DE19951163A1 - Gas sensor for measuring gas concentration, has beam splitter, catalytic emitter, measurement and reference radiation detectors that are arranged in housing which has partial gas permeable areas - Google Patents
Gas sensor for measuring gas concentration, has beam splitter, catalytic emitter, measurement and reference radiation detectors that are arranged in housing which has partial gas permeable areasInfo
- Publication number
- DE19951163A1 DE19951163A1 DE19951163A DE19951163A DE19951163A1 DE 19951163 A1 DE19951163 A1 DE 19951163A1 DE 19951163 A DE19951163 A DE 19951163A DE 19951163 A DE19951163 A DE 19951163A DE 19951163 A1 DE19951163 A1 DE 19951163A1
- Authority
- DE
- Germany
- Prior art keywords
- catalytic
- gas
- gas sensor
- emitter
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 25
- 230000005855 radiation Effects 0.000 title claims abstract description 24
- 238000005259 measurement Methods 0.000 title claims abstract description 15
- 238000011156 evaluation Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000004744 fabric Substances 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000005452 bending Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 31
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Die Erfindung betrifft einen Gassensor mit einem katalytischen Strahler in einem Gehäuse.The invention relates to a gas sensor with a catalytic emitter in a housing.
Ein derartiger Gassensor geht beispielsweise aus der US 4,507,558 hervor. In der dort beschriebenen Messvorrichtung werden die mittels zweier Infrarotstrahlungsquellen ausgesendeten Messstrahlen gasspezifisch absorbiert und mit geeigneten Strahlungsdetektoren gemessen. Andererseits wird mit einem heißen katalytischen Strahler die Gesamtkonzentration der brennbaren Gase ermittelt. Die Auswertung erfolgt rechnerisch, um den Anteil Naturgas in einem Ethan-/Methangemisch zu bestimmen. Ein Nachteil der bekannten Vorrichtung besteht in der Komplexität des Aufbaus mit drei Strahlungsquellen und der speziellen Anwendung für Ethan-/Methangemische.Such a gas sensor can be seen, for example, from US 4,507,558. In the measuring device described there, the two Infrared radiation sources emitted measuring beams gas-specific absorbed and measured with suitable radiation detectors. On the other hand the total concentration of the combustible gases. The evaluation is carried out arithmetically to the proportion Determine natural gas in an ethane / methane mixture. A disadvantage of known device consists in the complexity of the structure with three Radiation sources and the special application for ethane / methane mixtures.
Die Aufgabe der Erfindung besteht darin, einen kompakten, aus wenigen Komponenten aufgebauten Gassensor vorzuschlagen, mit dem die gleichzeitige Bestimmung unterschiedlicher Komponenten eines Gasgemisches möglich ist.The object of the invention is a compact, from a few Propose components built gas sensor with which the simultaneous determination of different components of a gas mixture is possible.
Die Lösung der Aufgabe erhält man mit den Merkmalen von Anspruch 1. Die Unteransprüche geben vorteilhafte Ausbildungen der Erfindung nach Anspruch 1 an.The solution to the problem is obtained with the features of claim 1. Die Sub-claims give advantageous embodiments of the invention according to claim 1 on.
Ein wesentlicher Vorteil des Gassensors nach Anspruch 1 besteht darin, dass auch die von einer infrarotoptischen Messanordnung aufgrund fehlender )nfrarotabsorption nicht oder nur unzureichend messbaren Konzentrationen bestimmter Gase und Dämpfe durch die Oxydation am katalytischen Strahler und die damit einhergehende Temperaturerhöhung mit messbarer Widerstandsänderung bestimmt werden können. Derartige, mittels der Infrarotabsorption nicht oder nur unzureichend messbare Gase sind insbesondere Acetylen, Wasserstoff, Ammoniak. Hinzu kommen verschiedene Alkohole und Lösungsmittel. Insgesamt kann somit eine größere Anzahl von Messgasen bezüglich ihrer Konzentration gemessen werden.A major advantage of the gas sensor according to claim 1 is that also that of an infrared optical measuring arrangement due to the lack of ) Infrared absorption not or only insufficiently measurable concentrations certain gases and vapors due to oxidation on the catalytic emitter and the associated temperature increase with measurable Change in resistance can be determined. Such, by means of Infrared absorption is not or only insufficiently measurable gases especially acetylene, hydrogen, ammonia. There are also various Alcohols and solvents. In total, a larger number of Sample gases are measured in terms of their concentration.
Ein weiterer Vorteil im Vergleich zu infrarotoptischen Messanordnungen besteht in einer Reduzierung der Herstellkosten, weil im Falle der Messung von explosiven Gasen oder Gasgemischen keine infrarotdurchlässigen, explosionsgeschützten Fenster zur Abdichtung der Elektronik im Gassensor von der Umgebungsatmosphäre notwendig sind: Brennbare Gase und Dämpfe werden am katalytischen Strahler kontrolliert oxidiert.Another advantage compared to infrared optical measuring arrangements is in a reduction in manufacturing costs because in the case of measuring explosive gases or gas mixtures no infrared transmissive, explosion-proof windows for sealing the electronics in the gas sensor of the surrounding atmosphere are necessary: flammable gases and vapors are oxidized in a controlled manner on the catalytic emitter.
Schließlich dient der katalytische Strahler gleichzeitig als Strahlungsquelle für die infrarotoptische Messanordnung.Finally, the catalytic emitter also serves as a radiation source for the infrared optical measuring arrangement.
Im folgenden wird ein Ausführungsbeispiel der Erfindung mit Hilfe der einzigen Figur erläutert, die schematisch einen Schnitt durch einen erfindungsgemäßen Gassensor zeigt.The following is an embodiment of the invention using the only Figure explains that schematically shows a section through an inventive Gas sensor shows.
Der erfindungsgemäße Gassensor weist im Ausführungsbeispiel ein explosionsgeschütztes Gehäuse 7 mit einem Verschluss 8 und einem Träger 9 auf, wobei das Gehäuse 7 aus zumindest in Teilbereichen gasdurchlässigen Materialien besteht. Die gasdurchlässigen Teilbereiche des Gehäuses 7 bestehen insbesondere aus mehreren zusammengesinterten, biegefesten Gewebelagen aus Metall oder aus gesintertem Metallpulver, um eine Entzündung der Umgebungsluft aus dem Gassensor heraus zu verhindern. Zumindest Teilbereiche des Gehäuses 7 müssen gasdurchlässig sein, damit die Umgebungsluft bzw. die zu messenden Gase in das Gehäuse 7 des Gassensors hineindiffundieren können. Die zu messenden Gase diffundieren in den Messraum 11. Die Konzentration jedes zu messenden Gases kann entweder an dem katalytischen Strahler 1 und/oder mit der infrarotoptischen Messanordnung mit dem für das zu messende Gas spezifischen Messstrahlungsdetektor 4 und dem für das zu messende Gas unspezifischen Referenzstrahlungsdetektor 6 bestimmt werden. Vorzugsweise sind 4 und 6 pyroelektrische Detektoren. Für die infrarotoptische Messung wird der katalytische Strahler 1 als Strahlungsquelle verwendet, und die Strahlung gelangt über einen insbesondere mittels eines Halters 2 und 10 gehaltenen konkaven Spiegel 12 und eine Blende 3 für die Strahlführung auf einen Strahlteiler 5 zur Aufteilung der Strahlung auf beide Detektoren. Die Auswertung der an sich bekannten Infrarotmessung erfolgt durch Quotientenbildung der Messsignale der Detektoren, so dass systematische Fehler eliminiert werden und ein für das zu messende Gas konzentrationsabhängiges Messsignal von der infrarotoptischen Messanordnung an die Auswerteeinheit 13 abgegeben wird.In the exemplary embodiment, the gas sensor according to the invention has an explosion-proof housing 7 with a closure 8 and a carrier 9 , the housing 7 consisting of materials which are gas-permeable at least in some areas. The gas-permeable subregions of the housing 7 consist in particular of several sintered, bending-resistant fabric layers made of metal or of sintered metal powder in order to prevent the ambient air from igniting out of the gas sensor. At least partial areas of the housing 7 must be gas-permeable so that the ambient air or the gases to be measured can diffuse into the housing 7 of the gas sensor. The gases to be measured diffuse into the measuring space 11 . The concentration of each gas to be measured can be determined either on the catalytic emitter 1 and / or with the infrared-optical measuring arrangement with the measurement radiation detector 4 specific for the gas to be measured and the reference radiation detector 6 unspecific for the gas to be measured. Preferably 4 and 6 are pyroelectric detectors. For the infrared-optical measurement, the catalytic emitter 1 is used as the radiation source, and the radiation passes through a concave mirror 12, which is held in particular by means of a holder 2 and 10 , and an aperture 3 for guiding the beam onto a beam splitter 5 for distributing the radiation to both detectors. The infrared measurement, which is known per se, is evaluated by forming the quotient of the measurement signals from the detectors, so that systematic errors are eliminated and a measurement signal which is concentration-dependent for the gas to be measured is output by the infrared-optical measurement arrangement to the evaluation unit 13 .
Der katalytische Strahler 1 besteht im allgemeinen aus Platin und/oder aus einem oder mehreren anderen Edelmetallen und ist insbesondere mit einer Beschichtung eines Oxydationskatalysators versehen. Das zu messende Gas wird an dem katalytischen Strahler 1, der auf eine für die katalytische Oxydation erforderliche Temperatur aufgeheizt wird, kontrolliert verbrannt. Die Verbrennung führt zu einer Temperaturerhöhung des katalytischen Strahlers 1, die wiederum zu einer von der Konzentration des zu messenden Gases abhängigen Widerstandsänderung führt. Wird der elektrische Widerstand des katalytischen Strahlers 1 auf einen konstanten Wert geregelt, führt die Erwärmung zur Verminderung der zugeführten elektrischen Leistung. Die für den Betrieb des katalytischen Strahlers 1 weniger erforderliche elektrische Leistung ist ein Maß für die Gaskonzentration. Gleichzeitig findet durch die Infrarotabsorption der infrarotoptischen Messanordnung eine konzentrationsabhängige Messsignalabnahme am Messstrahlungsdetektor 4 statt.The catalytic radiator 1 generally consists of platinum and / or one or more other noble metals and is in particular provided with a coating of an oxidation catalyst. The gas to be measured is burned in a controlled manner on the catalytic radiator 1 , which is heated to a temperature required for the catalytic oxidation. The combustion leads to an increase in the temperature of the catalytic radiator 1 , which in turn leads to a change in resistance dependent on the concentration of the gas to be measured. If the electrical resistance of the catalytic radiator 1 is regulated to a constant value, the heating leads to a reduction in the electrical power supplied. The electrical power less required for the operation of the catalytic radiator 1 is a measure of the gas concentration. At the same time, the infrared absorption of the infrared-optical measurement arrangement results in a concentration-dependent measurement signal decrease at the measurement radiation detector 4 .
Bei den brennbaren Gasen in einem Gasgemisch, deren Konzentration von der infrarotoptischen Messanordnung aufgrund fehlender Absorptionsbanden nicht erfasst werden kann, wird nur das Signal des katalytischen Strahlers 1 ausgewertet.In the case of the combustible gases in a gas mixture, the concentration of which cannot be detected by the infrared optical measuring arrangement due to the lack of absorption bands, only the signal of the catalytic emitter 1 is evaluated.
Durch Vergleich der mit beiden Methoden gemessenen Konzentrationen können Querempfindlichkeiten der einzelnen Methoden reduziert werden. Dies ist dann der Fall, wenn die Konzentration der betreffenden Gase sowohl durch den katalytischen Strahler 1 als auch an der infrarotoptischen Messanordnung erfasst werden kann, wie beispielsweise bei Kohlenwasserstoffen. Der Vergleich beider Messwerte für die betreffende Gaskonzentration ermöglicht eine dementsprechende Kalibrierung, so dass Umwelteinflüsse kompensiert und Querempfindlichkeiten weitgehend eliminiert werden können.By comparing the concentrations measured with both methods, cross sensitivities of the individual methods can be reduced. This is the case when the concentration of the gases in question can be detected both by the catalytic emitter 1 and on the infrared-optical measuring arrangement, such as in the case of hydrocarbons. The comparison of the two measured values for the gas concentration in question enables a corresponding calibration, so that environmental influences can be compensated and cross-sensitivities can be largely eliminated.
Normalerweise macht die Kalibrierung des katalytischen Strahlers 1 ein zweites gleiches, aber katalytisch inaktives Messelement erforderlich. Im erfindungsgemäßen, kombinierten Messsystem kann hierauf jedoch verzichtet werden, da die Kompensation von Umwelteinflüssen (Feuchte, Druck) und die Beseitigung von Querempfindlichkeiten mit Hilfe des Referenzstrahlungsdetektors 6 durchgeführt wird.Normally, the calibration of the catalytic emitter 1 requires a second, identical, but catalytically inactive measuring element. However, this can be dispensed with in the combined measuring system according to the invention, since the compensation of environmental influences (moisture, pressure) and the elimination of cross-sensitivities is carried out with the aid of the reference radiation detector 6 .
Die Auswertung der Messungen erfolgt in der zentralen Auswerteeinheit 13.The measurements are evaluated in the central evaluation unit 13 .
Für die Temperaturkompensation kann im Gehäuse 7 ein zusätzlicher Temperatursensor vorgesehen sein, so dass die Signale des Temperatursensors ebenfalls in der Auswerteeinheit 13 verrechnet und für die Auswertung der Konzentrationsmessungen verwendet werden.An additional temperature sensor can be provided in the housing 7 for the temperature compensation, so that the signals of the temperature sensor are also calculated in the evaluation unit 13 and used for the evaluation of the concentration measurements.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19951163A DE19951163A1 (en) | 1999-10-23 | 1999-10-23 | Gas sensor for measuring gas concentration, has beam splitter, catalytic emitter, measurement and reference radiation detectors that are arranged in housing which has partial gas permeable areas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19951163A DE19951163A1 (en) | 1999-10-23 | 1999-10-23 | Gas sensor for measuring gas concentration, has beam splitter, catalytic emitter, measurement and reference radiation detectors that are arranged in housing which has partial gas permeable areas |
Publications (1)
Publication Number | Publication Date |
---|---|
DE19951163A1 true DE19951163A1 (en) | 2001-05-17 |
Family
ID=7926684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19951163A Ceased DE19951163A1 (en) | 1999-10-23 | 1999-10-23 | Gas sensor for measuring gas concentration, has beam splitter, catalytic emitter, measurement and reference radiation detectors that are arranged in housing which has partial gas permeable areas |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE19951163A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003095990A1 (en) * | 2002-05-14 | 2003-11-20 | Msa Auer Gmbh | Infrared sensor with explosion-proof protection for gas metering appliances |
DE10242530A1 (en) * | 2002-09-12 | 2004-03-25 | Forschungszentrum Jülich GmbH | Light source, for measurement system based on photosensitive electrode, illuminates electrode locally for detection of one or more analytes |
DE10242529A1 (en) * | 2002-09-12 | 2004-03-25 | Forschungszentrum Jülich GmbH | Portable optical system using photosensitive electrode to analyze one or more substances, includes light sources inside analysis container |
WO2004031744A1 (en) * | 2002-10-01 | 2004-04-15 | Siemens Aktiengesellschaft | Method and gas measuring cell for the detection of various gases |
DE102006035788A1 (en) * | 2006-07-28 | 2008-01-31 | Contros Systems & Solutions Gmbh | Device for acquiring measured data |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3135101C2 (en) * | 1980-09-05 | 1988-05-11 | National Research Development Corp., London, Gb | |
EP0462755A1 (en) * | 1990-06-21 | 1991-12-27 | Laser Monitoring Systems Limited | Detecting the presence of a substance in a fluid |
WO1994018546A1 (en) * | 1992-07-16 | 1994-08-18 | Gaztech International Corporation | Improved diffusion-type gas sample chamber |
DE19610912A1 (en) * | 1996-03-20 | 1997-09-25 | Dittrich Elektronik J | Gas sensor for determining concentration of reactive gas in mixture |
EP0834732A2 (en) * | 1996-10-03 | 1998-04-08 | Nihon Kohden Corporation | Gas analyzer |
DE19720007C2 (en) * | 1997-05-13 | 1999-06-02 | Siemens Ag | Gas sensor system for the detection of at least one gas or of particles or a combination thereof with two gas sensors, method for its operation and use of the gas sensor system |
-
1999
- 1999-10-23 DE DE19951163A patent/DE19951163A1/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3135101C2 (en) * | 1980-09-05 | 1988-05-11 | National Research Development Corp., London, Gb | |
EP0462755A1 (en) * | 1990-06-21 | 1991-12-27 | Laser Monitoring Systems Limited | Detecting the presence of a substance in a fluid |
WO1994018546A1 (en) * | 1992-07-16 | 1994-08-18 | Gaztech International Corporation | Improved diffusion-type gas sample chamber |
DE19610912A1 (en) * | 1996-03-20 | 1997-09-25 | Dittrich Elektronik J | Gas sensor for determining concentration of reactive gas in mixture |
EP0834732A2 (en) * | 1996-10-03 | 1998-04-08 | Nihon Kohden Corporation | Gas analyzer |
DE19720007C2 (en) * | 1997-05-13 | 1999-06-02 | Siemens Ag | Gas sensor system for the detection of at least one gas or of particles or a combination thereof with two gas sensors, method for its operation and use of the gas sensor system |
Non-Patent Citations (1)
Title |
---|
Meas. Sci. Technol. 6, 1992, S. 191-195 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003095990A1 (en) * | 2002-05-14 | 2003-11-20 | Msa Auer Gmbh | Infrared sensor with explosion-proof protection for gas metering appliances |
DE10221954B3 (en) * | 2002-05-14 | 2004-01-15 | Msa Auer Gmbh | Infrared sensor for gas measuring devices with explosion protection approval |
US7285782B2 (en) | 2002-05-14 | 2007-10-23 | Msa Auer Gmbh | Infrared sensor with explosion-proof protection for gas metering appliances |
AU2003223904B2 (en) * | 2002-05-14 | 2007-12-06 | Msa Europe Gmbh | Infrared sensor with explosion-proof protection for gas metering appliances |
AU2003223904B8 (en) * | 2002-05-14 | 2009-06-18 | Msa Europe Gmbh | Infrared sensor with explosion-proof protection for gas metering appliances |
DE10242530A1 (en) * | 2002-09-12 | 2004-03-25 | Forschungszentrum Jülich GmbH | Light source, for measurement system based on photosensitive electrode, illuminates electrode locally for detection of one or more analytes |
DE10242529A1 (en) * | 2002-09-12 | 2004-03-25 | Forschungszentrum Jülich GmbH | Portable optical system using photosensitive electrode to analyze one or more substances, includes light sources inside analysis container |
WO2004031744A1 (en) * | 2002-10-01 | 2004-04-15 | Siemens Aktiengesellschaft | Method and gas measuring cell for the detection of various gases |
DE10245822A1 (en) * | 2002-10-01 | 2004-04-15 | Siemens Ag | Method and gas measuring cell for the detection of different gases |
DE10245822B4 (en) * | 2002-10-01 | 2005-02-17 | Siemens Ag | Method and gas measuring cell for the detection of different gases |
DE102006035788A1 (en) * | 2006-07-28 | 2008-01-31 | Contros Systems & Solutions Gmbh | Device for acquiring measured data |
US8381572B2 (en) | 2006-07-28 | 2013-02-26 | Contros Systems & Solutions Gmbh | Device for recording measurement data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0343143B1 (en) | Process and apparatus for measuring the lambda and/or the air/fuel ratio | |
DE69117289T2 (en) | STICKOXYD SENSOR DESIGN | |
DE1302592C2 (en) | DEVICE FOR DETERMINING THE CONCENTRATION OF AN ANALYSIS SUBSTANCE USING SELECTIVE ABSORPTION OF MODULATED RADIATION | |
DE2416997A1 (en) | GAS ANALYZER | |
DE3807752C2 (en) | ||
DE2806208C3 (en) | Method and device for the detection of sulfur dioxide in a gas sample | |
DE2556483C3 (en) | Device for the detection of gaseous anhydrides in an oxygen-containing gas according to the principle of potential difference measurement | |
DE19900129A1 (en) | Gas quality determination | |
DE69019121T2 (en) | Flammable gas detection. | |
DE2833831C2 (en) | Optoacoustic analyzer | |
DE19951163A1 (en) | Gas sensor for measuring gas concentration, has beam splitter, catalytic emitter, measurement and reference radiation detectors that are arranged in housing which has partial gas permeable areas | |
DE102021116050A1 (en) | Measuring device and method for detecting substances oxidizable with oxygen in a test gas | |
DE3116344C2 (en) | ||
DE102004031643A1 (en) | Non-dispersive infrared gas analyzer | |
DE2130331B2 (en) | METHOD AND DEVICE FOR DETERMINING THE CONCENTRATIONS OF THE COMPONENTS OF A MIXTURE CONSISTING OF TWO GASES AND SMOKE | |
DE102007020596A1 (en) | Detector arrangement for non-dispersive infrared gas analyzer, has N-dimensional calibration matrix received signal values of sensors in presence from different well-known transverse gas concentrations | |
DE2803369C2 (en) | Measuring device for determining the proportion of water vapor in a gas mixture by means of infrared absorption gas analysis | |
DE10245822A1 (en) | Method and gas measuring cell for the detection of different gases | |
DE3716992C2 (en) | ||
EP0421291B1 (en) | Arrangement for spectroscopically measuring the concentrations of more components of a gaseous mixture | |
EP1734359A1 (en) | RAMAN spectroscopic analysis method and system therefor | |
DE19806308A1 (en) | Oxygen gas sensor and measurement system for carbon dioxide | |
CH689148A5 (en) | The method and measuring device for measuring the oxygen permeability of a test object. | |
DE2546727C3 (en) | Method for measuring the total concentration of NO and NO2 in a gas sample and apparatus for carrying out the method | |
DE19610912A1 (en) | Gas sensor for determining concentration of reactive gas in mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: DRAEGER SAFETY AG & CO. KGAA, 23560 LUEBECK, DE |
|
8131 | Rejection |