DE202010007837U1 - Device in the production of Raney metals - Google Patents

Device in the production of Raney metals Download PDF

Info

Publication number
DE202010007837U1
DE202010007837U1 DE202010007837U DE202010007837U DE202010007837U1 DE 202010007837 U1 DE202010007837 U1 DE 202010007837U1 DE 202010007837 U DE202010007837 U DE 202010007837U DE 202010007837 U DE202010007837 U DE 202010007837U DE 202010007837 U1 DE202010007837 U1 DE 202010007837U1
Authority
DE
Germany
Prior art keywords
hydrogen
pattern according
production
raney
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202010007837U
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE202010007837U priority Critical patent/DE202010007837U1/en
Publication of DE202010007837U1 publication Critical patent/DE202010007837U1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

Muster einer Vorrichtung zur Nutzung des Wasserstoffs bei der Herstellung von RANEY-Metallen, dadurch gekennzeichnet, dass sie den bei der Herstellung entweichenden Wasserstoff reinigt, auffängt sowie speichert, um ihn einer weiteren Verwendung zuzuführen.A sample of a device for the use of hydrogen in the production of Raney metals, characterized in that it cleans, captures and stores the hydrogen which escapes during production in order to supply it to a further use.

Description

Das Verfahren zur Herstellung besonders hochaktiver, oberflächenreicher Metall-Katalysatoren wurde Mitte der Zwanziger Jahre des zwanzigsten Jahrhunderts von dem amerikanischen Ingenieur Murray Raney entwickelt ( US Patent 1628190 , 10.05.1927).The process for producing highly active, high surface area metal catalysts was developed by American engineer Murray Raney in the mid twenties of the twentieth century ( US Patent 1628190 , 10.05.1927).

Die meiste Verwendung findet wegen der leichten Zugängigkeit das Raney-Nickel. Aber auch andere Metalle, wie Kobalt, Kupfer, Eisen, und Silber werden für spezielle Synthesen nach einem analogen Prozess hergestellt.The most use takes place because of the easy accessibility the Raney nickel. But other metals, such as cobalt, copper, Iron, and silver are made for special syntheses made analogue process.

In jedem Verfahren zur Herstellung dieser oberflächenreichen Metall-Katalysatoren geht man von dem homogenen Einschmelzen in Aluminium aus. Seltener kommen auch Metallkatalysator-Legierungen mit Silizium, Magnesium und Zink zum Einsatz. Die zumeist im Verhältnis 1:1 gemischten Katalysator-Metall-Legierungen mit Aluminium verhalten sich spröde und können gebrochen und zerkleinert werden (Römpp-Chemielexikon).In Any process for making this surface-rich Metal catalysts go from the homogeneous melting in Aluminum off. Less common are metal catalyst alloys with silicon, magnesium and zinc for use. Mostly in proportion 1: 1 mixed catalyst-metal alloys with aluminum behave brittle and can be broken and crushed (Römpp-Lexikon Chemie).

Das Aluminium wird aus dieser zerkleinerten Legierung mit Alkali herausgelöst. In der Regel wird dafür die am Markt erhältliche 50%-ige Natronlauge verwendet. Ein typischer Katalysator besteht zu etwa 85 Prozent der Masse aus Nickel, was etwa zwei Nickelatomen pro Aluminiumatom entspricht.The Aluminum is dissolved out of this crushed alloy with alkali. As a rule, it will be available on the market 50% sodium hydroxide solution used. A typical catalyst exists about 85 percent of the mass of nickel, which is about two nickel atoms corresponds to one aluminum atom.

Die Löse-Operation, bei der nur der größte Teil des Aluminiums in Lösung geht, verläuft nach der chemischen Gleichung: 2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2. The solution operation, in which only the majority of the aluminum goes into solution, proceeds according to the chemical equation: 2Al + 2NaOH + 6H 2 O → 2Na [Al (OH) 4 ] + 3H 2 .

Das bedeutet, dass bei dieser Reaktion neben dem Natrium-Aluminat auch eine erhebliche Menge an Wasserstoff-Gas freigesetzt wird. Während aber das Aluminat in der Wasseraufbereitung oder in der Aluminiumoxid-Verarbeitung eine weitere Verwendung findet, wird der Wasserstoff über Dach geblasen.The means that in this reaction in addition to the sodium aluminate also a significant amount of hydrogen gas is released. While but the aluminate in the water treatment or in the alumina processing another use, the hydrogen is over Roof blown.

Die unterbleibende Nutzung des Wasserstoffs bei der Herstellung von RANEY-Katalysatoren war solange nachvollziehbar, wie es vor allem an Speicher- und Verwendungsmöglichkeiten dieser Ressource gefehlt hatte.The lack of use of hydrogen in the production of Raney catalysts were understandable as long as it was above all else on storage and usage possibilities of this resource had been missing.

Es war also Aufgabe des vorliegenden Musters, einen Weg zu finden, um bei den etablierten Prozessen zur Herstellung von RANEY-Metallen den ungenutzten Wasserstoff mit einer geeigneten Vorrichtung verwendbar zu machen.It was the task of the present model to find a way around the established processes for the production of Raney metals the unused hydrogen with a suitable device usable close.

Diese Bemühungen zielen in zwei Richtungen: zum einen bleibt eine kostbare, energiereiche Ressource ungenutzt, zum anderen besteht die Chance, in Abhängigkeit von Mengen, Investitionen und Betriebskosten für die Wasserstoff-Nutzung die Gesamt-Betriebskosten zu senken.These Efforts aim in two directions: for one thing remains a precious, high-energy resource unused, on the other hand exists the opportunity, depending on quantities, investments and Operating costs for hydrogen use the total operating costs to lower.

Es gilt daher, zunächst einmal die freigesetzte Menge an Wasserstoffgas an den einzelnen Produktionsstätten zu ermitteln, um die Wirtschaftlichkeit für eine Prozess-Erweiterung zur Nutzung des Wasserstoffs abzuschätzen.It Therefore, first of all, the released amount of hydrogen gas at the individual production sites to determine the Cost-effectiveness for a process extension for use of the hydrogen.

In den weiteren Schritten sind Reinigungs-Aufwand und Nutzungs-Aufwand für den Wasserstoff zu kalkulieren, um zu einer Rendite für die Wasserstoff-Nutzung gegenüber einer Nichtnutzung zu gelangen. Gerade aber auf diesen Feldern haben sich in den letzten Jahren erhebliche Fortschritte ergeben.In The next steps are cleaning effort and usage costs to calculate for the hydrogen, at a return for hydrogen use versus non-use too reach. But just in these fields have become the last Significant progress over the years.

Zudem kann unter Umständen auch per Behörden-Auflage eine Nutzung vorgeschrieben werden, wenn sie zwar nicht rein betriebswirtschaftlich zu rechtfertigen wäre, aber im Sinne der Ressourcen-Schonung sowie der IVU-Richtlinie im Rahmen der „Besten verfügbaren Technik” für das Unternehmen zumutbar ist.moreover may also be subject to regulatory requirement a use may be prescribed, although not purely business too would justify, but in terms of resource conservation and the IPPC Directive within the framework of the Best Available Technology "is reasonable for the company.

Die stöchiometrische Betrachtung der angeführten chemischen Gleichung besagt, dass auf jedes Mol Aluminium, bzw. Katalysatormetall, wenn es gewichtsmäßig 1:1 legiert wird, die anderthalbfache Mol-Menge an Wasserstoff entsteht. Bei einem Mol Aluminium, entsprechend grob etwa 30 g, und einem halben Mol Nickel, entsprechend ca. 0,5 × 60 g, entstehen etwa 3 g Wasserstoff. Weil ein Mol Gas einen Raum von 22,4 l einnimmt, eben mehr als 30 l Wasserstoffgas. Bei einer Monats-Produktion an RANEY-Nickel von beispielsweise 3 t, das mit 3 t Aluminium verschmolzen wurde, ist also mit mindestens 3.000 m3 (3 t/30 g × 30 l) Wasserstoff zu rechnen. Das wären vergleichsweise 1.500 Taucherflaschen á 10 l, gefüllt mit einem Druck von 200 bar.The stoichiometric consideration of the stated chemical equation states that for every mole of aluminum, or catalyst metal, when it is alloyed by weight 1: 1, the one and a half times the molar amount of hydrogen is formed. With one mole of aluminum, roughly corresponding to about 30 g, and half a mole of nickel, corresponding to about 0.5 × 60 g, about 3 g of hydrogen are formed. Because one mole of gas occupies a volume of 22.4 liters, just over 30 liters of hydrogen gas. With a monthly production of RANEY nickel of, for example, 3 t, which was fused with 3 t of aluminum, at least 3,000 m 3 (3 t / 30 g × 30 l) of hydrogen is therefore to be expected. That would be about 1,500 10 l divers bottles filled with a pressure of 200 bar.

Um den entweichenden Wasserstoff nicht nutzlos in die Luft entweichen zu lassen, muss das Verfahren um eine Vorrichtung erweitert werden, die den Wasserstoff reinigt, sammelt, komprimiert und gegebenenfalls lagert.Around The escaping hydrogen does not escape useless into the air to let the process have to be extended by a device which purifies the hydrogen, collects, compresses and optionally outsourced.

Der beim Lösen von Aluminium mit Natronlauge mit dem freigesetzten Wasserstoff entwickelte Aerosol-Strom muss abgetrennt werden, bevor der Wasserstoff direkt oder indirekt einer Verwendung zugeführt wird. Das geschieht über herkömmliche Aerosol-Abscheider, Filter, Adsorber oder Wasserwäscher mit anschließender Gas-Trocknung.Of the when dissolving aluminum with caustic soda with the released Hydrogen-developed aerosol stream must be separated before the hydrogen is fed directly or indirectly to a use becomes. This is done via conventional aerosol separators, Filter, adsorber or water scrubber with subsequent Gas drying.

Diese Reinigungs-Schritte werden weitgehend von der nachfolgenden Verwendung bestimmt. Bei der Verwertung des Wasserstoffs im Ofen muss i. d. R. gar nicht gereinigt werden, während bei der Komprimierung zum Speichern oder bei der Verwertung über die Strom-Erzeugung in Brennstoffzellen eine umfangreichere Reinigung notwendig ist.These cleaning steps are largely determined by the subsequent use. In the utilization of the hydrogen in the furnace i. d. R. are not cleaned at all, while in the compression for storage or recovery via the power generation in fuel cells, a more extensive cleaning is necessary.

Für das Speichern von Wasserstoff bietet sich auch die Überführung in Hydride an, wie Ca-, Magnesium- oder Titan-Hydrid an. Ein weiteres Verfahren wurde in dem molekularen Speichern in Clathraten (Einschluss-Verbindungen) oder in komplexen Zink-Terephthalat-Kristallen gefunden.For The storage of hydrogen also offers the transfer in hydrides, such as Ca, magnesium or titanium hydride. Another one Method was used in molecular storage in clathrates (inclusion compounds) or found in complex zinc terephthalate crystals.

Wenn die Gas-Kosten bei ca. 8 Euro je kg Wasserstoff liegen, entsprechend 11 m3 Wasserstoff, sparte man bei einer RANEY-Nickel-Produktion von 3 t schon etwa 2.200 Euro ein. Bei einer Jahresproduktion von einigen hundert Tonnen lassen sich dabei schon einige hunterttausend Euro für Investitionen in die Wirtschaftlichkeitsrechnungen einsetzen. Weltweit schätzen Experten die RANEY-Katalysator-Produktion auf 2.000 bis 3.000 jato. Dabei sind die großen Mengen an RANEY-Eisen noch nicht einbezogen.If the gas costs are about 8 euros per kg of hydrogen, corresponding to 11 m 3 of hydrogen, you save about 2,200 euros for a RANEY nickel production of 3 tons. With an annual production of a few hundred tons, a few hundred thousand euros can be used to invest in the profitability calculations. Experts around the world estimate RANEY catalyst production to be between 2,000 and 3,000 tonnes a year, with large volumes of RANEY iron not yet included.

Wenn bei Stromkosten aus Brennstoffzellen nur ca. 3 Cent/KWh zu Grunde gelegt werden, ist mit „geschenktem” Wasserstoff auch günstig an elektrischen Strom heranzukommen.If For electricity costs from fuel cells only about 3 cents / KWh basis is with "given" hydrogen Also cheap to get electricity.

„Vorrichtung bei der Herstellung von RANEY-Metallen”"Device in the production of Raney metals "

Der bei der Herstellung von RANEY-Metallen freiwerdende Wasserstoff kann durch eine Vorrichtung, bestehend aus Reinigung, Sammelbehälter, Kompressor und Lagertank direkt, oder indirekt Ressourcen schonend einer weiteren Verwendung, wie Hydrierung, Heizen, Schweißen oder Stromerzeugung mittels Brennstoffzellen zugeführt werden.Of the Hydrogen released in the production of Raney metals can by a device consisting of cleaning, collecting tank, compressor and storage tank directly, or indirectly resources another one Use, such as hydrogenation, heating, welding or power generation be supplied by means of fuel cells.

Schlüssel-Wörter:Keywords:

  • RANEY-Legierungen, RANEY-Verfahren, RANEY-Nickel, RANEY-Metall, Vorrichtung zur Prozess-Erweiterung, Wasserstoff-Reinigung, Wasserstoff-Speicherung, Wasserstoff-Adsorbtion, Wasserstoff-Absorption, Ausfrieren von Wasserstoff, Wasserstoff-Komprimierung, Wasserstoff-Nutzung, Wasserstoff-Brennstoffzelle, Ressourcen-Schonung, Rentabilität der Wasserstoff-NutzungRANEY alloys, RANEY processes, RANEY nickel, RANEY metal, Device for process expansion, hydrogen purification, hydrogen storage, Hydrogen adsorption, Hydrogen absorption, Freezing of hydrogen, Hydrogen compression, Hydrogen utilization, Hydrogen fuel cell, Resource conservation, profitability of hydrogen use

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • - US 1628190 [0001] - US 1628190 [0001]

Claims (6)

Muster einer Vorrichtung zur Nutzung des Wasserstoffs bei der Herstellung von RANEY-Metallen, dadurch gekennzeichnet, dass sie den bei der Herstellung entweichenden Wasserstoff reinigt, auffängt sowie speichert, um ihn einer weiteren Verwendung zuzuführen.A sample of a device for the use of hydrogen in the production of Raney metals, characterized in that it cleans, captures and stores the hydrogen which escapes during production in order to supply it to a further use. Muster nach Anspruch 1, dadurch gekennzeichnet, dass die Reinigung des Wasserstoffs von mitgerissenen Lauge- und Aluminat-Aerosolen absoptiv, über die zusätzliche Einrichtung von Wäscher, Filter oder Zentrifugal-Abscheider geschieht.Pattern according to claim 1, characterized in that the purification of hydrogen from entrained caustic and aluminate aerosols absoptiv, about the additional facility of Scrubber, filter or centrifugal separator happens. Muster nach Anspruch 1 und 2, dadurch gekennzeichnet, dass der freigesetzte Wasserstoff über einen ex-geschützten Kompressor verdichtet, ausgefroren bzw. über Hydride oder ab- bzw. adsorptiv gespeichert wird.Pattern according to Claims 1 and 2, characterized that the released hydrogen over an ex-protected Compressor compacted, frozen or hydride or is stored off adsorption or adsorptive. Muster nach Anspruch 1 bis 3 dadurch gekennzeichnet, dass der Wasserstoff direkt oder nach Speicherung über eine nachgeschaltete Brennstoffzelle geleitet wird, um Strom zu erzeugen.Pattern according to Claims 1 to 3, characterized that the hydrogen is directly or after storage over a downstream fuel cell is routed to power produce. Muster nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass der Wasserstoff direkt oder nach der Speicherung in einer nachgeschalteten Vorrichtung zum Betrieb der eigenen oder anderer Öfen verwendet wird.Pattern according to claim 1 to 3, characterized that the hydrogen directly or after storage in a downstream Device used to operate your own or other ovens becomes. Muster nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass der komprimierte, oder absorbierte Wasserstoff externer Verwendung zugeführt wird.Pattern according to claim 1 to 3, characterized that the compressed or absorbed hydrogen is of external use is supplied.
DE202010007837U 2010-06-10 2010-06-10 Device in the production of Raney metals Expired - Lifetime DE202010007837U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202010007837U DE202010007837U1 (en) 2010-06-10 2010-06-10 Device in the production of Raney metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202010007837U DE202010007837U1 (en) 2010-06-10 2010-06-10 Device in the production of Raney metals

Publications (1)

Publication Number Publication Date
DE202010007837U1 true DE202010007837U1 (en) 2010-10-07

Family

ID=42932811

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202010007837U Expired - Lifetime DE202010007837U1 (en) 2010-06-10 2010-06-10 Device in the production of Raney metals

Country Status (1)

Country Link
DE (1) DE202010007837U1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266770A1 (en) 2016-07-07 2018-01-10 Evonik Degussa GmbH Method for producing an n-methyl substituted triacetone amine compound
EP3266766A1 (en) 2016-07-07 2018-01-10 Evonik Degussa GmbH Synthesis of triacetone diamine compounds by means of reductive amination based on triacetone diamine and its derivatives
EP3750876A1 (en) 2019-06-13 2020-12-16 Evonik Operations GmbH Method for preparing triacetone amine, 2,2,4,6-tetramethylpiperidine and/or the salts of 2,2,4,6-tetramethylpiperidine
WO2021104684A1 (en) 2019-11-29 2021-06-03 Evonik Operations Gmbh Improved process for preparing aqueous solutions of 4-ammonium-alkylpiperidine-1-yloxyl salts for use in charge storage units
WO2021104686A1 (en) 2019-11-29 2021-06-03 Evonik Operations Gmbh Process for preparing aqueous solutions of 4-ammonium-alkylpiperidine-1-yloxyl salts with a low salt content for use in charge storage units

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1628190A (en) 1926-05-14 1927-05-10 Raney Murray Method of producing finely-divided nickel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1628190A (en) 1926-05-14 1927-05-10 Raney Murray Method of producing finely-divided nickel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266770A1 (en) 2016-07-07 2018-01-10 Evonik Degussa GmbH Method for producing an n-methyl substituted triacetone amine compound
EP3266766A1 (en) 2016-07-07 2018-01-10 Evonik Degussa GmbH Synthesis of triacetone diamine compounds by means of reductive amination based on triacetone diamine and its derivatives
DE102016212378A1 (en) 2016-07-07 2018-01-11 Evonik Degussa Gmbh Synthesis of triacetonediamine compounds by reductive amination starting from triacetonediamine and its derivatives
DE102016212379A1 (en) 2016-07-07 2018-01-11 Evonik Degussa Gmbh Process for the preparation of an N-methyl-substituted triacetoneamine compound
EP3750876A1 (en) 2019-06-13 2020-12-16 Evonik Operations GmbH Method for preparing triacetone amine, 2,2,4,6-tetramethylpiperidine and/or the salts of 2,2,4,6-tetramethylpiperidine
EP3750877A1 (en) 2019-06-13 2020-12-16 Evonik Operations GmbH Method for preparing triacetone amine and 2,2,4,6-tetramethylpiperidine
WO2021104684A1 (en) 2019-11-29 2021-06-03 Evonik Operations Gmbh Improved process for preparing aqueous solutions of 4-ammonium-alkylpiperidine-1-yloxyl salts for use in charge storage units
WO2021104686A1 (en) 2019-11-29 2021-06-03 Evonik Operations Gmbh Process for preparing aqueous solutions of 4-ammonium-alkylpiperidine-1-yloxyl salts with a low salt content for use in charge storage units

Similar Documents

Publication Publication Date Title
Janković et al. Engineered nanomaterials in the context of global element cycles
Soler et al. Hydrogen generation from water and aluminum promoted by sodium stannate
Dang et al. Recycled lithium from simulated pyrometallurgical slag by chlorination roasting
DE202010007837U1 (en) Device in the production of Raney metals
CN101383440B (en) Method for recycling and preparing superfine nickel powder from nickel-hydrogen cell
Majumder et al. Rational design of graphene derivatives for electrochemical reduction of nitrogen to ammonia
CN102631932A (en) Nickel-base metal catalyst for preparing hydrogen by hydrazine decomposition at room temperature, as well as preparation and application thereof
CN101522303A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
CN103173615B (en) Novel method for enriching metal rhenium in high-temperature alloy waste recovery technology
CN107849639A (en) Reclaim the method for vanadium and the manufacture method of redox flow battery electrolytic solution, and the manufacture device of the device of recovery vanadium and redox flow battery electrolytic solution
CN103451433A (en) Method for extracting precious metals from dead catalysts containing precious metals
CN103451432B (en) A kind of method extracting lead and precious metal from spent noble metals bearing catalysts
CN107673409A (en) The system and method for MgZn ferrite is prepared using pickling sludge and pickle liquor
CN109609761A (en) A kind of recovery method of waste and old lithium ion battery
Adalder et al. Progress of electrochemical synthesis of nitric acid: catalyst design, mechanistic insights, protocol and challenges
CN104561592B (en) Treatment method for nickel-containing electroplating wastewater
US20070202037A1 (en) Method for obtaining hydrogen
CN102643986A (en) Method for producing electrolytic manganese by taking pyrolusite as raw material through wet method reduction leaching
Olayiwola et al. Cleaner production of ammonium paratungstate by membrane electrolysis-precipitation of sodium tungstate solution
Gurusamy et al. Mechanistic analysis of the dissociative reduction of nitrogen to ammonia by ZnMn2O4 catalyst derived from spent batteries
Zhu et al. Direct synthesis of MgH2 nanofibers from waste Mg
CN105861836A (en) Method for collecting noble metal from polymetallic alloy material
Chao et al. A novel process for one-step preparing potassium-containing fertilizer using red mud or CFA synergistic extraction of alumina
CN101792862B (en) Method for recovering metal through purified flue gas of scrap nickel-hydrogen battery
US20200010964A1 (en) Methods of and systems for electrochemical reduction of substrates

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R207 Utility model specification

Effective date: 20101111

R156 Lapse of ip right after 3 years

Effective date: 20140101