünschte Parallelreaktionen stattfinden können. Kohlenstoffreiche aromatische Systeme wie etwa Lignin, könnten für die Anwendung herangezogen werden, würden aber aus sterischen und strukturellen Gründen den Prozess zu stark verlangsamen. Molekulare Strukturen mit sauerstoffarmem Aufbau wie etwa feste Terpene oder höhere gesättigte Carbonsäuren haben Bereiche geringer Polarität und sind für den bakteriellen Angriff eher ungeeignet.When selecting suitable carbon sources, liquids are per se unfavorable because they do not allow bacterial colonization and thus do not allow multiplication by turfing. Carbon sources should preferably contain no heteroatoms, in particular no nitrogen, phosphorus or sulfur atoms, because unwanted parallel reactions can take place. Carbon-rich aromatic systems, such as lignin, could be used for the application, but for steric and structural reasons would slow down the process too much. Low-oxygen molecular structures, such as solid terpenes or higher saturated carboxylic acids, have low polarity regions and are unsuitable for bacterial attack.

Zur Denitrifikation aquatischer Systeme sollten wegen der Sensibilität der Produkte Kohlenstoffquellen mit möglichst einheitlichen molekularen Eigenschaften gewählt werden, wenn die Denitrifikation nicht hermetisch gegen den Zuchtprozess abgeriegelt ist. Dies verhindert unkontrollierbare Nebenreaktionen und hilft den Zuchtprozess konstanter zu halten.Due to the sensitivity of the products, denitrification of aquatic systems should be based on carbon sources with molecular properties that are as uniform as possible, if the denitrification is not hermetically sealed against the breeding process. This prevents uncontrollable side reactions and helps to keep the breeding process constant.

Optimale Kohlenstoffquellen sind Polyhydroxyalkonoate (PHA), weil sie selbst biogene Speicherstoffe sind, als natürliche Polymere in zahllosen Varianten existieren, nur aus Kohlenwasserstoffen und Carbonsäureestern bestehen, aufgrund ihrer perfekten Kettensymentrie vollständig und schnell abbaubar sind und als biogene Speicherstoffe seit Beginn des Lebens als Denitrifikanten existieren.Optimum carbon sources are polyhydroxyalkonoates (PHA) because they are biogenic storage materials themselves, exist as natural polymers in countless variants, consist only of hydrocarbons and carboxylic acid esters, are fully and rapidly degradable due to their perfect chain enzymes, and exist as denitrifiers since the beginning of life ,

Der hier beschriebene BWR-Reaktor muss folgende Bedingungen erfüllen:

  • 1. Anaerober Betrieb
  • 2. Trennung vom Zuchtprozess durch Bypassbetrieb
  • 3. Nach Einfahrzeit hohe Verweildauer im Reaktor (4–5 h)
  • 4. Starke Verwirbelung der Biopolymere zur Vermeidung von Klumpenbildung
  • 5. Prozesssteuerung mittels Redox-Sonde im Reaktor.
The BWR reactor described here must fulfill the following conditions:
  • 1. Anaerobic operation
  • 2. Separation of the breeding process by bypass operation
  • 3. After start-up time high residence time in the reactor (4-5 h)
  • 4. Strong turbulence of biopolymers to avoid lumping
  • 5. Process control by means of redox probe in the reactor.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Biopolymer-Wirbelbett-ReaktorBiopolymer fluidized bed reactor
22
Transportpumpetransport pump
33
Redox-SondeRedox probe
44
Zuführung von WirbelpumpeSupply of vortex pump
55
Rückführung zur WirbelpumpeReturn to the vortex pump
66
Lochplattenperforated plates
77
Biopolymerebiopolymers
88th
Prozesswasserrückführung zum AbscheiderProcess water return to the separator
99
Vorfilterprefilter
1010
Prozesswasserzuführung vom AbscheiderProcess water supply from the separator
1111
Wirbelpumpevortex pump
1212
Verschraubbarer ReaktorverschlussScrew-in reactor closure
1313
Verschraubbare RohrverbindungenScrewable pipe connections
1414
Auftriebsströmung zwecks Biopolymer-VerwirbelungBuoyancy flow for biopolymer turbulence

Claims (5)

Biopolymer-Wirbelbett-Reaktor (BWR) zwecks Denitrifikation aquatischer Prozesswasser unter Einsatz von PHA- und PHB-Biopolymeren, dadurch gekennzeichnet, dass in einem geschlossenen Behälter eine starke Pumpe in dem Behälter für eine starke Auftriebsverwirbelung sorgt, die die Biopolymere in ständiger Schwebe halten.Biopolymer fluidized bed reactor (BWR) for denitrification of aquatic process water using PHA and PHB biopolymers, characterized in that, in a closed container, a strong pump in the container provides high buoyancy turbulence which keeps the biopolymers in constant suspension. Biopolymer-Wirbelbett-Reaktor (BWR) zwecks Denitrifikation aquatischer Prozesswasser unter Einsatz von PHA- und PHB-Biopolymeren nach Anspruch 1, dadurch gekennzeichnet, dass der (meist runde) Behälter luftdicht verschlossen ist.Biopolymer fluidized bed reactor (BWR) for the purpose of denitrification of aquatic process water using PHA and PHB biopolymers according to claim 1, characterized in that the (usually round) container is hermetically sealed. Biopolymer-Wirbelbett-Reaktor (BWR) zwecks Denitrifikation aquatischer Prozesswasser unter Einsatz von PHA- und PHB-Biopolymeren nach Anspruch 1, dadurch gekennzeichnet, dass der Behälter vom Zuchtprozess getrennt im Bypass betrieben wird.Biopolymer fluidized bed reactor (BWR) for the purpose of denitrification of aquatic process water using PHA and PHB biopolymers according to claim 1, characterized in that the container is operated separately from the breeding process in the bypass. Biopolymer-Wirbelbett-Reaktor (BWR) zwecks Denitrifikation aquatischer Prozesswasser unter Einsatz von PHA- und PHB-Biopolymeren nach Anspruch 1, dadurch gekennzeichnet, dass das Prozesswasser im Behälter eine hohe Verweildauer (mindestens 4–5 h) verbleibt.Biopolymer fluidized bed reactor (BWR) for the purpose of denitrification of aquatic process water Use of PHA and PHB biopolymers according to claim 1, characterized in that the process water in the container a high residence time (at least 4-5 h) remains. Biopolymer-Wirbelbett-Reaktor (BWR) zwecks Denitrifikation aquatischer Prozesswasser unter Einsatz von PHA- und PHB-Biopolymeren nach Anspruch 1, dadurch gekennzeichnet, dass die Denitrifikation mit einer Redox-Sonde sowie einem entsprechenden Controller überwacht und gesteuert wird.Biopolymer fluidized bed reactor (BWR) for the purpose of denitrification of aqueous process water using PHA and PHB biopolymers according to claim 1, characterized in that the denitrification is monitored and controlled with a redox probe and a corresponding controller.
DE202016000557.0U 2016-03-17 2016-03-17 Denitrification Biopolymer Reactor (DBR) Expired - Lifetime DE202016000557U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202016000557.0U DE202016000557U1 (en) 2016-03-17 2016-03-17 Denitrification Biopolymer Reactor (DBR)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202016000557.0U DE202016000557U1 (en) 2016-03-17 2016-03-17 Denitrification Biopolymer Reactor (DBR)

Publications (1)

Publication Number Publication Date
DE202016000557U1 true DE202016000557U1 (en) 2016-07-07

Family

ID=56551859

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202016000557.0U Expired - Lifetime DE202016000557U1 (en) 2016-03-17 2016-03-17 Denitrification Biopolymer Reactor (DBR)

Country Status (1)

Country Link
DE (1) DE202016000557U1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875044A (en) * 2020-07-29 2020-11-03 南京大学 Jet-swirling biological fluidized bed reactor and operation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875044A (en) * 2020-07-29 2020-11-03 南京大学 Jet-swirling biological fluidized bed reactor and operation method thereof
CN111875044B (en) * 2020-07-29 2022-08-09 南京大学 Jet-swirling biological fluidized bed reactor and operation method thereof

Similar Documents

Publication Publication Date Title
EP1807225B1 (en) Method for decomposing biogenic material, corresponding biogas plant and its use
DE102020002755B4 (en) Carbon dioxide-neutral bioconverter plants for the production of biogas with hydrogen and activated carbon masses in the fermentation liquid of the bioconverter
DE102016004026B4 (en) Bioconverter with coal-containing floating bodies
WO2008113309A1 (en) Method for the wet-chemical transformation of biomass by hydrothermal carbonization
DE102010028707B4 (en) Process and plant for gas-tight process control of percolators in a bi-or multi-stage biogas process
EP2553083B1 (en) Control of biogas plants
DE102008032409A1 (en) Process for the production of methane from process waters and biogenic material
CA2632606A1 (en) System and method for processing organic waste material
DE102014100849B4 (en) Method and device for producing biogas
DE102016009223A1 (en) Method for methane fermentation in the plug flow and apparatus for carrying out the method
DE102010010294A1 (en) Method and device for anaerobic fermentation
DE202016000557U1 (en) Denitrification Biopolymer Reactor (DBR)
Lehner et al. Carbon capture and utilization (CCU)–Verfahrenswege und deren Bewertung
Ndon et al. Ambient temperature treatment of low strength wastewater using anaerobic sequencing batch reactor
EP2067750B1 (en) Method and device for treating waste water with a high share of nitrogen and low share of BSB5, especially water on a waste tip
CN206447638U (en) A kind of device of utilization microbial degradation perchlorate
DE102018002883A1 (en) Process for the batchwise use of fully mixable agitators for methane fermentation
DE102019006623B4 (en) Bioconverter for producing biogas with elemental hydrogen and activated carbon masses in the fermentation liquid
EP1704221B1 (en) Biogas fermentation installation
DE102010033442A1 (en) Concentration of microorganisms in aqueous substrates for biogas plants, by adding substrate with microorganisms contained in vessel with hydrolysis and fermentation of substrate and transferring fermented substrate into separation module
Stover et al. High TDS wastewater treatability study-design considerations
DE102016000070A1 (en) Method and apparatus for methanation of carbon dioxide and hydrogen by means of an anaerobic bioreactive permeable wall
Wang et al. Structure and formation of anoxic granular sludge—A string-bag hypothesis
DE102013021526A1 (en) Method for hygienization and emission reduction within a bioreactor of a solid-state fermentation plant by batch process and method for avoiding MAP / struvite formation on a solid-matter fermentation plant
DE102009045895A1 (en) Method and device for increasing the population density of methane-producing bacterial strains in biogas fermenters

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R207 Utility model specification
R156 Lapse of ip right after 3 years