DE19960482A1 - Calibration unit for multicomponent force and torque sensor, e.g. for robotic system, has sensor that has already been calibrated connected to sensor to be calibrated and compares sensor data - Google Patents

Calibration unit for multicomponent force and torque sensor, e.g. for robotic system, has sensor that has already been calibrated connected to sensor to be calibrated and compares sensor data

Info

Publication number
DE19960482A1
DE19960482A1 DE1999160482 DE19960482A DE19960482A1 DE 19960482 A1 DE19960482 A1 DE 19960482A1 DE 1999160482 DE1999160482 DE 1999160482 DE 19960482 A DE19960482 A DE 19960482A DE 19960482 A1 DE19960482 A1 DE 19960482A1
Authority
DE
Germany
Prior art keywords
sensor
calibrated
already
compares
robotic system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999160482
Other languages
German (de)
Inventor
Peter Giesecke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1999160482 priority Critical patent/DE19960482A1/en
Publication of DE19960482A1 publication Critical patent/DE19960482A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The unit has a sensor (4) that has already been calibrated connected to a sensor (2) that is to be calibrated. Actuators for the system are used one after another to generate force or torque. A calibration detector compares data for different forces and torques the two sensors in a measurement matrix using an external computer system or an integrated chip.

Description

Die Kalibrierung von Mehrkomponentenaufnehmern (MKA) zur Erfassung von Kräften und Momenten erfolgt üblicherweise durch die systematische Belastung mit bekannten Kräften und Momenten, die beispielsweise über Gewichte und Umlenkrollen erzeugt werden. Das Verfahren benötigt eine exakte Ausrichtung der Kraftrichtung und Hebelarme und ist entsprechend zeitaufwendig. Eine entscheidende Verbesserung dieses Verfahrens wurde erreicht durch die Entwicklung einer Kalibriereinrichtung für interne Windkanalwaagen (Pat. 3.187 EU, Veröffentlichungsnummer EP 0 340 316 A1), die mittels hydraulischer Aktoren Kräfte und Momente erzeugt und diese in eine mechanisch in Reihe geschaltete Kombination aus Kalibrieraufnehmer und Meßaufnehmer einleitet. Hauptvorteil dieser Erfindung ist der Wegfall der exakten Ausrichtung der Kräfte und Momente. Die gesuchte Meßmatrax des Prüflings wird in dieser Einrichtung durch Vergleich zwischen der Kalibriermatrix und den Auslesewerten des Meßaufnehmers gewonnen. Die Erfahrung hat gezeigt, daß der kostenintensivere Anteil in dem Krafterzeugungssystem besteht.Multi-component transducers (MKA) are calibrated to record forces and moments usually due to the systematic load with known forces and moments, for example, over Weights and pulleys are generated. The process requires an exact alignment of the direction of force and lever arms and is correspondingly time-consuming. A major improvement to this process has been made achieved through the development of a calibration device for internal wind tunnel scales (Pat. 3.187 EU, Publication number EP 0 340 316 A1), which generates forces and moments by means of hydraulic actuators and this into a mechanically series-connected combination of calibration sensor and measuring sensor initiates. The main advantage of this invention is the elimination of the exact alignment of the forces and moments. The The desired measurement matrix of the test object is compared in this facility by comparison between the calibration matrix and the readings of the sensor. Experience has shown that the more expensive portion consists in the power generation system.

Der hier beschriebenen Erfindung liegt der Gedanke zugrunde, daß
The invention described here is based on the idea that

  • 1. in vielen Fällen nicht die extremen Genauigkeitsforderungen bestehen, die zur Entwicklung der oben beschriebenen (Pat. 3.187 EU) Einrichtung geführt haben.1. In many cases, the extreme accuracy requirements required to develop the above do not exist described (Pat. 3.187 EU) institution.
  • 2. und in diesen Fällen meist Antriebe zur Kraft- und Momentenerzeugung systembedingt vorgesehen sind.2. and in these cases mostly drives for power and torque generation are provided depending on the system.

Wenn beide Voraussetzungen zutreffen, kann auf den kostenintensiven Kraft- und Momentenerzeugerteil verzichtet werden. Dies ist insbesondere bei Robotersystemen mit integriertem Armwurzelsensor der Fall. Die hier erforderliche Genauigkeit liegt hier mit ca. 1% um zwei Größenordnungen unter der bei Windkanalwaagen geforderten Genauigkeit (0,01%). Dieser Umstand ermöglicht den Verzicht auf ein Krafterzeugersystem mit hoher zeitlicher Konstanthaltung einzelner Meßpunkte, so daß die diesbezüglichen Eigenschaften des systembedingten Aktorensystems zur Kalibrierung ausreichen. Dies führt des weiterem zu dem Vorteil, daß die Meßpunkte kontinuierlich ermittelt werden können und dadurch die Kalibrierzeit ganz wesentlich verkürzt wird (von 100% auf ca. 5%). Der letzte Gesichtspunkt ist besonders bei Industrierobotern von hoher Bedeutung. Der Grund hierfür liegt in den unterschiedlichen geometrischen und mechanischen Eigenschaften der Endeffektoren, die z. B. bei Fertigungsaufgaben und Meßaufgaben sehr unterschiedliche Federsteifigkeiten besitzen. Dies und der Umstand, daß der Bezugspunkt meist ebenfalls wechselt, erfordert nach einem Endeffektorwechsel eine jeweilige Neukalibrierung. Dies wird durch die beschriebene Erfindung in höchst einfacher und schneller Weise ermöglicht, wenn ein Kalibriersensor der beschriebenen Art zur Verfügung steht. Der Sensor enthält eine Mehrkomponentenmeßeinrichtung, die auf herkömmliche Art kalibriert ist und die gespeicherten Eigenschaften mit hinreichender Reproduzierbarkeit beibehält. Die bei der Kalibrierung des Meßaufnehmers erhaltenen Ausgabewerte werden mit den kalibrierten Daten der automatisierten Kalibriereinrichtung zeitsynchron ausgewertet und zu der gesuchten Meßmatrix verarbeitet.If both requirements are met, the cost-intensive power and torque generator part can be used to be dispensed with. This is particularly the case with robot systems with an integrated arm root sensor. The The accuracy required here is around 1% two orders of magnitude lower than that of wind tunnel balances required accuracy (0.01%). This fact makes it possible to do without a power generator system high constant time of individual measuring points, so that the relevant properties of the system-related actuator system are sufficient for calibration. This further leads to the advantage that the Measuring points can be determined continuously, thereby shortening the calibration time considerably (from 100% to approx. 5%). The last point of view is of particular importance for industrial robots. The The reason for this lies in the different geometric and mechanical properties of the end effectors, the z. B. in manufacturing and measuring tasks have very different spring stiffness. This and the fact that the reference point usually also changes requires one after an end effector change respective recalibration. This is achieved in a very simple and rapid manner by the described invention enabled if a calibration sensor of the type described is available. The sensor contains one Multi-component measuring device, which is calibrated in a conventional manner and the stored properties maintains with sufficient reproducibility. Those obtained during calibration of the sensor Output values are time-synchronized with the calibrated data of the automated calibration device evaluated and processed to the desired measurement matrix.

Claims (4)

1. Kalibriereinrichtung für Mehrkomponenten-Kraft- und Momentensensoren, gekennzeichnet dadurch daß der zu kalibrierende Aufnehmer (2) mechanisch in Reihe mit einen bereits kalibrierten Aufnehmer (4) verbunden wird und in dieses System mittels systembedingt vorhandener Aktoren nacheinander alle im späteren Betrieb zu erwartenden Kraft- und Momentengrößen eingeleitet werden.1. Calibration device for multi-component force and moment sensors, characterized in that the transducer to be calibrated ( 2 ) is mechanically connected in series with an already calibrated transducer ( 4 ) and in this system, by means of system-related actuators, successively all the force to be expected in later operation - and moment sizes are initiated. 2. Kalibriereinrichtung für Mehrkomponenten-Kraft- und Momentensensoren nach Anspruch 1, gekennzeichnet dadurch daß die erforderliche Berechnung der Meßmatrix in einem externen Rechnersystem vorgenommen wird.2. Calibration device for multi-component force and moment sensors according to claim 1, characterized in that the required calculation of the measurement matrix is carried out in an external computer system. 3. Kalibriereinrichtung für Mehrkomponenten-Kraft- und Momentensensoren nach Anspruch 1, gekennzeichnet dadurch daß die erforderliche Berechnung der Meßmatrix in einem in den Kalibrieraufnehmer integrierten Rechnerchip vorgenommen wird.3. Calibration device for multi-component force and moment sensors according to claim 1, characterized in that the required calculation of the measurement matrix is integrated in the calibration sensor Computer chip is made. 4. Kalibriereinrichtung für Mehrkomponenten-Kraft- und Momentensensoren nach Anspruch 1 bis 3, gekennzeichnet dadurch daß die Auswertung unter Zuhilfenahme neuronaler Netze vorgenommen wird.4. Calibration device for multi-component force and moment sensors according to claim 1 to 3, characterized in that the evaluation is carried out with the aid of neural networks.
DE1999160482 1999-12-15 1999-12-15 Calibration unit for multicomponent force and torque sensor, e.g. for robotic system, has sensor that has already been calibrated connected to sensor to be calibrated and compares sensor data Withdrawn DE19960482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1999160482 DE19960482A1 (en) 1999-12-15 1999-12-15 Calibration unit for multicomponent force and torque sensor, e.g. for robotic system, has sensor that has already been calibrated connected to sensor to be calibrated and compares sensor data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999160482 DE19960482A1 (en) 1999-12-15 1999-12-15 Calibration unit for multicomponent force and torque sensor, e.g. for robotic system, has sensor that has already been calibrated connected to sensor to be calibrated and compares sensor data

Publications (1)

Publication Number Publication Date
DE19960482A1 true DE19960482A1 (en) 2001-06-21

Family

ID=7932752

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999160482 Withdrawn DE19960482A1 (en) 1999-12-15 1999-12-15 Calibration unit for multicomponent force and torque sensor, e.g. for robotic system, has sensor that has already been calibrated connected to sensor to be calibrated and compares sensor data

Country Status (1)

Country Link
DE (1) DE19960482A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383717B2 (en) * 2004-09-17 2008-06-10 Honda Motor Co., Ltd. Force sensor abnormality detection system for legged mobile robot
CN1987391B (en) * 2005-12-20 2010-08-25 中国船舶重工集团公司第七O四研究所 Negative valence jump dynamic torsion corrector
CN101832837A (en) * 2010-05-11 2010-09-15 东南大学 Decoupling method for multidimensional force sensor based on coupling error modeling
WO2012002137A1 (en) * 2010-06-30 2012-01-05 Canon Kabushiki Kaisha Force sensor correcting method
DE102011106302B3 (en) * 2011-07-01 2012-09-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for determining measurement error of force moment sensor utilized in robotics, involves comparing determined sensor values with pseudo sensor values received by inverse transformation for determining measurement error of sensor
JP2014054692A (en) * 2012-09-12 2014-03-27 Seiko Epson Corp State discrimination method, robot, control device, and program
DE102015202076A1 (en) * 2015-02-05 2016-08-11 Kuka Roboter Gmbh Method for adjusting a torque sensor of a robot arm and robot with a robot arm and a control device
WO2019068686A1 (en) * 2017-10-05 2019-04-11 Kuka Deutschland Gmbh Calibration of a joint load sensor of a robot
US10449676B2 (en) 2015-03-23 2019-10-22 National Research Council Of Canada Multi-jointed robot deviation under load determination
WO2021190144A1 (en) * 2020-03-25 2021-09-30 东南大学 High-precision miniaturized on-orbit calibration device and method for six-dimensional force sensor of mechanical arm of space station
DE102022130316B3 (en) 2022-11-16 2024-01-11 Schaeffler Technologies AG & Co. KG Method for calibrating a torque sensor in a robot joint

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383717B2 (en) * 2004-09-17 2008-06-10 Honda Motor Co., Ltd. Force sensor abnormality detection system for legged mobile robot
CN1987391B (en) * 2005-12-20 2010-08-25 中国船舶重工集团公司第七O四研究所 Negative valence jump dynamic torsion corrector
CN101832837A (en) * 2010-05-11 2010-09-15 东南大学 Decoupling method for multidimensional force sensor based on coupling error modeling
CN101832837B (en) * 2010-05-11 2012-01-04 东南大学 Decoupling method for multidimensional force sensor based on coupling error modeling
US9969088B2 (en) 2010-06-30 2018-05-15 Canon Kabushiki Kaisha Force sensor correcting method
WO2012002137A1 (en) * 2010-06-30 2012-01-05 Canon Kabushiki Kaisha Force sensor correcting method
JP2012013537A (en) * 2010-06-30 2012-01-19 Canon Inc Method of calibrating force sensor
US9563601B2 (en) 2010-06-30 2017-02-07 Canon Kabushiki Kaisha Force sensor correcting method
DE102011106302B3 (en) * 2011-07-01 2012-09-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for determining measurement error of force moment sensor utilized in robotics, involves comparing determined sensor values with pseudo sensor values received by inverse transformation for determining measurement error of sensor
JP2014054692A (en) * 2012-09-12 2014-03-27 Seiko Epson Corp State discrimination method, robot, control device, and program
DE102015202076A1 (en) * 2015-02-05 2016-08-11 Kuka Roboter Gmbh Method for adjusting a torque sensor of a robot arm and robot with a robot arm and a control device
US10449676B2 (en) 2015-03-23 2019-10-22 National Research Council Of Canada Multi-jointed robot deviation under load determination
WO2019068686A1 (en) * 2017-10-05 2019-04-11 Kuka Deutschland Gmbh Calibration of a joint load sensor of a robot
WO2021190144A1 (en) * 2020-03-25 2021-09-30 东南大学 High-precision miniaturized on-orbit calibration device and method for six-dimensional force sensor of mechanical arm of space station
US11867578B2 (en) 2020-03-25 2024-01-09 Southeast University High-precision and miniaturized on-orbit calibration device for six-dimensional force sensor of space station manipulator and calibration method thereof
DE102022130316B3 (en) 2022-11-16 2024-01-11 Schaeffler Technologies AG & Co. KG Method for calibrating a torque sensor in a robot joint

Similar Documents

Publication Publication Date Title
DE102018209594B4 (en) Method and system for load estimation and gravity compensation on a robotic arm
DE69926423T2 (en) Method and apparatus for recalibrating a force sensor mounted on a robot
DE69032031T2 (en) Sensor with self-calibration function
DE102017201163A1 (en) POWER / TORQUE SENSOR, WHICH HAS A REDUNDANT INSTRUMENTATION AND IS READY TO RECOGNIZE FAULTS
DE102009042975B4 (en) Tactile load cell for a phalange
DE19960482A1 (en) Calibration unit for multicomponent force and torque sensor, e.g. for robotic system, has sensor that has already been calibrated connected to sensor to be calibrated and compares sensor data
DE102010052692B4 (en) In-vivo tension calibration in tendon-driven manipulators
DE102010040217B4 (en) Actuator for calibrating torque angle wrenches
DE102009032278B4 (en) Method and apparatus for operating a manipulator
DE3810691A1 (en) ROBOT SYSTEM
DE102016010668B3 (en) Apparatus and method for calibrating force and torque measuring devices
DE102022120052A1 (en) GRAVITY AND INERTIA COMPENSATION OF FORCE/TORQUE SENSORS
DE112018004720T5 (en) SIGNAL PROCESSING DEVICE AND SIGNAL PROCESSING METHOD, FORCE DETECTION DEVICE AND ROBOTIC DEVICE
DE102011016113A1 (en) Method and Apperatus for calibrating multi-axis load cells in a dexterous robot
EP2473818A1 (en) Device for measuring and/or detecting distances and distance changes and device for measuring and/or detecting mechanical loads
DE69935307T2 (en) Impressive Mechanism and Hardness Test Apparatus
EP2721389A1 (en) Method and measuring device for investigating a magnetic workpiece
WO2021122748A1 (en) Calibrating a virtual force sensor of a robot manipulator
DE102016013083B4 (en) Calibrate a model of a process robot and operate a process robot
DE19829178B4 (en) Method and device for determining power as well as for power control in a system, in particular a combined gas and steam turbine plant
EP4061586B1 (en) Force measurement and force generation in redundant robot manipulators
DE102019131401B3 (en) Calibration of an impedance control of a robot manipulator
DE19629739C1 (en) Drive control mechanism, with measurement system, for load movable in several spatial dimensions e.g. for vehicles, air- and space-craft, and buildings vibration test stand
DE4309530C2 (en) Device for the dynamic mechanical analysis of test specimens
DE102023102780A1 (en) QUARTER BRIDGE TEMPERATURE COMPENSATION FOR A FORCE/TORQUE SENSOR

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee