DE2006347C3 - Process for the preparation of a catalyst - Google Patents

Process for the preparation of a catalyst

Info

Publication number
DE2006347C3
DE2006347C3 DE2006347A DE2006347A DE2006347C3 DE 2006347 C3 DE2006347 C3 DE 2006347C3 DE 2006347 A DE2006347 A DE 2006347A DE 2006347 A DE2006347 A DE 2006347A DE 2006347 C3 DE2006347 C3 DE 2006347C3
Authority
DE
Germany
Prior art keywords
catalyst
transition metal
ammonia
catalysts
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2006347A
Other languages
German (de)
Other versions
DE2006347A1 (en
DE2006347B2 (en
Inventor
Masaru Tokorozawa Ichikawa
Takaharu Yokohama Ohnishi
Mitsuyuki Soma
Mizuo Sudo
Kenji Kamakura Tamaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATO ICHIRO TOKIO
Original Assignee
KATO ICHIRO TOKIO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATO ICHIRO TOKIO filed Critical KATO ICHIRO TOKIO
Publication of DE2006347A1 publication Critical patent/DE2006347A1/en
Publication of DE2006347B2 publication Critical patent/DE2006347B2/en
Application granted granted Critical
Publication of DE2006347C3 publication Critical patent/DE2006347C3/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/11Lithium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/12Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/13Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)

Description

2525th

Die Erfindung betrifft ein Verfahren zur Herstellung eines Katalysators für eine direkte Ammoniaksynthese aus gasförmigem Wasserstoff und Stickstoff.The invention relates to a method of manufacture a catalyst for a direct ammonia synthesis from gaseous hydrogen and nitrogen.

Die bisher benutzten industriellen Verfahren zur Ammoniaksynthese sind das Haber-Bosch-Verfahren, das Claude-Verfahren und das Mont-Cenis-Verfahren. Als wichtigster Katalysator wird bei den ersten beiden Verfahren ein Eisenoxid-Katalysator und bei dem letztgenannten Verfahren ein Cyanoferrat-Komplexsalz benutzt. Allen diesen Katalysatoren ist gemeinsam, daß sie im wesentlichen aus Eisenverbindungen als katalytisch aktiver Komponente und gegebenenfalls aus Aktivatoren bestehen und daß sie erst nach einer Reduktionsbehandlung eingesetzt werden sollten.The industrial processes used to date for the synthesis of ammonia are the Haber-Bosch process, the Claude method and the Mont Cenis method. The main catalyst for the first two Process an iron oxide catalyst and in the latter process a cyanoferrate complex salt used. All of these catalysts have in common that they essentially consist of iron compounds exist as a catalytically active component and optionally of activators and that they only after a reduction treatment should be used.

Spuren von Sauerstoff oder Kohlenmonoxid wirken darüber hinaus auf diese Katalysatoren als Katalysatorgifte und führen zu einem Nachlassen der katalytischen Wirksamkeit.Traces of oxygen or carbon monoxide also act as catalyst poisons on these catalysts and lead to a decrease in the catalytic effectiveness.

Außerdem ist ein Katalysator zur Behandlung von Erdöldestillaten, insbesondere von sauren Erdöldestillaten, bekannt, der durch Abscheiden von Phthalocyanin aus wäßriger oder alkalischer Lösung auf Aktivkohle hergestellt wird.In addition, a catalyst for the treatment of petroleum distillates, especially acidic petroleum distillates, known to be obtained by separating phthalocyanine from aqueous or alkaline solution Activated carbon is produced.

Das Verfahren zur Herstellung von Katalysatoren gemäß der Erfindung, das dagegen in seiner Art voll- so kommen neu ist und zu Katalysatoren führt, die von den bisher gebräuchlichen Katalysatoren abweichende Zusammensetzungen aufweisen, ist dadurch gekennzeichnet, daß man eine überschüssige Menge mindestens eines der Alkalimetalle mit einem oder mehreren Ubergangsmetallphthalocyaninen, einem oder mehreren Ubergangsmetallporphyrinen oder mit Graphit bei einer über dem Schmelzpunkt des bzw. der Alkalimetalle liegenden Temperatur reagieren läßt.The process for the production of catalysts according to the invention, which, however, is completely so in its kind is new and leads to catalysts that differ from the catalysts used up to now Have compositions, is characterized in that you have an excess amount at least one of the alkali metals with one or more transition metal phthalocyanines, one or several transition metal porphyrins or with graphite at one above the melting point of the Can react alkali metals lying temperature.

Der Ausdruck »überschüssige Menge« bezeichnet dabei in üblicher Weise eine Menge, die größer als die dem äquimolaren Verhältnis Alkalimetall zu Ubergangsmetallphthalocyanin bzw. -porphyrin bzw. Graphit entsprechende Menge ist.The term "excess amount" usually denotes an amount that is greater than that the equimolar ratio of alkali metal to transition metal phthalocyanine or porphyrin or graphite corresponding amount is.

Die so hergestellten Katalysatorkomplexverbindungen gehören zu der Gruppe der Elektronen-Donator-Akzeptor-Komplexe, in denen die Ubergangsmetallphthalocyanine, die Ubergangsmetallporphyrine und Graphit die Elektronen-Akzeptoren und die Alkalimetalle die Elektronen-Donatoren sind.The catalyst complex compounds produced in this way belong to the group of electron donor acceptor complexes, in which the transition metal phthalocyanines, the transition metal porphyrins and graphite are the electron acceptors and the alkali metals which are electron donors.

Der Begriff Alkalimetalle schließt die folgenden Metalle ein: Lithium, Natrium, Kalium, RubidiumThe term alkali metals includes the following metals: lithium, sodium, potassium, rubidium

und Cäsium.
Die Ubergangsmetallphthalocyanine sind z. B. die
and cesium.
The transition metal phthalocyanines are z. B. the

Phthalocyanine von Eisen, Nickel, !Cobalt, Wolfram, Platin, Titan, Mangan, Chrom, Zirkon, Hafnium, Vanadin, Molybdän, Osmium, Palladium, Ruthenium, Rhodium und Iridium.Phthalocyanines of iron, nickel,! Cobalt, tungsten, Platinum, titanium, manganese, chromium, zirconium, hafnium, Vanadium, molybdenum, osmium, palladium, ruthenium, Rhodium and iridium.

Diese Ubergangsmetallporphyrine sind z. B. Porphyrine von Eisen, Nickel, Kobalt, Wolfram, Platin, Iridium, Osmium, Titan, Mangan, Chrom, Zirkon, Hafnium, Vanadin, Molybdän, Palladium, Ruthenium und Rhodium.These transition metal porphyrins are z. B. Porphyrins of iron, nickel, cobalt, tungsten, platinum, iridium, osmium, titanium, manganese, chromium, zirconium, Hafnium, vanadium, molybdenum, palladium, ruthenium and rhodium.

Die Katalysatoren gemäß der Erfindung absorbieren eine beträchtliche Menge von gasformigere Wasserstoff und Stickstoff und setzen eine Mischung von gasförmigem Wasserstoff und Stickstoff katalytisch in Ammoniak um. Eine Ammoniakbildung findet dagegen nicht statt, wenn das Gasgemisch nur über Alkalimetalle, nur über Ubergangsmetallphthalocyanine, nur über ubergangsmetallporphyrine oder nur über Graphit geleitet wird. Darüber hinaus wird an den Katalysatoren gemäß der Erfindung ebenso wie an den vorbekannten Katalysatoren der Prozeß der Ammoniakzersetzung umgekehrt. Die höchste Ammoniakausbeute wird daher bei tiefen Temperaturen und hohen Drücken, also auf der Seite hoher Gleichgewichtskonzentration an Ammoniak erzielt. The catalysts according to the invention absorb a considerable amount of gaseous substances Hydrogen and nitrogen and put a mixture of gaseous hydrogen and nitrogen catalytically in ammonia. An ammonia formation does not take place, however, if the gas mixture only over Alkali metals, only via transition metal phthalocyanines, only via transition metal porphyrins, or only is passed over graphite. In addition, the catalysts according to the invention as well as the known catalysts the process of ammonia decomposition vice versa. The highest ammonia yield is therefore at low temperatures and high Pressing, so achieved on the side of high equilibrium concentration of ammonia.

Die Katalysatoren gemäß der Erfindung können beispielsweise durch eines der folgenden Verfahren hergestellt werden:The catalysts according to the invention can for example by one of the following methods getting produced:

Ein Überschuß mindestens eines der Alkalimetalle wird mit mindestens einem der Ubergangsmetallphthalocyanine, mindestens einem der Ubergangsmetallpoirphyrine oder mit Graphit bei einer Temperatur gemischt, die über dem Schmelzpunkt des Alkalimetalls bzw. der Alkalimetalle liegt.An excess of at least one of the alkali metals is mixed with at least one of the transition metal phthalocyanines, at least one of the transition metal poirphyrins or with graphite at a temperature mixed, which is above the melting point of the alkali metal or the alkali metals.

Bei Verwendung von Ubergangsmetallphthalocyaninen oder Ubergangsmetallporphyrinen werden das Alkalimetall bzw. die Alkalimetalle und die Ubergangsmetallphthalocyanine oder Ubergangsmetallporphyrine auf einem Träger mit großer Oberfläche niedergeschlagen, und die so erhaltene Masse wird bei einer Temperatur oberhalb des Schmelzpunktes des Alkalimetalls bzw. der Alkalimetalle wärmebehandelt.When using transition metal phthalocyanines or transition metal porphyrins, the Alkali metal or the alkali metals and the transition metal phthalocyanines or transition metal porphyrins deposited on a carrier with a large surface, and the mass thus obtained is at a Heat-treated at a temperature above the melting point of the alkali metal or alkali metals.

Die erfindungsgemäßen Katalysatoren bestehen aus komplexen Verbindungen zwischen den Alkalimetallen und den Ubergangsmetallphthalocyaninen, den Ubergangsmetallporphyrinen oder Graphit und sind nach einem der vorgenannten Verfahren herstellbar.The catalysts of the invention consist of complex compounds between the alkali metals and the transition metal phthalocyanines, the transition metal porphyrins or graphite and are can be produced by one of the aforementioned processes.

Zur Aktivierung der erfindungsgemäßen Katalysatoren bedarf es weder des Zusatzes von Aktivatoren noch einer reduzierenden Behandlung mit Wasserstoff. Darüber hinaus nimmt die katalytische Wirksamkeit der Katalysatoren gemäß der Erfindung in Gegenwart von gasförmigem Sauerstoff nicht ab.Activators do not need to be added to activate the catalysts of the invention another reducing treatment with hydrogen. In addition, the catalytic effectiveness decreases of the catalysts according to the invention does not decrease in the presence of gaseous oxygen.

Die im folgenden mitgeteilten Ausführungsbeispiele dienen zur Verdeutlichung der Erfindung.The exemplary embodiments reported below serve to illustrate the invention.

Beispiel 1example 1

0,5 g metallisches Natrium wurden an der Innenwand eines gläsernen, als Reaktionsgefaß dienenden U-Rohres niedergeschlagen, und auf diese Schicht wurden dann 0,1 g Eisenphthalocyanin aufgedampft. Diese niedergeschlagenen Substanzen wurden anschließend bei 200° C im Vakuum getempert, wobei0.5 g of metallic sodium were on the inner wall of a glass, serving as a reaction vessel U-tube was deposited, and 0.1 g of iron phthalocyanine was then evaporated onto this layer. These precipitated substances were then heat-treated at 200 ° C. in a vacuum, with

sich ein tiefgefärbter Komplex von Eisenphthalocyanin-Natrium bildete. In das Reaktionsgefaß mit dem so gebildeten Komplex wurde eine Mischung von gasförmigem Wasserstoff und Stickstoff eingeleitet und mit einer Geschwindigkeit von 12,2 ml/min umgewälzt. Das Volumen des Umwälzsystems betrug etwa 140 mL Die nach dem BET-Verfahren bestimmte Oberfläche des komplexen Katalysators betrug etwa 1 m2/g; der in einer Kühlfalle gesammelte Ammoniak wurde quantitativ mit Hilfe der Gaschromatographie und Infrarotspektrometrie analysiert. Die Ergebnisse sind in Tabelle I zusammengestellt Wenn der so erhaltene Katalysator 10 bis 20 era Hg Sauerstoff oder Kohlenmonoxid ausgesetzt wurde, so wurde dadurch seine katalytische Aktivität praktisch nicht verändert.a deeply colored complex of iron phthalocyanine sodium formed. A mixture of gaseous hydrogen and nitrogen was introduced into the reaction vessel with the complex thus formed and circulated at a rate of 12.2 ml / min. The volume of the circulation system was about 140 mL. The surface area of the complex catalyst, determined by the BET method, was about 1 m 2 / g; the ammonia collected in a cold trap was quantitatively analyzed using gas chromatography and infrared spectrometry. The results are shown in Table I. When the catalyst obtained in this way was exposed to 10 to 20 atmospheric Hg of oxygen or carbon monoxide, its catalytic activity was practically not changed.

Tabelle ITable I.

PartialdruckPartial pressure N2 N 2 H2 H 2 3030th ReaktionsReaction
temperaturtemperature
Ammoniak-Ammonia- NHj/Nj*)NHj / Nj *)
des eingeleitetenof the initiated (cm Hg)(cm Hg) 3030th ausbeute nachyield after GasesGas 1010 3030th (°C)(° C) 20 Stunden20 hours
(ml unter(ml under
1010 3030th 110110 Normalnormal 0,020.02 1010 to .to. 170170 bedingungen)conditions) 0,070.07 1010 240240 0,260.26 0,270.27 3030th 260260 0,920.92 0,360.36 240240 3,643.64 0,050.05 4,604.60 1,801.80

*) Mit »NH3/N2« ist in dieser wie in allen folgenden Tabellen das Verhältnis der Menge des gebildeten NH3 zur Menge des eingesetzten N2 bezeichnet.*) In this and in all the following tables, “NH3 / N2” denotes the ratio of the amount of NH 3 formed to the amount of N 2 used.

Beispiel 2Example 2

Die Katalysatoren wurden in der gleichen Weise wie im Beispiel 1 hergestellt, wobei 0,5 g der verschiedenen Alkalimetalle mit 0,2 g der verschiedenen Ubergangsmetallphthalocyanine in der aus Tabelle II ersichtlichen Zusammenstellung umgesetzt wurden. Ebenfalls aus Tabelle II sind die Ergebnisse der unter Verwendung der entsprechenden Katalysatoren durchgeführten Ammoniaksynthese zu entnehmen, wobei die Oberfläche der Katalysatoren wiederum je etwa 1 m2/g betrug.The catalysts were prepared in the same way as in Example 1, 0.5 g of the various alkali metals being reacted with 0.2 g of the various transition metal phthalocyanines in the list shown in Table II. Table II also shows the results of the ammonia synthesis carried out using the corresponding catalysts, the surface area of the catalysts again being about 1 m 2 / g.

Tabelle IITable II Beispiel 3Example 3

0,5 g metallisches Natrium und 0,2 g Eisenphthalocyanin wurden auf 0,1 g Aktivkohle mit einer Oberfläche von etwa 600 m2/g niedergeschlagen und zum Katalysator umgesetzt Die Ergebnisse der mit diesem Katalysator durchgeführten Ammoniaksynthese sind in Tabelle III dargestellt Das Volumen des Reaktionssystems betrug etwa 140 mL0.5 g of metallic sodium and 0.2 g of iron phthalocyanine were deposited on 0.1 g of activated carbon with a surface area of about 600 m 2 / g and converted to the catalyst. The results of the ammonia synthesis carried out with this catalyst are shown in Table III Reaction system was about 140 mL

Tabelle HITable HI

Partialdruck desPartial pressure of
eingeleiteteninitiated
GasesGas
N2 I H2 N 2 IH 2
(cm Hg)(cm Hg)
4545
4545
ReaktionsReaction
temperaturtemperature
CC)CC)
Ammonia VniislKtitrAmmonia VniislKtitr NH3ZN2 NH 3 ZN 2
1010
1515th
2525th
5050
nach 20 Stundenafter 20 hours
(ml unter Normal-(ml under normal
0,0150.015
0,060.06
0303

2020th

Beispiel 4Example 4

Die Katalysatoren wurden in der gleichen Weise wie im Beispiel 1 beschrieben dargestellt, wobei 0,5 g metallisches Natrium und 0,2 g Ubergangsmetall-Tetraphenylporphin in der aus Tabelle IV ersichtlichen Zusammensetzung umgesetzt wurden. Die ErgebnisseThe catalysts were prepared in the same manner as described in Example 1, with 0.5 g metallic sodium and 0.2 g of transition metal tetraphenylporphine in the table IV Composition were implemented. The results der mit den so dargestellten Katalysatoren durchgeführten Ammoniaksynthese sind in Tabelle IV zusammengestellt. Das Volumen des Reaktionssystems betrug etwa 140 ml.the ammonia synthesis carried out with the catalysts shown in this way are summarized in Table IV. The volume of the reaction system was about 140 ml.

3535

4040

Tabelle IVTable IV Katalysatorcatalyst

PartialPartial
druck desprint of the
H2 H 2 3030th Rcak-Rcak- Ammoniakammonia NHj/N2 NHj / N 2
einone (cm Hg)(cm Hg) 4545 tions-functional
tempe-tempe-
ausbeuteyield
Katalysatorcatalyst geleitetenguided
GawGaw
1010 4545 raturrature nachafter
20 Stunden20 hours
1010 4545 (ml unter(ml under N2 N 2 1515th 4545 (0C)( 0 C) Normai-Normai- 0,240.24 1010 4545 240240 bedingungen)conditions) 0,360.36 K-FePc*)K-FePc *) 1010 200200 3,23.2 0,420.42 Na-CoPc**) ...Na-CoPc **) ... 1010 240240 1010 0,190.19 Na-CoPc**) ...Na-CoPc **) ... 240240 1818th 0,070.07 Na-WPc**)....Na-WPc **) .... 240240 5,85.8 0,170.17 Na-PtPc**)....Na-PtPc **) .... 240240 2,12.1 Na-ClTiPc**)..Na-ClTiPc **) .. 5,25.2

Na-ClFe-(HIMetra- phenylporphinNa-ClFe- (HIMetra- phenylporphine

Na-ClMn-Na-ClMn- (Ill)-tetra-(Ill) -tetra-

50 phenylporphin50 phenylporphine

110
240
110
240

240240

Beispiel SExample p

AmmoniakausbeuteAmmonia yield

nach 20 Stundenafter 20 hours

(ml unter Normalbedingungen)(ml under Normal conditions)

0,2 8,20.2 8.2

0,80.8

NH3/N2 NH 3 / N 2

0,01 0,410.01 0.41

0,040.04

Pc = Phthalocyanin.Pc = phthalocyanine.

*) Das Volumen des Reaktionssystems beträgt etwa 100 ml. *♦) Das Volumen des Reaktionssystems beträgt etwa 210 ml.*) The volume of the reaction system is about 100 ml. * ♦) The volume of the reaction system is about 210 ml.

Ein Graphit-Alkalimetall-Komplex-Katalysator wurde durch Umsetzen von etwa 2 g Graphitpulver mit etwa 2 g Alkalimetall im Vakuum bei 300° C in einem gläsernen U-Rohr erhalten.A graphite-alkali metal complex catalyst was prepared by reacting about 2 g of graphite powder obtained with about 2 g of alkali metal in a vacuum at 300 ° C in a glass U-tube.

In dem auf einer bestimmten Temperatur gehaltenen Reaktionsgefaß wird ein Wasserstoff-Stickstoff-Gemisch mit einer Geschwindigkeit von 12 ml/min um gewälzt. Das Volumen des Umwälzsystems beträgt etwa 114 ml. Die Oberfläche des Komplexes, die mit Hilfe der BET-Methode unter Verwendung von Stickstoff bestimmt wurdes betrug etwa 500 m2/g. Das Reaktionsprodukt, der Ammoniak, wurde in einem als Kühlfalle dienenden und im Umwälzsystem eingebauten gläsernen U-Rohr, das mit flüssigem Stickstoff gekühlt wurde, aufgefangen und an·In the reaction vessel, which is kept at a certain temperature, a hydrogen-nitrogen mixture is circulated at a rate of 12 ml / min. The volume of the recirculation system is approximately 114 ml. The surface of the complex, was determined by the BET method using nitrogen s was about 500 m 2 / g. The reaction product, the ammonia, was collected in a glass U-tube, which was used as a cold trap and was built into the circulation system and was cooled with liquid nitrogen, and was then

schließend mit Hilfe der Infrarotspektrometne und der Gaschromatographie analysiert Die Ergebnisse sind in Tabelle V wiedergegeben.then analyzed with the aid of infrared spectrometry and gas chromatography. The results are reproduced in Table V.

Durch die Gegenwart von Sauerstoff und Kohlenmonoxid wurde die Aktivität des Komplexes praktisch kaum verändert.The presence of oxygen and carbon monoxide made the activity of the complex practical barely changed.

Tabelle VTable V

Partial-Partial
druck desprint of the
tetenkilled
isesises
H2 H 2
Hg)Hg)
Reak-React Ammoniak-Ammonia-
ansbeuteloot
NH3ZN2 NH 3 ZN 2
Katalysatorcatalyst gelcigelci
GaGa
N2 N 2
(cm(cm
9,29.2 üons-üons-
tempe-tempe-
raturrature
(0Q( 0 Q
nachafter
12 Stunden12 hours
(ml unter(ml under
Normal-normal
bedingungeii)conditionseii)
0,240.24
K-GraphitK graphite 5,85.8 9,29.2 300300 1,91.9 0,270.27 Na-GraphitNa graphite 5,85.8 300300 2,12.1

Beispiel 6Example 6

In der gleichen wie in Beispiel 5 beschriebenen Weise wurde der Katalysator aus einem Gramm eines Alkalimetalls und zwei Gramm. Graphit hergestellt. Die Ergebnisse der mit diesen Katalysatoren durchgeführten Ammoniaksynthese sind in Tabelle VI zusammengestellt. Die Oberfläche des Katalysators betrug etwa 20 m2/g, und das Volumen des Reaktionssystems betrug etwa 310 ml. In the same manner as described in Example 5, the catalyst was prepared from one gram of an alkali metal and two grams of graphite. The results of the ammonia synthesis carried out with these catalysts are shown in Table VI. The surface area of the catalyst was about 20 m 2 / g, and the volume of the reaction system was about 310 ml.

Tabelle VITable VI

Partial-Partial
druck desprint of the
cin~cin ~
H2 H 2 2424 Reak-React Amiuoniak-Ammonia
ausbeuteyield
NH3ZN2 NH 3 ZN 2
Katalysatorcatalyst geleitetenguided
GasesGas
(cm Hg)(cm Hg) 2424 lions-lions
tempe-tempe-
raturrature
nachafter
20 Stunden20 hours
(ml unter(ml under
N2 N 2 88th 2424 Nonnal-Nonnal 88th 3838 (0C)( 0 C) bedingungen)conditions) 0,0020.002 K-GraphitK graphite 88th 306306 0,060.06 0,0040.004 1212th 325325 0,110.11 0,0080.008 350350 0,230.23 0,0080.008 Rb-GraphitRb graphite 300300 0,390.39

Claims (3)

Patentansprüche:Patent claims: 1. Verfahren zur Herstellung eines Katalysators, dadurch gekennzeichnet, daß man S eine überschüssige Menge mindestens eines der Alkalimetalle mit einem oder mehreren Ubergangsmetallphthalocyaninen, einem oder mehreren Ubergangsmetallporphyrinen oder mit Graphit bei einer über dem Schmelzpunkt des bzw. der Alkalimetalle liegenden Temperatur reagieren läßt1. A process for the preparation of a catalyst, characterized in that S an excess amount of at least one of the alkali metals with one or more transition metal phthalocyanines, one or more transition metal porphyrins or with graphite at one above the melting point of the Can react alkali metals lying temperature 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Alkalimetall auf einen Träger niederschlägt, das Ubergangsmetallphthalocyanin oder Porphyrin auf diese niedergeschlagene Schicht aufdampft und die Umsetzung zum Katalysator durch eine anschließende Temperung im Vakuum vornimmt.2. The method according to claim 1, characterized in that the alkali metal is on a carrier precipitates, the transition metal phthalocyanine or porphyrin precipitated on this Layer is evaporated and the conversion to the catalyst by a subsequent tempering in Vacuum. 3. Verwendung der Katalysatoren nach Anspruch 1 und 2 für die Ammoniaksynthese.3. Use of the catalysts according to Claim 1 and 2 for the synthesis of ammonia.
DE2006347A 1969-02-06 1970-02-04 Process for the preparation of a catalyst Expired DE2006347C3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP894169 1969-02-06
JP894069 1969-02-06

Publications (3)

Publication Number Publication Date
DE2006347A1 DE2006347A1 (en) 1970-08-06
DE2006347B2 DE2006347B2 (en) 1973-09-20
DE2006347C3 true DE2006347C3 (en) 1974-10-31

Family

ID=26343569

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2006347A Expired DE2006347C3 (en) 1969-02-06 1970-02-04 Process for the preparation of a catalyst

Country Status (4)

Country Link
BE (1) BE745624A (en)
DE (1) DE2006347C3 (en)
FR (1) FR2030339A1 (en)
GB (1) GB1288546A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3121478C2 (en) * 1981-05-29 1986-05-22 Heiner Dipl.-Chem. Dr. 8000 München Eckert Process for the optionally selective reduction of unsaturated C, C, C, N, N, N and N, O bonds or of C-halogen or acyl groups
US4800188A (en) * 1987-03-20 1989-01-24 Hoechst Celanese Corp. Method for supporting metalloporphyrins on polybenzimidazole porous articles
GB8827123D0 (en) * 1988-11-21 1988-12-29 Atomic Energy Authority Uk Supported oxidation catalyst

Also Published As

Publication number Publication date
DE2006347A1 (en) 1970-08-06
FR2030339A1 (en) 1970-11-13
GB1288546A (en) 1972-09-13
DE2006347B2 (en) 1973-09-20
BE745624A (en) 1970-07-16

Similar Documents

Publication Publication Date Title
US5055282A (en) Method of decomposing ammonia using a ruthenium catalyst
DE2450659C3 (en) Method for removing ammonia from gases containing ammonia
DE2414333B2 (en) Process for the selective separation of nitrogen oxides from exhaust gases
EP0723810A1 (en) Catalyst, his preparation process and use thereof to produce vinyl acetate monomer
DE2748643A1 (en) METHOD FOR THE OXIDATION OF SULFUR AND SULFUR COMPOUNDS
DE1468716C3 (en)
EP0013741B1 (en) Process for the preparation of maleic anhydride
DE2006347C3 (en) Process for the preparation of a catalyst
DE3143152A1 (en) Process for the catalytic conversion of isobutyric acid into the corresponding alpha , beta -ethylenically unsaturated derivative
DE2114769C3 (en) Process for the preparation of a catalyst for the synthesis of ammonia
DE1518729C3 (en) Process for the preparation of a mixture of acrylic acid and acrolein
DE69725527T2 (en) Hydrogen oxidation catalyst, hydrogen selective oxidation process, and hydrocarbon dehydrogenation process
DE1080994B (en) Process for the production of aldehydes and ketones
DE1079612B (en) Manufacture of dicyan
DE2016596C3 (en) Process for the production of catalysts and their application
DE2932268C2 (en) Method for the analytical determination of hydrogen cyanide in gases
US5002921A (en) Catalyzer for decomposing ammonia
DE570028C (en) Process for the production of carbon in finely divided active form
DE2048620C3 (en)
AT400559B (en) METHOD FOR PRODUCING ISOCYANIC ACID FROM CYANURIC ACID
DE69937194T2 (en) PREPARATION OF NITROGEN MONOXIDE
DE2130732C3 (en) Ammonia synthesis catalyst
DE1443717C (en)
Naruko Nitrogen Complex on Charcoal II. Cellulose Charcoal Activated with Zinc Chloride-Ammonium Chloride-Carbon Dioxide
DE1941949C (en) Process for the production of isoprene

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977
EHJ Ceased/non-payment of the annual fee