DE202010004504U1 - Measuring device for the thermal measurement of flow velocities - Google Patents

Measuring device for the thermal measurement of flow velocities Download PDF

Info

Publication number
DE202010004504U1
DE202010004504U1 DE201020004504 DE202010004504U DE202010004504U1 DE 202010004504 U1 DE202010004504 U1 DE 202010004504U1 DE 201020004504 DE201020004504 DE 201020004504 DE 202010004504 U DE202010004504 U DE 202010004504U DE 202010004504 U1 DE202010004504 U1 DE 202010004504U1
Authority
DE
Germany
Prior art keywords
measuring device
thermal
flowing medium
measuring
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE201020004504
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PNT SYSTEMS GmbH
PNT-SYSTEMS GmbH
Original Assignee
PNT SYSTEMS GmbH
PNT-SYSTEMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PNT SYSTEMS GmbH, PNT-SYSTEMS GmbH filed Critical PNT SYSTEMS GmbH
Priority to DE201020004504 priority Critical patent/DE202010004504U1/en
Publication of DE202010004504U1 publication Critical patent/DE202010004504U1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters

Abstract

Messeinrichtung zur thermischen Messung von Fließgeschwindigkeiten gekennzeichnet durch einen beheizten, thermischen Sensor dessen abgeführte Wärmemenge durch das fließende Medium genutzt wird um die Geschwindigkeit des selben zu messen.Measuring device for the thermal measurement of flow rates characterized by a heated thermal sensor whose dissipated heat is used by the flowing medium to measure the speed of the same.

Description

Es bestehen vielfältige Möglichkeiten das Fließen eines Mediums zu messen, unter anderem, elektrisch ( DE 102 38 362 B4 enthält Aufzählung anderer Fließgeschwindigkeitsmessmethoden), induktiv, kapazitiv, mechanisch, optisch, mit Blasrohr ( DE 10 2006 024 363 A1 ), mit Ultraschall ( DE 100 36 732 C2 ) u. m.There are various possibilities to measure the flow of a medium, inter alia, electrically ( DE 102 38 362 B4 contains list of other flow velocity measuring methods), inductive, capacitive, mechanical, optical, with blowpipe ( DE 10 2006 024 363 A1 ), with ultrasound ( DE 100 36 732 C2 ) around

In der Hydrometrie ergibt sich die besondere Problematik langsam fließende Gewässer zu messen, die verschmutzt und verkrautet sind, was den Einsatz von konventionell genutzten Flügelrädern behindert bis unmöglich macht.In Hydrometry gives rise to the particular problem of slowly flowing To measure waters that are polluted and weeded, what the use of conventionally used impellers hinders until impossible.

Die Messeinrichtung nutzt die beim Heizen einer thermischen Sonde durch ein fließendes Medium abgeführte Wärmemenge und ist unabhängig von Fließrichtung, Lichtausbreitung, Magnetisierbarkeit, Polarisierbarkeit, Schallausbreitung und ähnlichen Eigenschaften anderer Messmethoden und des fließenden Mediums. Die Geschwindigkeitsmessung wird dabei indirekt durch die Temperaturmessung an der Sonde bei bekannter Heizleistung realisiert. Die Sonde muss nur eine geringe Wärmekapazität im Vergleich zum Medium, eine geringe Wärmeleitung zur Halterung, eine die Strömung nicht stark einschränkende Form und definierte Reizbarkeit haben. Grundsätzlich können sowohl gasförmige als auch flüssige Medien mit beschriebener Anordnung gemessen werden.The Measuring device uses the heating of a thermal probe through a flowing medium dissipated amount of heat and is independent of the direction of flow, light propagation, Magnetizability, polarizability, sound propagation and similar properties other measurement methods and the fluid. The speed measurement will thereby indirectly by the temperature measurement at the probe at a known Heating power realized. The probe only has a low heat capacity in comparison to the medium, a low heat conduction to Mount, a flow that does not severely limit the flow Have shape and defined irritability. Basically you can both gaseous and liquid media with be described arrangement measured.

Thermische Messungen der Fließgeschwindigkeit sind statisch, im thermischen Gleichgewicht und dynamisch durch thermische Zyklen möglich. Im Gleichgewicht bleibt die Temperatur des geheizten Sensors im fließenden Medium konstant und die Heizleistung entspricht der durch die konstante Strömung abgeführten Energie. Bei der dynamischen Messung wird zyklisch (z. B. elektrisch mit einem rechteckförmigen Heizpuls) geheizt, wobei sowohl die Aufwärmphase, als auch die Abkühlphase des Zyklus zum Messen genutzt werden kann.thermal Flow rate measurements are static, thermal Balance and dynamic possible through thermal cycles. The temperature of the heated sensor remains in equilibrium flowing medium constant and the heating power corresponds the energy dissipated by the constant flow. In the dynamic measurement is cyclically (eg electrically with a rectangular heating pulse), both the Warm-up phase, as well as the cooling phase of the cycle can be used for measuring.

Die physikalischen Größen Spannung, Strom, Temperatur und Zeit lassen sich sehr einfach elektronisch messen und ermöglichen die direkte Nutzung elektronischer Datenverarbeitung zur Messung der Fließgeschwindigkeit. Dabei lassen sich charakteristische Aufwärm- und Abkühlfunktionen über die Zeit bei verschiedenen Temperaturen speichern und mit aktuellen Messungen schnell vergleichen.The physical quantities voltage, current, temperature and time are very easy to measure and enable electronically the direct use of electronic data processing for measurement the flow rate. This can be characteristic Warm-up and cool down functions over the Save time at different temperatures and with current Compare measurements quickly.

Die elektrische Heizung ist sicherlich die einfachste Lösung, aber auch optische (z. B. Infrarotstrahlung), akustische (z. B. Ultraschall) oder andere schnelle Verfahren sind möglich.The Electric heating is certainly the simplest solution but also optical (eg infrared radiation), acoustic (eg. Ultrasound) or other fast methods are possible.

In erster Näherung ist die abgeführte, thermische Energie proportional zur kinetischen Energie des fließenden Mediums und damit zum Quadrat der Fließgeschwindigkeit. Die Wärmekapazität der Flüssigkeit ist entscheidend für die benötigte Heizleistung und in hinreichenden Bereichen konstant.In first approximation is the dissipated, thermal Energy proportional to the kinetic energy of the flowing Medium and thus the square of the flow velocity. The heat capacity of the liquid is crucial for the required heating power and constant in sufficient areas.

Weiterhin besteht die Möglichkeit einer optimale Anpassung des thermischen Sensors an das fließende Medium (erwarteter Geschwindigkeits- und Temperaturbereich, Wärmekapazität usw.) und die Messbedingungen (biologische, chemische, mechanische Rahmenbedingungen, Zugänglichkeit usw.).Farther there is the possibility of an optimal adaptation of the thermal Sensor to the flowing medium (expected velocity and temperature range, heat capacity, etc.) and the measuring conditions (biological, chemical, mechanical conditions, Accessibility, etc.).

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list The documents listed by the applicant have been automated generated and is solely for better information recorded by the reader. The list is not part of the German Patent or utility model application. The DPMA takes over no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • - DE 10238362 B4 [0001] - DE 10238362 B4 [0001]
  • - DE 102006024363 A1 [0001] - DE 102006024363 A1 [0001]
  • - DE 10036732 C2 [0001] - DE 10036732 C2 [0001]

Claims (5)

Messeinrichtung zur thermischen Messung von Fließgeschwindigkeiten gekennzeichnet durch einen beheizten, thermischen Sensor dessen abgeführte Wärmemenge durch das fließende Medium genutzt wird um die Geschwindigkeit des selben zu messen.Measuring device for the thermal measurement of flow velocities characterized by a heated, thermal sensor whose Dissipated amount of heat through the flowing Medium is used to measure the speed of the same. Messeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass statisch, im thermischen Gleichgewicht und dynamisch durch thermische Zyklen gemessen werden kann.Measuring device according to claim 1, characterized that static, in thermal equilibrium and dynamic through thermal cycles can be measured. Messeinrichtung nach Anspruch 1, gekennzeichnet durch Unabhängigkeit von Fließrichtung, Lichtausbreitung, Magnetisierbarkeit, Polarisierbarkeit, Schallausbreitung und ähnlichen Eigenschaften des fließenden Mediums.Measuring device according to claim 1, characterized by Independence of flow direction, light propagation, Magnetizability, polarizability, sound propagation and the like Properties of the flowing medium. Messeinrichtung nach Anspruch 1, gekennzeichnet durch Ermöglichung der direkten Nutzung elektronischer Datenverarbeitung zur Messung der Fließgeschwindigkeit und zum Vergleich mit anderen Messungen durch Speichern und Berechnen.Measuring device according to claim 1, characterized by Enabling the direct use of electronic data processing for measuring the flow rate and for comparison with other measurements by saving and calculating. Messeinrichtung nach Anspruch 1, gekennzeichnet durch Möglichkeit einer optimale Anpassung des thermischen Sensors an das fließende Medium und die jeweiligen Messbedingungen.Measuring device according to claim 1, characterized by Possibility of optimal adaptation of the thermal sensor to the flowing medium and the respective measuring conditions.
DE201020004504 2010-03-26 2010-03-26 Measuring device for the thermal measurement of flow velocities Expired - Lifetime DE202010004504U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201020004504 DE202010004504U1 (en) 2010-03-26 2010-03-26 Measuring device for the thermal measurement of flow velocities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201020004504 DE202010004504U1 (en) 2010-03-26 2010-03-26 Measuring device for the thermal measurement of flow velocities

Publications (1)

Publication Number Publication Date
DE202010004504U1 true DE202010004504U1 (en) 2010-09-30

Family

ID=42814029

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201020004504 Expired - Lifetime DE202010004504U1 (en) 2010-03-26 2010-03-26 Measuring device for the thermal measurement of flow velocities

Country Status (1)

Country Link
DE (1) DE202010004504U1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036732C2 (en) 2000-04-24 2003-12-04 Chang Min Tech Co Device for flow velocity measurement with ultrasound
DE10238362B4 (en) 2002-08-22 2005-08-11 Abb Patent Gmbh Method and device for flow velocity measurement of conductive and non-conductive media
DE102006024363A1 (en) 2006-05-24 2007-11-29 Robert Bosch Gmbh Fluids volume- and flow-speed measurement e.g. for respiration air of patients, uses micro-mechanical air-mass sensor for connection as pluggable sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036732C2 (en) 2000-04-24 2003-12-04 Chang Min Tech Co Device for flow velocity measurement with ultrasound
DE10238362B4 (en) 2002-08-22 2005-08-11 Abb Patent Gmbh Method and device for flow velocity measurement of conductive and non-conductive media
DE102006024363A1 (en) 2006-05-24 2007-11-29 Robert Bosch Gmbh Fluids volume- and flow-speed measurement e.g. for respiration air of patients, uses micro-mechanical air-mass sensor for connection as pluggable sensor

Similar Documents

Publication Publication Date Title
Fatunmbi et al. Nonlinear thermal radiation and entropy generation on steady flow of magneto-micropolar fluid passing a stretchable sheet with variable properties
Das Slip effects on MHD mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical sheet
CN104316213B (en) A kind of thermometry based on magnetic nanometer ac magnetic susceptibility
Nazeer et al. Numerical solution for flow of a Eyring–Powell fluid in a pipe with prescribed surface temperature
Jena et al. Chemical reaction effect on MHD Jeffery fluid flow over a stretching sheet through porous media with heat generation/absorption
Abd El-Aziz Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer by hydromagnetic three-dimensional free convection over a permeable stretching surface with radiation
Alsallami et al. Numerical simulation of Marangoni Maxwell nanofluid flow with Arrhenius activation energy and entropy anatomization over a rotating disk
Lok et al. Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface: A stability analysis
CN105717278B (en) A kind of soil salt cooling-water temperature sensor
Hussain et al. Model for MHD viscoelastic nanofluid flow with prominence effects of radiation
Offenzeller et al. Fully screen printed thermocouple and microheater applied for time-of-flight sensing in microchannels
CN105841836A (en) Novel transient temperature sensor
Acharya et al. Adomian decomposition method for the MHD flow of a viscous fluid with the influence of dissipative heat energy
Shivakumara et al. Ferromagnetic convection in a rotating ferrofluid saturated porous layer
CN102621036B (en) Method for quickly measuring fluid density on line by adopting piezoresistive micro-cantilever beam
Grosan et al. Magnetohydrodynamic oblique stagnation-point flow
DE202010004504U1 (en) Measuring device for the thermal measurement of flow velocities
Ando et al. A flow sensor exploiting magnetic fluids
Reddy et al. Effects of Cattaneo–Christov heat flux analysis on heat and mass transport of Casson nanoliquid past an accelerating penetrable plate with thermal radiation and Soret–Dufour mechanism
Bhar et al. Effect of position of electrodes in polarization type flowmeter: Analysis and experimental evaluation
Srivastava et al. Non-equilibrium thermodynamics of electro-osmosis of liquid mixtures. Studies on acetone+ water mixtures
Basha et al. Buoyancy‐motivated dissipative free convection flow of Walters‐B fluid along a stretching sheet under the Soret effect and Lorentz force influence
Williams et al. Comparison of experiments and simulation of Joule heating in AC electrokinetic chips
Demori et al. Microfluidic sensor for noncontact detection of cell flow in a microchannel
CN102636697B (en) Device for dynamically measuring performance of insulating medium

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20101104

R156 Lapse of ip right after 3 years

Effective date: 20131001